RESUMO
INTRODUCTION: Cell therapy development represents a critical challenge in amyotrophic lateral sclerosis (ALS) research. Despite more than 20 years of basic and clinical research, no definitive safety and efficacy results of cell-based therapies for ALS have been published. AREAS COVERED: This review summarizes advances using stem cells (SCs) in pre-clinical studies to promote clinical translation and in clinical trials to treat ALS. New technologies have been developed and new experimental in vitro and animal models are now available to facilitate pre-clinical research in this field and to determine the most promising approaches to pursue in patients. New clinical trial designs aimed at developing personalized SC-based treatment with biological endpoints are being defined. EXPERT OPINION: Knowledge of the basic biology of ALS and on the use of SCs to study and potentially treat ALS continues to grow. However, a consensus has yet to emerge on how best to translate these results into therapeutic applications. The selection and follow-up of patients should be based on clinical, biological, and molecular criteria. Planning of SC-based clinical trials should be coordinated with patient profiling genetically and molecularly to achieve personalized treatment. Much work within basic and clinical research is still needed to successfully transition SC therapy in ALS.
Assuntos
Esclerose Lateral Amiotrófica , Transplante de Células-Tronco , Esclerose Lateral Amiotrófica/terapia , Esclerose Lateral Amiotrófica/genética , Humanos , Animais , Modelos Animais de Doenças , Ensaios Clínicos como AssuntoRESUMO
We report the analysis of 1 year of data from the first cohort of 15 patients enrolled in an open-label, first-in-human, dose-escalation phase I study (ClinicalTrials.gov: NCT03282760, EudraCT2015-004855-37) to determine the feasibility, safety, and tolerability of the transplantation of allogeneic human neural stem/progenitor cells (hNSCs) for the treatment of secondary progressive multiple sclerosis. Participants were treated with hNSCs delivered via intracerebroventricular injection in combination with an immunosuppressive regimen. No treatment-related deaths nor serious adverse events (AEs) were observed. All participants displayed stability of clinical and laboratory outcomes, as well as lesion load and brain activity (MRI), compared with the study entry. Longitudinal metabolomics and lipidomics of biological fluids identified time- and dose-dependent responses with increased levels of acyl-carnitines and fatty acids in the cerebrospinal fluid (CSF). The absence of AEs and the stability of functional and structural outcomes are reassuring and represent a milestone for the safe translation of stem cells into regenerative medicines.
Assuntos
Transplante de Células-Tronco Hematopoéticas , Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Células-Tronco Neurais , Humanos , Esclerose Múltipla Crônica Progressiva/tratamento farmacológico , Esclerose Múltipla/terapia , Transplante AutólogoRESUMO
Mucopolysaccharidosis type II (Hunter Syndrome) is a rare X-linked inherited lysosomal storage disorder presenting a wide genetic heterogeneity. It is due to pathogenic variants in the IDS gene, causing the deficit of the lysosomal hydrolase iduronate 2-sulfatase, degrading the glycosaminoglycans (GAGs) heparan- and dermatan-sulfate. Based on the presence/absence of neurocognitive signs, commonly two forms are recognized, the severe and the attenuate ones. Here we describe a line of induced pluripotent stem cells, generated from dermal fibroblasts, carrying the mutation c.479C>T, and obtained from a patient showing an attenuated phenotype. The line will be useful to study the disease neuropathogenesis.
Assuntos
Iduronato Sulfatase , Células-Tronco Pluripotentes Induzidas , Mucopolissacaridose II , Glicosaminoglicanos , Humanos , Iduronato Sulfatase/genética , Ácido Idurônico , Células-Tronco Pluripotentes Induzidas/patologia , Mucopolissacaridose II/genética , Mucopolissacaridose II/patologia , FenótipoRESUMO
Amyotrophic Lateral Sclerosis (ALS) is a fatal disease affecting both upper and lower motoneurons. The transactive response DNA binding protein (TARDBP) gene, encoding for TDP-43, is one of the most commonly mutated gene associated with familial cases of ALS (10%). We generated a human induced pluripotent stem cell (hiPSC) line from the fibroblasts of an asymptomatic subject carrying the TARDBP p.G376D mutation. This mutation is very rare and was described in a large Apulian family, in which all ALS affected members are carriers of the mutation. The subject here described is the first identified asymptomatic carrier of the mutation.
Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Heterozigoto , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genéticaRESUMO
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of the upper and lower motor neurons (MNs). About 10% of patients have a family history (familial, fALS); however, most patients seem to develop the sporadic form of the disease (sALS). SOD1 (Cu/Zn superoxide dismutase-1) is the first studied gene among the ones related to ALS. Mutant SOD1 can adopt multiple misfolded conformation, lose the correct coordination of metal binding, decrease structural stability, and form aggregates. For all these reasons, it is complicated to characterize the conformational alterations of the ALS-associated mutant SOD1, and how they relate to toxicity. In this work, we performed a multilayered study on fibroblasts derived from two ALS patients, namely SOD1L145F and SOD1S135N, carrying the p.L145F and the p.S135N missense variants, respectively. The patients showed diverse symptoms and disease progression in accordance with our bioinformatic analysis, which predicted the different effects of the two mutations in terms of protein structure. Interestingly, both mutations had an effect on the fibroblast energy metabolisms. However, while the SOD1L145F fibroblasts still relied more on oxidative phosphorylation, the SOD1S135N fibroblasts showed a metabolic shift toward glycolysis. Our study suggests that SOD1 mutations might lead to alterations in the energy metabolism.