Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
J Cell Sci ; 134(1)2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33262314

RESUMO

Osteoblasts are the principal bone-forming cells. As such, osteoblasts have enhanced demand for amino acids to sustain high rates of matrix synthesis associated with bone formation. The precise systems utilized by osteoblasts to meet these synthetic demands are not well understood. WNT signaling is known to rapidly stimulate glutamine uptake during osteoblast differentiation. Using a cell biology approach, we identified two amino acid transporters, γ(+)-LAT1 and ASCT2 (encoded by Slc7a7 and Slc1a5, respectively), as the primary transporters of glutamine in response to WNT. ASCT2 mediates the majority of glutamine uptake, whereas γ(+)-LAT1 mediates the rapid increase in glutamine uptake in response to WNT. Mechanistically, WNT signals through the canonical ß-catenin (CTNNB1)-dependent pathway to rapidly induce Slc7a7 expression. Conversely, Slc1a5 expression is regulated by the transcription factor ATF4 downstream of the mTORC1 pathway. Targeting either Slc1a5 or Slc7a7 using shRNA reduced WNT-induced glutamine uptake and prevented osteoblast differentiation. Collectively, these data highlight the critical nature of glutamine transport for WNT-induced osteoblast differentiation.This article has an associated First Person interview with the joint first authors of the paper.


Assuntos
Glutamina , Osteogênese , Diferenciação Celular , Osteoblastos , Via de Sinalização Wnt , beta Catenina
2.
FASEB J ; 36(6): e22377, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35608871

RESUMO

Osteoarthritis (OA) is the leading joint disease characterized by cartilage destruction and loss of mobility. Accumulating evidence indicates that the incidence and severity of OA increases with diabetes, implicating systemic glucose metabolism in joint health. However, a definitive link between cellular metabolism in articular cartilage and OA pathogenesis is not yet established. Here, we report that in mice surgically induced to develop knee OA through destabilization of medial meniscus (DMM), expression of the main glucose transporter Glut1 is notably reduced in joint cartilage. Inducible deletion of Glut1 specifically in the Prg4-expressing articular cartilage accelerates cartilage loss in DMM-induced OA. Conversely, forced expression of Glut1 protects against cartilage destruction following DMM. Moreover, in mice with type I diabetes, both Glut1 expression and the rate of glycolysis are diminished in the articular cartilage, and the diabetic mice exhibit more severe cartilage destruction than their nondiabetic counterparts following DMM. The results provide proof of concept that boosting glucose metabolism in articular chondrocytes may ameliorate cartilage degeneration in OA.


Assuntos
Cartilagem Articular , Diabetes Mellitus Experimental , Osteoartrite , Animais , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Diabetes Mellitus Experimental/metabolismo , Modelos Animais de Doenças , Glucose/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Camundongos , Osteoartrite/metabolismo
3.
Nat Rev Mol Cell Biol ; 13(1): 27-38, 2011 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-22189423

RESUMO

The past 15 years have witnessed tremendous progress in the molecular understanding of osteoblasts, the main bone-forming cells in the vertebrate skeleton. In particular, all of the major developmental signals (including WNT and Notch signalling), along with an increasing number of transcription factors (such as RUNX2 and osterix), have been shown to regulate the differentiation and/or function of osteoblasts. As evidence indicates that osteoblasts may also regulate the behaviour of other cell types, a clear understanding of the molecular identity and regulation of osteoblasts is important beyond the field of bone biology.


Assuntos
Desenvolvimento Ósseo , Osteoblastos/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular , Linhagem da Célula , Subunidades alfa de Fatores de Ligação ao Core/metabolismo , Feminino , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Masculino , Camundongos , Ratos , Receptores Notch/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteínas Wnt/metabolismo
4.
Cell ; 135(5): 795-6, 2008 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-19041744

RESUMO

Mutations in LRP5, a coreceptor for Wnt proteins, cause the disease osteoporosis pseudoglioma. A new study by Yadav et al. (2008) now challenges the view that LRP5 controls bone mass through Wnt signaling in bone and argues instead that LRP5 regulates bone mass indirectly through its effects on serotonin synthesis in the gut.


Assuntos
Osso e Ossos/metabolismo , Trato Gastrointestinal/metabolismo , Proteínas Relacionadas a Receptor de LDL/metabolismo , Animais , Humanos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Osteoporose/genética , Osteoporose/metabolismo , Serotonina/metabolismo , Proteínas Wnt/metabolismo
5.
Cell ; 133(2): 340-53, 2008 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-18423204

RESUMO

Canonical Wnt signaling critically regulates cell fate and proliferation in development and disease. Nuclear localization of beta-catenin is indispensable for canonical Wnt signaling; however, the mechanisms governing beta-catenin nuclear localization are not well understood. Here we demonstrate that nuclear accumulation of beta-catenin in response to Wnt requires Rac1 activation. The role of Rac1 depends on phosphorylation of beta-catenin at Ser191 and Ser605, which is mediated by JNK2 kinase. Mutations of these residues significantly affect Wnt-induced beta-catenin nuclear accumulation. Genetic ablation of Rac1 in the mouse embryonic limb bud ectoderm disrupts canonical Wnt signaling and phenocopies deletion of beta-catenin in causing severe truncations of the limb. Finally, Rac1 interacts genetically with beta-catenin and Dkk1 in controlling limb outgrowth. Together these results uncover Rac1 activation and subsequent beta-catenin phosphorylation as a hitherto uncharacterized mechanism controlling canonical Wnt signaling and may provide additional targets for therapeutic intervention of this important pathway.


Assuntos
Núcleo Celular/química , Neuropeptídeos/metabolismo , Transdução de Sinais , beta Catenina/análise , Proteínas rac de Ligação ao GTP/metabolismo , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Embrião de Mamíferos/metabolismo , Extremidades/embriologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Wnt/metabolismo , Proteína Wnt3 , beta Catenina/genética , beta Catenina/metabolismo , Proteínas rac1 de Ligação ao GTP , Proteínas rho de Ligação ao GTP/metabolismo
6.
J Am Chem Soc ; 144(22): 9926-9937, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35616998

RESUMO

The development of lipid nanoparticle (LNP) formulations for targeting the bone microenvironment holds significant potential for nucleic acid therapeutic applications including bone regeneration, cancer, and hematopoietic stem cell therapies. However, therapeutic delivery to bone remains a significant challenge due to several biological barriers, such as low blood flow in bone, blood-bone marrow barriers, and low affinity between drugs and bone minerals, which leads to unfavorable therapeutic dosages in the bone microenvironment. Here, we construct a series of bisphosphonate (BP) lipid-like materials possessing a high affinity for bone minerals, as a means to overcome biological barriers to deliver mRNA therapeutics efficiently to the bone microenvironment in vivo. Following in vitro screening of BP lipid-like materials formulated into LNPs, we identified a lead BP-LNP formulation, 490BP-C14, with enhanced mRNA expression and localization in the bone microenvironment of mice in vivo compared to 490-C14 LNPs in the absence of BPs. Moreover, BP-LNPs enhanced mRNA delivery and secretion of therapeutic bone morphogenetic protein-2 from the bone microenvironment upon intravenous administration. These results demonstrate the potential of BP-LNPs for delivery to the bone microenvironment, which could potentially be utilized for a range of mRNA therapeutic applications including regenerative medicine, protein replacement, and gene editing therapies.


Assuntos
Lipídeos , Nanopartículas , Animais , Difosfonatos/farmacologia , Lipossomos , Camundongos , RNA Mensageiro/genética , RNA Interferente Pequeno/genética
7.
FASEB J ; 35(7): e21683, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34118078

RESUMO

Glucocorticoids, widely prescribed for anti-inflammatory and immunosuppressive purposes, are the most common secondary cause for osteoporosis and related fractures. Current anti-resorptive and anabolic therapies are insufficient for treating glucocorticoid-induced osteoporosis due to contraindications or concerns of side effects. Glucocorticoids have been shown to disrupt Wnt signaling in osteoblast-lineage cells, but the efficacy for Wnt proteins to restore bone mass after glucocorticoid therapy has not been examined. Here by using two mouse genetic models wherein WNT7B expression is temporally activated by either tamoxifen or doxycycline in osteoblast-lineage cells, we show that WNT7B recovers bone mass following glucocorticoid-induced bone loss, thanks to increased osteoblast number and function. However, WNT7B overexpression in bone either before or after glucocorticoid treatments does not ameliorate the abnormal accumulation of body fat. The study demonstrates a potent bone anabolic function for WNT7B in countering glucocorticoid-induced bone loss.


Assuntos
Densidade Óssea , Glucocorticoides/toxicidade , Osteogênese , Osteoporose/prevenção & controle , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Wnt/metabolismo , Animais , Masculino , Camundongos , Osteoporose/induzido quimicamente , Osteoporose/patologia , Proteínas Proto-Oncogênicas/genética , Proteínas Wnt/genética
8.
Curr Osteoporos Rep ; 20(6): 379-388, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36214991

RESUMO

PURPOSE OF REVIEW: This review summarizes recent developments on the effects of glycemic control and diabetes on bone health. We discuss the foundational cellular mechanisms through which diabetes and impaired glucose control impact bone biology, and how these processes contribute to bone fragility in diabetes. RECENT FINDINGS: Glucose is important for osteoblast differentiation and energy consumption of mature osteoblasts. The role of insulin is less clear, but insulin receptor deletion in mouse osteoblasts reduces bone formation. Epidemiologically, type 1 (T1D) and type 2 diabetes (T2D) associate with increased fracture risk, which is greater among people with T1D. Accumulation of cortical bone micro-pores, micro-vascular complications, and AGEs likely contribute to diabetes-related bone fragility. The effects of youth-onset T2D on peak bone mass attainment and subsequent skeletal fragility are of particular concern. Further research is needed to understand the effects of hyperglycemia on skeletal health through the lifecycle, including the related factors of inflammation and microvascular damage.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Camundongos , Animais , Diabetes Mellitus Tipo 2/complicações , Controle Glicêmico , Diabetes Mellitus Tipo 1/complicações , Osso e Ossos , Densidade Óssea
9.
FASEB J ; 34(8): 11058-11067, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32627870

RESUMO

Excessive bone resorption over bone formation is the root cause for bone loss leading to osteoporotic fractures. Development of new antiresorptive therapies calls for a holistic understanding of osteoclast differentiation and function. Although much has been learned about the molecular regulation of osteoclast biology, little is known about the metabolic requirement and bioenergetics during osteoclastogenesis. Here, we report that glucose metabolism through oxidative phosphorylation (OXPHOS) is the predominant bioenergetic pathway to support osteoclast differentiation. Meanwhile, increased lactate production from glucose, known as aerobic glycolysis when oxygen is abundant, is also critical for osteoclastogenesis. Genetic deletion of Glut1 in osteoclast progenitors reduces aerobic glycolysis without compromising OXPHOS, but nonetheless diminishes osteoclast differentiation in vitro. Glut1 deficiency in the progenitors leads to osteopetrosis due to fewer osteoclasts specifically in the female mice. Thus, Glut1-mediated glucose metabolism through both lactate production and OXPHOS is necessary for normal osteoclastogenesis.


Assuntos
Diferenciação Celular/fisiologia , Respiração Celular/fisiologia , Glicólise/fisiologia , Mitocôndrias/fisiologia , Osteoclastos/fisiologia , Animais , Reabsorção Óssea/metabolismo , Reabsorção Óssea/fisiopatologia , Metabolismo Energético/fisiologia , Feminino , Glucose/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Osteoclastos/metabolismo , Osteogênese/fisiologia , Fosforilação Oxidativa , Oxigênio/metabolismo
10.
FASEB J ; 33(7): 7810-7821, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30913395

RESUMO

Wingless/integrated (Wnt) signaling has emerged as a major mechanism for promoting bone formation and a target pathway for developing bone anabolic agents against osteoporosis. However, the downstream events mediating the potential therapeutic effect of Wnt proteins are not fully understood. Previous studies have indicated that increased glycolysis is associated with osteoblast differentiation in response to Wnt signaling, but direct genetic evidence for the importance of glucose metabolism in Wnt-induced bone formation is lacking. Here, we have generated compound transgenic mice to overexpress Wnt family member 7B (Wnt7b) transiently in the osteoblast lineage of postnatal mice, with or without concurrent deletion of the glucose transporter 1 (Glut1), also known as solute carrier family 2, facilitated glucose transporter member 1. Overexpression of Wnt7b in 1-mo-old mice for 1 wk markedly stimulated bone formation, but the effect was essentially abolished without Glut1, even though transient deletion of Glut1 itself did not affect normal bone accrual. Consistent with the in vivo results, Wnt7b increased Glut1 expression and glucose consumption in the primary culture of osteoblast lineage cells, and deletion of Glut1 diminished osteoblast differentiation in vitro. Thus, Wnt7b promotes bone formation in part through stimulating glucose metabolism in osteoblast lineage cells.-Chen, H., Ji, X., Lee, W.-C., Shi, Y., Li, B., Abel, E. D., Jiang, D., Huang, W., Long, F. Increased glycolysis mediates Wnt7b-induced bone formation.


Assuntos
Transportador de Glucose Tipo 1/fisiologia , Glucose/metabolismo , Glicólise , Osteoblastos/metabolismo , Osteogênese/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Wnt/fisiologia , Animais , Linhagem da Célula , Células Cultivadas , Fêmur/crescimento & desenvolvimento , Fêmur/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Genes Reporter , Transportador de Glucose Tipo 1/deficiência , Transportador de Glucose Tipo 1/genética , Camundongos , Camundongos Transgênicos , Osteogênese/efeitos dos fármacos , Proteínas Proto-Oncogênicas/genética , Proteínas Recombinantes/metabolismo , Tamoxifeno/farmacologia , Tíbia/crescimento & desenvolvimento , Tíbia/ultraestrutura , Proteínas Wnt/genética
11.
Development ; 143(10): 1811-22, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27052727

RESUMO

Fibroblast growth factor (FGF) signaling is important for skeletal development; however, cell-specific functions, redundancy and feedback mechanisms regulating bone growth are poorly understood. FGF receptors 1 and 2 (Fgfr1 and Fgfr2) are both expressed in the osteoprogenitor lineage. Double conditional knockout mice, in which both receptors were inactivated using an osteoprogenitor-specific Cre driver, appeared normal at birth; however, these mice showed severe postnatal growth defects that include an ∼50% reduction in body weight and bone mass, and impaired longitudinal bone growth. Histological analysis showed reduced cortical and trabecular bone, suggesting cell-autonomous functions of FGF signaling during postnatal bone formation. Surprisingly, the double conditional knockout mice also showed growth plate defects and an arrest in chondrocyte proliferation. We provide genetic evidence of a non-cell-autonomous feedback pathway regulating Fgf9, Fgf18 and Pthlh expression, which led to increased expression and signaling of Fgfr3 in growth plate chondrocytes and suppression of chondrocyte proliferation. These observations show that FGF signaling in the osteoprogenitor lineage is obligately coupled to chondrocyte proliferation and the regulation of longitudinal bone growth.


Assuntos
Desenvolvimento Ósseo , Linhagem da Célula , Condrócitos/citologia , Fatores de Crescimento de Fibroblastos/metabolismo , Osteócitos/citologia , Transdução de Sinais , Células-Tronco/citologia , Animais , Animais Recém-Nascidos , Desenvolvimento Ósseo/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Lâmina de Crescimento/efeitos dos fármacos , Lâmina de Crescimento/metabolismo , Integrases/metabolismo , Camundongos Knockout , Modelos Biológicos , Osteócitos/efeitos dos fármacos , Osteócitos/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/administração & dosagem , Proteína Relacionada ao Hormônio Paratireóideo/farmacologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição Sp7 , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo
12.
Development ; 143(2): 339-47, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26657771

RESUMO

Exogenous bone morphogenetic proteins (Bmp) are well known to induce ectopic bone formation, but the physiological effect of Bmp signaling on normal bone is not completely understood. By deleting the receptor Bmpr1a in osteoblast lineage cells with Dmp1-Cre, we observed a dramatic increase in trabecular bone mass in postnatal mice, which was due to a marked increase in osteoblast number that was likely to be driven by hyperproliferation of Sp7(+) preosteoblasts. Similarly, inducible deletion of Bmpr1a in Sp7(+) cells specifically in postnatal mice increased trabecular bone mass. However, deletion of Smad4 by the same approaches had only a minor effect, indicating that Bmpr1a signaling suppresses trabecular bone formation through effectors beyond Smad4. Besides increasing osteoblast number in the trabecular bone, deletion of Bmpr1a by Dmp1-Cre also notably reduced osteoblast activity, resulting in attenuation of periosteal bone growth. The impairment in osteoblast activity correlated with reduced mTORC1 signaling in vivo, whereas inhibition of mTORC1 activity abolished the induction of protein anabolism genes by BMP2 treatment in vitro. Thus, physiological Bmpr1a signaling in bone exerts a dual function in both restricting preosteoblast proliferation and promoting osteoblast activity.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Células Cultivadas , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Camundongos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
13.
Development ; 142(1): 196-206, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25516975

RESUMO

Tendon attaches to bone across a specialized tissue called the enthesis. This tissue modulates the transfer of muscle forces between two materials, i.e. tendon and bone, with vastly different mechanical properties. The enthesis for many tendons consists of a mineralized graded fibrocartilage that develops postnatally, concurrent with epiphyseal mineralization. Although it is well described that the mineralization and development of functional maturity requires muscle loading, the biological factors that modulate enthesis development are poorly understood. By genetically demarcating cells expressing Gli1 in response to Hedgehog (Hh) signaling, we discovered a unique population of Hh-responsive cells in the developing murine enthesis that were distinct from tendon fibroblasts and epiphyseal chondrocytes. Lineage-tracing experiments revealed that the Gli1 lineage cells that originate in utero eventually populate the entire mature enthesis. Muscle paralysis increased the number of Hh-responsive cells in the enthesis, demonstrating that responsiveness to Hh is modulated in part by muscle loading. Ablation of the Hh-responsive cells during the first week of postnatal development resulted in a loss of mineralized fibrocartilage, with very little tissue remodeling 5 weeks after cell ablation. Conditional deletion of smoothened, a molecule necessary for responsiveness to Ihh, from the developing tendon and enthesis altered the differentiation of enthesis progenitor cells, resulting in significantly reduced fibrocartilage mineralization and decreased biomechanical function. Taken together, these results demonstrate that Hh signaling within developing enthesis fibrocartilage cells is required for enthesis formation.


Assuntos
Fibrocartilagem/citologia , Proteínas Hedgehog/metabolismo , Músculos/fisiologia , Animais , Animais Recém-Nascidos , Fenômenos Biomecânicos , Toxinas Botulínicas/toxicidade , Calcificação Fisiológica , Integrases/metabolismo , Camundongos Transgênicos , Modelos Biológicos , Paralisia/induzido quimicamente , Paralisia/patologia , Transdução de Sinais , Suporte de Carga , Microtomografia por Raio-X
14.
Development ; 142(14): 2431-41, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26062940

RESUMO

The long tendons of the limb extend from muscles that reside in the zeugopod (arm/leg) to their skeletal insertions in the autopod (paw). How these connections are established along the length of the limb remains unknown. Here, we show that mouse limb tendons are formed in modular units that combine to form a functional contiguous structure; in muscle-less limbs, tendons develop in the autopod but do not extend into the zeugopod, and in the absence of limb cartilage the zeugopod segments of tendons develop despite the absence of tendons in the autopod. Analyses of cell lineage and proliferation indicate that distinct mechanisms govern the growth of autopod and zeugopod tendon segments. To elucidate the integration of these autopod and zeugopod developmental programs, we re-examined early tendon development. At E12.5, muscles extend across the full length of a very short zeugopod and connect through short anlagen of tendon progenitors at the presumptive wrist to their respective autopod tendon segment, thereby initiating musculoskeletal integration. Zeugopod tendon segments are subsequently generated by proximal elongation of the wrist tendon anlagen, in parallel with skeletal growth, underscoring the dependence of zeugopod tendon development on muscles for tendon anchoring. Moreover, a subset of extensor tendons initially form as fused structures due to initial attachment of their respective wrist tendon anlage to multiple muscles. Subsequent individuation of these tendons depends on muscle activity. These results establish an integrated model for limb tendon development that provides a framework for future analyses of tendon and musculoskeletal phenotypes.


Assuntos
Extremidades/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Músculo Esquelético/embriologia , Tendões/embriologia , Animais , Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Cartilagem/metabolismo , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Deleção de Genes , Proteínas de Fluorescência Verde/metabolismo , Articulação Metacarpofalângica/patologia , Camundongos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Músculo Esquelético/metabolismo , Fenótipo , Fatores de Transcrição SOX9/genética , Tendões/metabolismo
15.
Cell Mol Life Sci ; 74(9): 1649-1657, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27888287

RESUMO

The adult human skeleton is a multifunctional organ undergoing continuous remodeling. Homeostasis of bone mass in a healthy adult requires an exquisite balance between bone resorption by osteoclasts and bone formation by osteoblasts; disturbance of such balance is the root cause for various bone disorders including osteoporosis. To develop effective and safe therapeutics to modulate bone formation, it is essential to elucidate the molecular mechanisms governing osteoblast differentiation and activity. Due to their specialized function in collagen synthesis and secretion, osteoblasts are expected to consume large amounts of nutrients. However, studies of bioenergetics and building blocks in osteoblasts have been lagging behind those of growth factors and transcription factors. Genetic studies in both humans and mice over the past 15 years have established Wnt signaling as a critical mechanism for stimulating osteoblast differentiation and activity. Importantly, recent studies have uncovered that Wnt signaling directly reprograms cellular metabolism by stimulating aerobic glycolysis, glutamine catabolism as well as fatty acid oxidation in osteoblast-lineage cells. Such findings therefore reveal an important regulatory axis between bone anabolic signals and cellular bioenergetics. A comprehensive understanding of osteoblast metabolism and its regulation is likely to reveal molecular targets for novel bone therapies.


Assuntos
Osteoblastos/citologia , Osteoblastos/metabolismo , Transdução de Sinais , Proteínas Wnt/metabolismo , Animais , Osso e Ossos/metabolismo , Humanos , Modelos Biológicos , Via de Sinalização Wnt
16.
Proc Natl Acad Sci U S A ; 112(15): 4678-83, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25825734

RESUMO

Hedgehog (Hh) signaling is essential for osteoblast differentiation in the endochondral skeleton during embryogenesis. However, the molecular mechanism underlying the osteoblastogenic role of Hh is not completely understood. Here, we report that Hh markedly induces the expression of insulin-like growth factor 2 (Igf2) that activates the mTORC2-Akt signaling cascade during osteoblast differentiation. Igf2-Akt signaling, in turn, stabilizes full-length Gli2 through Serine 230, thus enhancing the output of transcriptional activation by Hh. Importantly, genetic deletion of the Igf signaling receptor Igf1r specifically in Hh-responding cells diminishes bone formation in the mouse embryo. Thus, Hh engages Igf signaling in a positive feedback mechanism to activate the osteogenic program.


Assuntos
Diferenciação Celular , Proteínas Hedgehog/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Osteoblastos/metabolismo , Animais , Western Blotting , Linhagem Celular , Retroalimentação Fisiológica/efeitos dos fármacos , Feminino , Proteínas Hedgehog/agonistas , Proteínas Hedgehog/genética , Hibridização In Situ , Fator de Crescimento Insulin-Like II/genética , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Morfolinas/farmacologia , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Osteoblastos/citologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Purinas/farmacologia , Interferência de RNA , Receptores de Somatomedina/genética , Receptores de Somatomedina/metabolismo , Proteínas Recombinantes/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteína GLI1 em Dedos de Zinco
17.
J Biol Chem ; 291(25): 13028-39, 2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-27129247

RESUMO

Developmental signals in metazoans play critical roles in inducing cell differentiation from multipotent progenitors. The existing paradigm posits that the signals operate directly through their downstream transcription factors to activate expression of cell type-specific genes, which are the hallmark of cell identity. We have investigated the mechanism through which Wnt signaling induces osteoblast differentiation in an osteoblast-adipocyte bipotent progenitor cell line. Unexpectedly, Wnt3a acutely suppresses the expression of a large number of genes while inducing osteoblast differentiation. The suppressed genes include Pparg and Cebpa, which encode adipocyte-specifying transcription factors and suppression of which is sufficient to induce osteoblast differentiation. The large scale gene suppression induced by Wnt3a corresponds to a global decrease in histone acetylation, an epigenetic modification that is associated with gene activation. Mechanistically, Wnt3a does not alter histone acetyltransferase or deacetylase activities but, rather, decreases the level of acetyl-CoA in the nucleus. The Wnt-induced decrease in histone acetylation is independent of ß-catenin signaling but, rather, correlates with suppression of glucose metabolism in the tricarboxylic acid cycle. Functionally, preventing histone deacetylation by increasing nucleocytoplasmic acetyl-CoA levels impairs Wnt3a-induced osteoblast differentiation. Thus, Wnt signaling induces osteoblast differentiation in part through histone deacetylation and epigenetic suppression of an alternative cell fate.


Assuntos
Acetilcoenzima A/metabolismo , Diferenciação Celular , Núcleo Celular/metabolismo , Osteoblastos/fisiologia , Via de Sinalização Wnt , Proteína Wnt3A/fisiologia , Acetilação , Animais , Linhagem Celular , Ácido Cítrico/metabolismo , Ciclo do Ácido Cítrico , Expressão Gênica , Inativação Gênica , Glucose/metabolismo , Histonas/metabolismo , Camundongos , Processamento de Proteína Pós-Traducional
18.
J Cell Biochem ; 118(4): 748-753, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27606668

RESUMO

mTORC1 signaling has been shown to promote limb skeletal growth through stimulation of protein synthesis in chondrocytes. However, potential roles of mTORC1 in prechondrogenic mesenchyme have not been explored. In this study, we first deleted Raptor, a unique and essential component of mTORC1, in prechondrogenic limb mesenchymal cells. Deletion of Raptor reduced the size of limb bud cells, resulting in overall diminution of the limb bud without affecting skeletal patterning. We then examined the potential role of mTORC1 in chondrogenic differentiation in vitro. Both pharmacological and genetic disruption of mTORC1 significantly suppressed the number and size of cartilage nodules in micromass cultures of limb bud mesenchymal cells. Similarly, inhibition of mTORC1 signaling in chondrogenic ATDC5 cells greatly impaired cartilage nodule formation, and decreased the expression of the master transcriptional factor Sox9, along with the cartilage matrix genes Acan and Col2a1. Thus, we have identified an important role for mTORC1 signaling in promoting limb mesenchymal cell growth and chondrogenesis during embryonic development. J. Cell. Biochem. 118: 748-753, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Condrogênese/fisiologia , Botões de Extremidades/embriologia , Complexos Multiproteicos/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células Cultivadas , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrócitos/fisiologia , Condrogênese/efeitos dos fármacos , Condrogênese/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Feminino , Botões de Extremidades/citologia , Botões de Extremidades/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Knockout , Complexos Multiproteicos/deficiência , Complexos Multiproteicos/genética , Gravidez , Proteína Regulatória Associada a mTOR , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/deficiência , Serina-Treonina Quinases TOR/genética
19.
Hum Mol Genet ; 24(15): 4365-73, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25954032

RESUMO

Adolescent idiopathic scoliosis (AIS) and pectus excavatum (PE) are common pediatric musculoskeletal disorders. Little is known about the tissue of origin for either condition, or about their genetic bases. Common variants near GPR126/ADGRG6 (encoding the adhesion G protein-coupled receptor 126/adhesion G protein-coupled receptor G6, hereafter referred to as GPR126) were recently shown to be associated with AIS in humans. Here, we provide genetic evidence that loss of Gpr126 in osteochondroprogenitor cells alters cartilage biology and spinal column development. Microtomographic and x-ray studies revealed several hallmarks of AIS, including postnatal onset of scoliosis without malformations of vertebral units. The mutants also displayed a dorsal-ward deflection of the sternum akin to human PE. At the cellular level, these defects were accompanied by failure of midline fusion within the developing annulus fibrosis of the intervertebral discs and increased apoptosis of chondrocytes in the ribs and vertebrae. Molecularly, we found that loss of Gpr126 upregulated the expression of Gal3st4, a gene implicated in human PE, encoding Galactose-3-O-sulfotransferase 4. Together, these data uncover Gpr126 as a genetic cause for the pathogenesis of AIS and PE in a mouse model.


Assuntos
Tórax em Funil/genética , Receptores Acoplados a Proteínas G/genética , Escoliose/genética , Sulfotransferases/genética , Animais , Cartilagem , Condrócitos/patologia , Modelos Animais de Doenças , Tórax em Funil/patologia , Predisposição Genética para Doença , Humanos , Camundongos , Receptores Acoplados a Proteínas G/biossíntese , Escoliose/patologia , Esterno/patologia , Sulfotransferases/biossíntese
20.
Development ; 141(14): 2848-54, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24948603

RESUMO

Much of the mammalian skeleton is derived from a cartilage template that undergoes rapid growth during embryogenesis, but the molecular mechanism of growth regulation is not well understood. Signaling by mammalian target of rapamycin complex 1 (mTORC1) is an evolutionarily conserved mechanism that controls cellular growth. Here we report that mTORC1 signaling is activated during limb cartilage development in the mouse embryo. Disruption of mTORC1 signaling through deletion of either mTOR or the associated protein Raptor greatly diminishes embryonic skeletal growth associated with severe delays in chondrocyte hypertrophy and bone formation. The growth reduction of cartilage is not due to changes in chondrocyte proliferation or survival, but is caused by a reduction in cell size and in the amount of cartilage matrix. Metabolic labeling reveals a notable deficit in the rate of protein synthesis in Raptor-deficient chondrocytes. Thus, mTORC1 signaling controls limb skeletal growth through stimulation of protein synthesis in chondrocytes.


Assuntos
Desenvolvimento Ósseo , Mamíferos/embriologia , Complexos Multiproteicos/metabolismo , Biossíntese de Proteínas , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Animais , Osso e Ossos/citologia , Osso e Ossos/embriologia , Osso e Ossos/metabolismo , Proliferação de Células , Tamanho Celular , Sobrevivência Celular , Condrócitos/metabolismo , Condrócitos/patologia , Matriz Extracelular/metabolismo , Hipertrofia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA