Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Lett ; 400: 81-92, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39147216

RESUMO

T-2 toxin is one of the mycotoxins widely distributed in human food and animal feed. Our recent work has shown that microglial activation may contribute to T-2 toxin-induced neurotoxicity. However, the molecular mechanisms involved need to be further clarified. To address this, we employed high-throughput transcriptome sequencing and found altered B cell translocation gene 2 (BTG2) expression levels in microglia following T-2 toxin treatment. It has been shown that altered BTG2 expression is involved in a range of neurological pathologies, but whether it's involved in the regulation of microglial activation is unclear. The aim of this study was to investigate the role of BTG2 in T-2 toxin-induced microglial activation. The results of animal experiments showed that T-2 toxin caused neurobehavioral disorders and promoted the expression of microglial BTG2 and pro-inflammatory activation of microglia in hippocampus and cortical, while microglial inhibitor minocycline inhibited these changes. The results of in vitro experiments showed that T-2 toxin enhanced BTG2 expression and pro-inflammatory microglial activation, and inhibited BTG2 expression weakened T-2 toxin-induced microglial activation. Moreover, T-2 toxin activated PI3K/AKT and its downstream NF-κB signaling pathway, which could be reversed after knock-down of BTG2 expression. Meanwhile, the PI3K inhibitor LY294002 also blocked this process. Therefore, BTG2 may be involved in T-2 toxin's ability to cause microglial activation through PI3K/AKT/NF-κB pathway.

2.
Neurosci Lett ; 832: 137800, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38697601

RESUMO

Lipopolysaccharide (LPS) is an important neurotoxin that can cause inflammatory activation of microglia. ZC3H12D is a novel immunomodulator, which plays a remarkable role in neurological pathologies. It has not been characterized whether ZC3H12D is involved in the regulation of microglial activation. The aim of this study was to investigate the role of ZC3H12D in LPS-induced pro-inflammatory microglial activation and its potential mechanism. To elucidate this, we established animal models of inflammatory injury by intraperitoneal injection of LPS (10 mg/kg). The results of the open-field test showed that LPS caused impaired motor function in mice. Meanwhile, LPS caused pro-inflammatory activation of microglia in the mice cerebral cortex and inhibited the expression of ZC3H12D. We also constructed in vitro inflammatory injury models by treating BV-2 microglia with LPS (0.5 µg/mL). The results showed that down-regulated ZC3H12D expression was associated with LPS-induced pro-inflammatory microglial activation, and further intervention of ZC3H12D expression could inhibited LPS-induced pro-inflammatory activation of microglia. In addition, LPS activated the TLR4-NF-κB signaling pathway, and this process can also be reversed by promoting ZC3H12D expression. At the same time, the addition of resveratrol, a nutrient previously proven to inhibit pro-inflammatory microglial activation, can also reverse this process by increasing the expression of ZC3H12D. Summarized, our data elucidated that ZC3H12D in LPS-induced pro-inflammatory activation of brain microglia via restraining the TLR4-NF-κB pathway. This study may provide a valuable clue for potential therapeutic targets for neuroinflammation-related injuries.


Assuntos
Proteínas de Ciclo Celular , Endorribonucleases , Inflamação , Lipopolissacarídeos , Microglia , Transdução de Sinais , Masculino , Camundongos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Endorribonucleases/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Camundongos Endogâmicos C57BL , Microglia/citologia , Microglia/metabolismo , Resveratrol/administração & dosagem , Proteínas de Ciclo Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA