Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 615(7954): 848-853, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36813960

RESUMO

Global net land carbon uptake or net biome production (NBP) has increased during recent decades1. Whether its temporal variability and autocorrelation have changed during this period, however, remains elusive, even though an increase in both could indicate an increased potential for a destabilized carbon sink2,3. Here, we investigate the trends and controls of net terrestrial carbon uptake and its temporal variability and autocorrelation from 1981 to 2018 using two atmospheric-inversion models, the amplitude of the seasonal cycle of atmospheric CO2 concentration derived from nine monitoring stations distributed across the Pacific Ocean and dynamic global vegetation models. We find that annual NBP and its interdecadal variability increased globally whereas temporal autocorrelation decreased. We observe a separation of regions characterized by increasingly variable NBP, associated with warm regions and increasingly variable temperatures, lower and weaker positive trends in NBP and regions where NBP became stronger and less variable. Plant species richness presented a concave-down parabolic spatial relationship with NBP and its variability at the global scale whereas nitrogen deposition generally increased NBP. Increasing temperature and its increasing variability appear as the most important drivers of declining and increasingly variable NBP. Our results show increasing variability of NBP regionally that can be mostly attributed to climate change and that may point to destabilization of the coupled carbon-climate system.


Assuntos
Sequestro de Carbono , Carbono , Mudança Climática , Ecossistema , Mapeamento Geográfico , Plantas , Carbono/análise , Carbono/metabolismo , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Sequestro de Carbono/fisiologia , Estações do Ano , Atmosfera/química , Oceano Pacífico , Temperatura , Nitrogênio/metabolismo , Plantas/classificação , Plantas/metabolismo , Medição de Risco
2.
Nature ; 562(7725): 110-114, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30283105

RESUMO

Climate change is shifting the phenological cycles of plants1, thereby altering the functioning of ecosystems, which in turn induces feedbacks to the climate system2. In northern (north of 30° N) ecosystems, warmer springs lead generally to an earlier onset of the growing season3,4 and increased ecosystem productivity early in the season5. In situ6 and regional7-9 studies also provide evidence for lagged effects of spring warmth on plant productivity during the subsequent summer and autumn. However, our current understanding of these lagged effects, including their direction (beneficial or adverse) and geographic distribution, is still very limited. Here we analyse satellite, field-based and modelled data for the period 1982-2011 and show that there are widespread and contrasting lagged productivity responses to spring warmth across northern ecosystems. On the basis of the observational data, we find that roughly 15 per cent of the total study area of about 41 million square kilometres exhibits adverse lagged effects and that roughly 5 per cent of the total study area exhibits beneficial lagged effects. By contrast, current-generation terrestrial carbon-cycle models predict much lower areal fractions of adverse lagged effects (ranging from 1 to 14 per cent) and much higher areal fractions of beneficial lagged effects (ranging from 9 to 54 per cent). We find that elevation and seasonal precipitation patterns largely dictate the geographic pattern and direction of the lagged effects. Inadequate consideration in current models of the effects of the seasonal build-up of water stress on seasonal vegetation growth may therefore be able to explain the differences that we found between our observation-constrained estimates and the model-constrained estimates of lagged effects associated with spring warming. Overall, our results suggest that for many northern ecosystems the benefits of warmer springs on growing-season ecosystem productivity are effectively compensated for by the accumulation of seasonal water deficits, despite the fact that northern ecosystems are thought to be largely temperature- and radiation-limited10.


Assuntos
Desenvolvimento Vegetal , Fenômenos Fisiológicos Vegetais , Estações do Ano , Temperatura , Simulação por Computador , Mapeamento Geográfico , Transpiração Vegetal , Plantas
3.
New Phytol ; 238(6): 2271-2283, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36751903

RESUMO

Plant water use theory has largely been developed within a plant-performance paradigm that conceptualizes water use in terms of value for carbon gain and that sits within a neoclassical economic framework. This theory works very well in many contexts but does not consider other values of water to plants that could impact their fitness. Here, we survey a range of alternative hypotheses for drivers of water use and stomatal regulation. These hypotheses are organized around relevance to extreme environments, population ecology, and community ecology. Most of these hypotheses are not yet empirically tested and some are controversial (e.g. requiring more agency and behavior than is commonly believed possible for plants). Some hypotheses, especially those focused around using water to avoid thermal stress, using water to promote reproduction instead of growth, and using water to hoard it, may be useful to incorporate into theory or to implement in Earth System Models.


Assuntos
Fotossíntese , Estômatos de Plantas , Estômatos de Plantas/fisiologia , Água/fisiologia , Ecologia , Plantas , Dióxido de Carbono , Ambientes Extremos , Transpiração Vegetal/fisiologia , Folhas de Planta/fisiologia
4.
Glob Chang Biol ; 29(15): 4440-4452, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37303068

RESUMO

Dynamic Global Vegetation Models (DGVMs) provide a state-of-the-art process-based approach to study the complex interplay between vegetation and its physical environment. For example, they help to predict how terrestrial plants interact with climate, soils, disturbance and competition for resources. We argue that there is untapped potential for the use of DGVMs in ecological and ecophysiological research. One fundamental barrier to realize this potential is that many researchers with relevant expertize (ecology, plant physiology, soil science, etc.) lack access to the technical resources or awareness of the research potential of DGVMs. Here we present the Land Sites Platform (LSP): new software that facilitates single-site simulations with the Functionally Assembled Terrestrial Ecosystem Simulator, an advanced DGVM coupled with the Community Land Model. The LSP includes a Graphical User Interface and an Application Programming Interface, which improve the user experience and lower the technical thresholds for installing these model architectures and setting up model experiments. The software is distributed via version-controlled containers; researchers and students can run simulations directly on their personal computers or servers, with relatively low hardware requirements, and on different operating systems. Version 1.0 of the LSP supports site-level simulations. We provide input data for 20 established geo-ecological observation sites in Norway and workflows to add generic sites from public global datasets. The LSP makes standard model experiments with default data easily achievable (e.g., for educational or introductory purposes) while retaining flexibility for more advanced scientific uses. We further provide tools to visualize the model input and output, including simple examples to relate predictions to local observations. The LSP improves access to land surface and DGVM modelling as a building block of community cyberinfrastructure that may inspire new avenues for mechanistic ecosystem research across disciplines.


Assuntos
Clima , Ecossistema , Humanos , Fenômenos Fisiológicos Vegetais , Software , Plantas
5.
Plant Cell Environ ; 45(9): 2554-2572, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35735161

RESUMO

Plant function arises from a complex network of structural and physiological traits. Explicit representation of these traits, as well as their connections with other biophysical processes, is required to advance our understanding of plant-soil-climate interactions. We used the Terrestrial Regional Ecosystem Exchange Simulator (TREES) to evaluate physiological trait networks in maize. Net primary productivity (NPP) and grain yield were simulated across five contrasting climate scenarios. Simulations achieving high NPP and grain yield in high precipitation environments featured trait networks conferring high water use strategies: deep roots, high stomatal conductance at low water potential ("risky" stomatal regulation), high xylem hydraulic conductivity and high maximal leaf area index. In contrast, high NPP and grain yield was achieved in dry environments with low late-season precipitation via water conserving trait networks: deep roots, high embolism resistance and low stomatal conductance at low leaf water potential ("conservative" stomatal regulation). We suggest that our approach, which allows for the simultaneous evaluation of physiological traits, soil characteristics and their interactions (i.e., networks), has potential to improve our understanding of crop performance in different environments. In contrast, evaluating single traits in isolation of other coordinated traits does not appear to be an effective strategy for predicting plant performance.


Assuntos
Estômatos de Plantas , Água , Secas , Ecossistema , Grão Comestível , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Solo/química , Água/fisiologia , Xilema/fisiologia
6.
Glob Chang Biol ; 28(12): 3778-3794, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35253952

RESUMO

Nature-based Climate Solutions (NbCS) are managed alterations to ecosystems designed to increase carbon sequestration or reduce greenhouse gas emissions. While they have growing public and private support, the realizable benefits and unintended consequences of NbCS are not well understood. At regional scales where policy decisions are often made, NbCS benefits are estimated from soil and tree survey data that can miss important carbon sources and sinks within an ecosystem, and do not reveal the biophysical impacts of NbCS for local water and energy cycles. The only direct observations of ecosystem-scale carbon fluxes, for example, by eddy covariance flux towers, have not yet been systematically assessed for what they can tell us about NbCS potentials, and state-of-the-art remote sensing products and land-surface models are not yet being widely used to inform NbCS policymaking or implementation. As a result, there is a critical mismatch between the point- and tree-scale data most often used to assess NbCS benefits and impacts, the ecosystem and landscape scales where NbCS projects are implemented, and the regional to continental scales most relevant to policymaking. Here, we propose a research agenda to confront these gaps using data and tools that have long been used to understand the mechanisms driving ecosystem carbon and energy cycling, but have not yet been widely applied to NbCS. We outline steps for creating robust NbCS assessments at both local to regional scales that are informed by ecosystem-scale observations, and which consider concurrent biophysical impacts, future climate feedbacks, and the need for equitable and inclusive NbCS implementation strategies. We contend that these research goals can largely be accomplished by shifting the scales at which pre-existing tools are applied and blended together, although we also highlight some opportunities for more radical shifts in approach.


Assuntos
Mudança Climática , Ecossistema , Carbono , Sequestro de Carbono , Clima , Árvores , Estados Unidos
7.
Glob Chang Biol ; 28(2): 665-684, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34543495

RESUMO

Terrestrial ecosystems regulate Earth's climate through water, energy, and biogeochemical transformations. Despite a key role in regulating the Earth system, terrestrial ecology has historically been underrepresented in the Earth system models (ESMs) that are used to understand and project global environmental change. Ecology and Earth system modeling must be integrated for scientists to fully comprehend the role of ecological systems in driving and responding to global change. Ecological insights can improve ESM realism and reduce process uncertainty, while ESMs offer ecologists an opportunity to broadly test ecological theory and increase the impact of their work by scaling concepts through time and space. Despite this mutualism, meaningfully integrating the two remains a persistent challenge, in part because of logistical obstacles in translating processes into mathematical formulas and identifying ways to integrate new theories and code into large, complex model structures. To help overcome this interdisciplinary challenge, we present a framework consisting of a series of interconnected stages for integrating a new ecological process or insight into an ESM. First, we highlight the multiple ways that ecological observations and modeling iteratively strengthen one another, dispelling the illusion that the ecologist's role ends with initial provision of data. Second, we show that many valuable insights, products, and theoretical developments are produced through sustained interdisciplinary collaborations between empiricists and modelers, regardless of eventual inclusion of a process in an ESM. Finally, we provide concrete actions and resources to facilitate learning and collaboration at every stage of data-model integration. This framework will create synergies that will transform our understanding of ecology within the Earth system, ultimately improving our understanding of global environmental change, and broadening the impact of ecological research.


Assuntos
Planeta Terra , Ecossistema , Ecologia , Incerteza , Água
8.
Glob Chang Biol ; 27(14): 3336-3349, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33910268

RESUMO

The rising atmospheric CO2 concentration leads to a CO2 fertilization effect on plants-that is, increased photosynthetic uptake of CO2 by leaves and enhanced water-use efficiency (WUE). Yet, the resulting net impact of CO2 fertilization on plant growth and soil moisture (SM) savings at large scale is poorly understood. Drylands provide a natural experimental setting to detect the CO2 fertilization effect on plant growth since foliage amount, plant water-use and photosynthesis are all tightly coupled in water-limited ecosystems. A long-term change in the response of leaf area index (LAI, a measure of foliage amount) to changes in SM is likely to stem from changing water demand of primary productivity in water-limited ecosystems and is a proxy for changes in WUE. Using 34-year satellite observations of LAI and SM over tropical and subtropical drylands, we identify that a 1% increment in SM leads to 0.15% (±0.008, 95% confidence interval) and 0.51% (±0.01, 95% confidence interval) increments in LAI during 1982-1998 and 1999-2015, respectively. The increasing response of LAI to SM has contributed 7.2% (±3.0%, 95% confidence interval) to total dryland greening during 1999-2015 compared to 1982-1998. The increasing response of LAI to SM is consistent with the CO2 fertilization effect on WUE in water-limited ecosystems, indicating that a given amount of SM has sustained greater amounts of photosynthetic foliage over time. The LAI responses to changes in SM from seven dynamic global vegetation models are not always consistent with observations, highlighting the need for improved process knowledge of terrestrial ecosystem responses to rising atmospheric CO2 concentration.


Assuntos
Dióxido de Carbono , Ecossistema , Dióxido de Carbono/análise , Fertilização , Fotossíntese , Solo
9.
Global Biogeochem Cycles ; 35(9): e2021GB007034, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35860341

RESUMO

Earth system models are intended to make long-term projections, but they can be evaluated at interannual and seasonal time scales. Although the Community Earth System Model (CESM2) showed improvements in a number of terrestrial carbon cycle benchmarks, relative to its predecessor, our analysis suggests that the interannual variability (IAV) in net terrestrial carbon fluxes did not show similar improvements. The model simulated low IAV of net ecosystem production (NEP), resulting in a weaker than observed sensitivity of the carbon cycle to climate variability. Low IAV in net fluxes likely resulted from low variability in gross primary productivity (GPP)-especially in the tropics-and a high covariation between GPP and ecosystem respiration. Although lower than observed, the IAV of NEP had significant climate sensitivities, with positive NEP anomalies associated with warmer and drier conditions in high latitudes, and with wetter and cooler conditions in mid and low latitudes. We identified two dominant modes of seasonal variability in carbon cycle flux anomalies in our fully coupled CESM2 simulations that are characterized by seasonal amplification and redistribution of ecosystem fluxes. Seasonal amplification of net and gross carbon fluxes showed climate sensitivities mirroring those of annual fluxes. Seasonal redistribution of carbon fluxes is initiated by springtime temperature anomalies, but subsequently negative feedbacks in soil moisture during the summer and fall result in net annual carbon losses from land. These modes of variability are also seen in satellite proxies of GPP, suggesting that CESM2 appropriately represents regional sensitivities of photosynthesis to climate variability on seasonal time scales.

10.
Rev Geophys ; 58(1)2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33748825

RESUMO

Dry deposition of ozone is an important sink of ozone in near surface air. When dry deposition occurs through plant stomata, ozone can injure the plant, altering water and carbon cycling and reducing crop yields. Quantifying both stomatal and nonstomatal uptake accurately is relevant for understanding ozone's impact on human health as an air pollutant and on climate as a potent short-lived greenhouse gas and primary control on the removal of several reactive greenhouse gases and air pollutants. Robust ozone dry deposition estimates require knowledge of the relative importance of individual deposition pathways, but spatiotemporal variability in nonstomatal deposition is poorly understood. Here we integrate understanding of ozone deposition processes by synthesizing research from fields such as atmospheric chemistry, ecology, and meteorology. We critically review methods for measurements and modeling, highlighting the empiricism that underpins modeling and thus the interpretation of observations. Our unprecedented synthesis of knowledge on deposition pathways, particularly soil and leaf cuticles, reveals process understanding not yet included in widely-used models. If coordinated with short-term field intensives, laboratory studies, and mechanistic modeling, measurements from a few long-term sites would bridge the molecular to ecosystem scales necessary to establish the relative importance of individual deposition pathways and the extent to which they vary in space and time. Our recommended approaches seek to close knowledge gaps that currently limit quantifying the impact of ozone dry deposition on air quality, ecosystems, and climate.

11.
Glob Chang Biol ; 26(6): 3368-3383, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32125754

RESUMO

Understanding changes in terrestrial carbon balance is important to improve our knowledge of the regional carbon cycle and climate change. However, evaluating regional changes in the terrestrial carbon balance is challenging due to the lack of surface flux measurements. This study reveals that the terrestrial carbon uptake over the Republic of Korea has been enhanced from 1999 to 2017 by analyzing long-term atmospheric CO2 concentration measurements at the Anmyeondo Station (36.53°N, 126.32°E) located in the western coast. The influence of terrestrial carbon flux on atmospheric CO2 concentrations (ΔCO2 ) is estimated from the difference of CO2 concentrations that were influenced by the land sector (through easterly winds) and the Yellow Sea sector (through westerly winds). We find a significant trend in ΔCO2 of -4.75 ppm per decade (p < .05) during the vegetation growing season (May through October), suggesting that the regional terrestrial carbon uptake has increased relative to the surrounding ocean areas. Combined analysis with satellite measured normalized difference vegetation index and gross primary production shows that the enhanced carbon uptake is associated with significant nationwide increases in vegetation and its production. Process-based terrestrial model and inverse model simulations estimate that regional terrestrial carbon uptake increases by up to 18.9 and 8.0 Tg C for the study period, accounting for 13.4% and 5.7% of the average annual domestic carbon emissions, respectively. Atmospheric chemical transport model simulations indicate that the enhanced terrestrial carbon sink is the primary reason for the observed ΔCO2 trend rather than anthropogenic emissions and atmospheric circulation changes. Our results highlight the fact that atmospheric CO2 measurements could open up the possibility of detecting regional changes in the terrestrial carbon cycle even where anthropogenic emissions are not negligible.


Assuntos
Dióxido de Carbono/análise , Carbono , Ciclo do Carbono , Sequestro de Carbono , Ecossistema , República da Coreia
12.
Glob Chang Biol ; 26(8): 4462-4477, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32415896

RESUMO

Changing amplitude of the seasonal cycle of atmospheric CO2 (SCA) in the northern hemisphere is an emerging carbon cycle property. Mauna Loa (MLO) station (20°N, 156°W), which has the longest continuous northern hemisphere CO2 record, shows an increasing SCA before the 1980s (p < .01), followed by no significant change thereafter. We analyzed the potential driving factors of SCA slowing-down, with an ensemble of dynamic global vegetation models (DGVMs) coupled with an atmospheric transport model. We found that slowing-down of SCA at MLO is primarily explained by response of net biome productivity (NBP) to climate change, and by changes in atmospheric circulations. Through NBP, climate change increases SCA at MLO before the 1980s and decreases it afterwards. The effect of climate change on the slowing-down of SCA at MLO is mainly exerted by intensified drought stress acting to offset the acceleration driven by CO2 fertilization. This challenges the view that CO2 fertilization is the dominant cause of emergent SCA trends at northern sites south of 40°N. The contribution of agricultural intensification on the deceleration of SCA at MLO was elusive according to land-atmosphere CO2 flux estimated by DGVMs and atmospheric inversions. Our results also show the necessity to adequately account for changing circulation patterns in understanding carbon cycle dynamics observed from atmospheric observations and in using these observations to benchmark DGVMs.


Assuntos
Ciclo do Carbono , Dióxido de Carbono , Animais , Atmosfera , Mudança Climática , Ecossistema , Estações do Ano
13.
Glob Chang Biol ; 26(3): 1068-1084, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31828914

RESUMO

Robust estimates of CO2 budget, CO2 exchanged between the atmosphere and terrestrial biosphere, are necessary to better understand the role of the terrestrial biosphere in mitigating anthropogenic CO2 emissions. Over the past decade, this field of research has advanced through understanding of the differences and similarities of two fundamentally different approaches: "top-down" atmospheric inversions and "bottom-up" biosphere models. Since the first studies were undertaken, these approaches have shown an increasing level of agreement, but disagreements in some regions still persist, in part because they do not estimate the same quantity of atmosphere-biosphere CO2 exchange. Here, we conducted a thorough comparison of CO2 budgets at multiple scales and from multiple methods to assess the current state of the science in estimating CO2 budgets. Our set of atmospheric inversions and biosphere models, which were adjusted for a consistent flux definition, showed a high level of agreement for global and hemispheric CO2 budgets in the 2000s. Regionally, improved agreement in CO2 budgets was notable for North America and Southeast Asia. However, large gaps between the two methods remained in East Asia and South America. In other regions, Europe, boreal Asia, Africa, South Asia, and Oceania, it was difficult to determine whether those regions act as a net sink or source because of the large spread in estimates from atmospheric inversions. These results highlight two research directions to improve the robustness of CO2 budgets: (a) to increase representation of processes in biosphere models that could contribute to fill the budget gaps, such as forest regrowth and forest degradation; and (b) to reduce sink-source compensation between regions (dipoles) in atmospheric inversion so that their estimates become more comparable. Advancements on both research areas will increase the level of agreement between the top-down and bottom-up approaches and yield more robust knowledge of regional CO2 budgets.


Assuntos
Dióxido de Carbono , Ecossistema , África , Ásia , Europa (Continente) , América do Norte , América do Sul
14.
Global Biogeochem Cycles ; 34(12): e2020GB006613, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33380772

RESUMO

Variability in climate exerts a strong influence on vegetation productivity (gross primary productivity; GPP), and therefore has a large impact on the land carbon sink. However, no direct observations of global GPP exist, and estimates rely on models that are constrained by observations at various spatial and temporal scales. Here, we assess the consistency in GPP from global products which extend for more than three decades; two observation-based approaches, the upscaling of FLUXNET site observations (FLUXCOM) and a remote sensing derived light use efficiency model (RS-LUE), and from a suite of terrestrial biosphere models (TRENDYv6). At local scales, we find high correlations in annual GPP among the products, with exceptions in tropical and high northern latitudes. On longer time scales, the products agree on the direction of trends over 58% of the land, with large increases across northern latitudes driven by warming trends. Further, tropical regions exhibit the largest interannual variability in GPP, with both rainforests and savannas contributing substantially. Variability in savanna GPP is likely predominantly driven by water availability, although temperature could play a role via soil moisture-atmosphere feedbacks. There is, however, no consensus on the magnitude and driver of variability of tropical forests, which suggest uncertainties in process representations and underlying observations remain. These results emphasize the need for more direct long-term observations of GPP along with an extension of in situ networks in underrepresented regions (e.g., tropical forests). Such capabilities would support efforts to better validate relevant processes in models, to more accurately estimate GPP.

15.
Global Biogeochem Cycles ; 33(10): 1289-1309, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31894175

RESUMO

Land models are often used to simulate terrestrial responses to future environmental changes, but these models are not commonly evaluated with data from experimental manipulations. Results from experimental manipulations can identify and evaluate model assumptions that are consistent with appropriate ecosystem responses to future environmental change. We conducted simulations using three coupled carbon-nitrogen versions of the Community Land Model (CLM, versions 4, 4.5, and-the newly developed-5), and compared the simulated response to nitrogen (N) and atmospheric carbon dioxide (CO2) enrichment with meta-analyses of observations from similar experimental manipulations. In control simulations, successive versions of CLM showed a poleward increase in gross primary productivity and an overall bias reduction, compared to FLUXNET-MTE observations. Simulations with N and CO2 enrichment demonstrate that CLM transitioned from a model that exhibited strong nitrogen limitation of the terrestrial carbon cycle (CLM4) to a model that showed greater responsiveness to elevated concentrations of CO2 in the atmosphere (CLM5). Overall, CLM5 simulations showed better agreement with observed ecosystem responses to experimental N and CO2 enrichment than previous versions of the model. These simulations also exposed shortcomings in structural assumptions and parameterizations. Specifically, no version of CLM captures changes in plant physiology, allocation, and nutrient uptake that are likely important aspects of terrestrial ecosystems' responses to environmental change. These highlight priority areas that should be addressed in future model developments. Moving forward, incorporating results from experimental manipulations into model benchmarking tools that are used to evaluate model performance will help increase confidence in terrestrial carbon cycle projections.

16.
Glob Chang Biol ; 24(12): 5708-5723, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30218538

RESUMO

Earth system models (ESMs) rely on the calculation of canopy conductance in land surface models (LSMs) to quantify the partitioning of land surface energy, water, and CO2 fluxes. This is achieved by scaling stomatal conductance, gw , determined from physiological models developed for leaves. Traditionally, models for gw have been semi-empirical, combining physiological functions with empirically determined calibration constants. More recently, optimization theory has been applied to model gw in LSMs under the premise that it has a stronger grounding in physiological theory and might ultimately lead to improved predictive accuracy. However, this premise has not been thoroughly tested. Using original field data from contrasting forest systems, we compare a widely used empirical type and a more recently developed optimization-type gw model, termed BB and MED, respectively. Overall, we find no difference between the two models when used to simulate gw from photosynthesis data, or leaf gas exchange from a coupled photosynthesis-conductance model, or gross primary productivity and evapotranspiration for a FLUXNET tower site with the CLM5 community LSM. Field measurements reveal that the key fitted parameters for BB and MED, g1B and g1M, exhibit strong species specificity in magnitude and sensitivity to CO2 , and CLM5 simulations reveal that failure to include this sensitivity can result in significant overestimates of evapotranspiration for high-CO2 scenarios. Further, we show that g1B and g1M can be determined from mean ci /ca (ratio of leaf intercellular to ambient CO2 concentration). Applying this relationship with ci /ca values derived from a leaf δ13 C database, we obtain a global distribution of g1B and g1M , and these values correlate significantly with mean annual precipitation. This provides a new methodology for global parameterization of the BB and MED models in LSMs, tied directly to leaf physiology but unconstrained by spatial boundaries separating designated biomes or plant functional types.


Assuntos
Fotossíntese , Estômatos de Plantas/fisiologia , Dióxido de Carbono , Planeta Terra , Ecossistema , Modelos Biológicos , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Água
17.
Plant Cell Environ ; 40(3): 441-452, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27943309

RESUMO

Tropical forests absorb large amounts of atmospheric CO2 through photosynthesis but elevated temperatures suppress this absorption and promote monoterpene emissions. Using 13 CO2 labeling, here we show that monoterpene emissions from tropical leaves derive from recent photosynthesis and demonstrate distinct temperature optima for five groups (Groups 1-5), potentially corresponding to different enzymatic temperature-dependent reaction mechanisms within ß-ocimene synthases. As diurnal and seasonal leaf temperatures increased during the Amazonian 2015 El Niño event, leaf and landscape monoterpene emissions showed strong linear enrichments of ß-ocimenes (+4.4% °C-1 ) at the expense of other monoterpene isomers. The observed inverse temperature response of α-pinene (-0.8% °C-1 ), typically assumed to be the dominant monoterpene with moderate reactivity, was not accurately simulated by current global emission models. Given that ß-ocimenes are highly reactive with respect to both atmospheric and biological oxidants, the results suggest that highly reactive ß-ocimenes may play important roles in the thermotolerance of photosynthesis by functioning as effective antioxidants within plants and as efficient atmospheric precursors of secondary organic aerosols. Thus, monoterpene composition may represent a new sensitive 'thermometer' of leaf oxidative stress and atmospheric reactivity, and therefore a new tool in future studies of warming impacts on tropical biosphere-atmosphere carbon-cycle feedbacks.


Assuntos
Atmosfera , Mudança Climática , Florestas , Monoterpenos/análise , Temperatura , Clima Tropical , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Ritmo Circadiano/fisiologia , El Niño Oscilação Sul , Folhas de Planta/fisiologia , Estações do Ano , Compostos Orgânicos Voláteis/metabolismo
19.
Glob Chang Biol ; 22(10): 3414-26, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26919189

RESUMO

Climate control on global vegetation productivity patterns has intensified in response to recent global warming. Yet, the contributions of the leading internal climatic variations to global vegetation productivity are poorly understood. Here, we use 30 years of global satellite observations to study climatic variations controls on continental and global vegetation productivity patterns. El Niño-Southern Oscillation (ENSO) phases (La Niña, neutral, and El Niño years) appear to be a weaker control on global-scale vegetation productivity than previously thought, although continental-scale responses are substantial. There is also clear evidence that other non-ENSO climatic variations have a strong control on spatial patterns of vegetation productivity mainly through their influence on temperature. Among the eight leading internal climatic variations, the East Atlantic/West Russia Pattern extensively controls the ensuing year vegetation productivity of the most productive tropical and temperate forest ecosystems of the Earth's vegetated surface through directionally consistent influence on vegetation greenness. The Community Climate System Model (CCSM4) simulations do not capture the observed patterns of vegetation productivity responses to internal climatic variations. Our analyses show the ubiquitous control of climatic variations on vegetation productivity and can further guide CCSM and other Earth system models developments to represent vegetation response patterns to unforced variability. Several winter time internal climatic variation indices show strong potentials on predicting growing season vegetation productivity two to six seasons ahead which enables national governments and farmers forecast crop yield to ensure supplies of affordable food, famine early warning, and plan management options to minimize yield losses ahead of time.


Assuntos
Ecossistema , El Niño Oscilação Sul , Mudança Climática , Federação Russa , Estações do Ano , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA