Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 43(8): 1388-1419, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514807

RESUMO

Neocortex expansion during evolution is linked to higher numbers of neurons, which are thought to result from increased proliferative capacity and neurogenic potential of basal progenitor cells during development. Here, we show that EREG, encoding the growth factor EPIREGULIN, is expressed in the human developing neocortex and in gorilla cerebral organoids, but not in the mouse neocortex. Addition of EPIREGULIN to the mouse neocortex increases proliferation of basal progenitor cells, whereas EREG ablation in human cortical organoids reduces proliferation in the subventricular zone. Treatment of cortical organoids with EPIREGULIN promotes a further increase in proliferation of gorilla but not of human basal progenitor cells. EPIREGULIN competes with the epidermal growth factor (EGF) to promote proliferation, and inhibition of the EGF receptor abrogates the EPIREGULIN-mediated increase in basal progenitor cells. Finally, we identify putative cis-regulatory elements that may contribute to the observed inter-species differences in EREG expression. Our findings suggest that species-specific regulation of EPIREGULIN expression may contribute to the increased neocortex size of primates by providing a tunable pro-proliferative signal to basal progenitor cells in the subventricular zone.


Assuntos
Epirregulina , Neocórtex , Animais , Humanos , Camundongos , Proliferação de Células , Epirregulina/genética , Epirregulina/metabolismo , Gorilla gorilla/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neocórtex/citologia , Neocórtex/metabolismo , Primatas/fisiologia
2.
Semin Cell Dev Biol ; 130: 24-36, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34583893

RESUMO

How our brains have developed to perform the many complex functions that make us human has long remained a question of great interest. Over the last few decades, many scientists from a wide range of fields have tried to answer this question by aiming to uncover the mechanisms that regulate the development of the human neocortex. They have approached this on different scales, focusing microscopically on individual cells all the way up to macroscopically imaging entire brains within living patients. In this review we will summarise these key findings and how they fit together.


Assuntos
Neocórtex , Humanos
3.
Brain ; 146(3): 1175-1185, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36642091

RESUMO

Maternal viral infection and immune response are known to increase the risk of altered development of the foetal brain. Given the ongoing global pandemic of coronavirus disease 2019 (COVID-19), investigating the impact of SARS-CoV-2 on foetal brain health is of critical importance. Here, we report the presence of SARS-CoV-2 in first and second trimester foetal brain tissue in association with cortical haemorrhages. SARS-CoV-2 spike protein was sparsely detected within progenitors and neurons of the cortex itself, but was abundant in the choroid plexus of haemorrhagic samples. SARS-CoV-2 was also sparsely detected in placenta, amnion and umbilical cord tissues. Cortical haemorrhages were linked to a reduction in blood vessel integrity and an increase in immune cell infiltration into the foetal brain. Our findings indicate that SARS-CoV-2 infection may affect the foetal brain during early gestation and highlight the need for further study of its impact on subsequent neurological development.


Assuntos
COVID-19 , Complicações Infecciosas na Gravidez , Gravidez , Feminino , Humanos , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus , Hemorragia
4.
Acta Neuropathol ; 146(5): 663-683, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37656188

RESUMO

Microglia are the brain's resident macrophages, which guide various developmental processes crucial for brain maturation, activity, and plasticity. Microglial progenitors enter the telencephalic wall by the 4th postconceptional week and colonise the fetal brain in a manner that spatiotemporally tracks key neurodevelopmental processes in humans. However, much of what we know about how microglia shape neurodevelopment comes from rodent studies. Multiple differences exist between human and rodent microglia warranting further focus on the human condition, particularly as microglia are emerging as critically involved in the pathological signature of various cognitive and neurodevelopmental disorders. In this article, we review the evidence supporting microglial involvement in basic neurodevelopmental processes by focusing on the human species. We next concur on the neuropathological evidence demonstrating whether and how microglia contribute to the aetiology of two neurodevelopmental disorders: autism spectrum conditions and schizophrenia. Next, we highlight how recent technologies have revolutionised our understanding of microglial biology with a focus on how these tools can help us elucidate at unprecedented resolution the links between microglia and neurodevelopmental disorders. We conclude by reviewing which current treatment approaches have shown most promise towards targeting microglia in neurodevelopmental disorders and suggest novel avenues for future consideration.


Assuntos
Transtorno do Espectro Autista , Transtornos do Neurodesenvolvimento , Humanos , Microglia/patologia , Transtornos do Neurodesenvolvimento/patologia , Macrófagos/patologia , Neuropatologia , Encéfalo/patologia
5.
Neurobiol Dis ; 153: 105316, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33711492

RESUMO

The neurodevelopmental phenotype in Down Syndrome (DS), or Trisomy 21, is variable including a wide spectrum of cognitive impairment and a high risk of early-onset Alzheimer's disease (AD). A key metabolite of interest within the brain in DS is Myo-inositol (mIns). The NA+/mIns co-transporter is located on human chromosome 21 and is overexpressed in DS. In adults with DS, elevated brain mIns was previously associated with cognitive impairment and proposed as a risk marker for progression to AD. However, it is unknown if brain mIns is increased earlier in development. The aim of this study was to estimate mIns concentration levels and key brain metabolites [N-acetylaspartate (NAA), Choline (Cho) and Creatine (Cr)] in the developing brain in DS and aged-matched controls. We used in vivo magnetic resonance spectroscopy (MRS) in neonates with DS (n = 12) and age-matched controls (n = 26) scanned just after birth (36-45 weeks postmenstrual age). Moreover, we used Mass Spectrometry in early (10-20 weeks post conception) ex vivo fetal brain tissue samples from DS (n = 14) and control (n = 30) cases. Relative to [Cho] and [Cr], we report elevated ratios of [mIns] in vivo in the basal ganglia/thalamus, in neonates with DS, when compared to age-matched typically developing controls. Glycine concentration ratios [Gly]/[Cr] and [Cho]/[Cr] also appear elevated. We observed elevated [mIns] in the ex vivo fetal cortical brain tissue in DS compared with controls. In conclusion, a higher level of brain mIns was evident as early as 10 weeks post conception and was measurable in vivo from 36 weeks post-menstrual age. Future work will determine if this early difference in metabolites is linked to cognitive outcomes in childhood or has utility as a potential treatment biomarker for early intervention.


Assuntos
Encéfalo/metabolismo , Síndrome de Down/metabolismo , Feto/metabolismo , Inositol/metabolismo , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Colina/metabolismo , Creatina/metabolismo , Feminino , Feto/embriologia , Glicina/metabolismo , Humanos , Recém-Nascido , Espectroscopia de Ressonância Magnética , Masculino
6.
Development ; 150(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38078654
7.
J Assist Reprod Genet ; 35(4): 711-720, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29353449

RESUMO

PURPOSE: Preimplantation genetic screening (PGS) and assessment of mitochondrial content (MC) are current methods for selection of the best embryos for transfer. Studies suggest that time-lapse morphokinetics (TLM) may also be helpful for selecting embryos more likely to implant. In our study, we sought to examine the relationship between TLM parameters and MC to determine if they could be used adjunctively in embryo selection. We also examined the relationship between MC with ploidy and blastulation. METHODS: Cryopreserved human embryos at the zygote stage were thawed and cultured in a time-lapse system. Blastomere and trophectoderm biopsies were performed on days 3 and 6. Biopsied cells and all whole embryos from day 6 were analyzed for MC (ratio of mitochondrial to nuclear DNA) and ploidy using next-generation sequencing. RESULTS: In embryos, MC per cell declined between day 3 and day 6. While early cleavage parameters did not predict MC, embryos with longer blastulation timing had higher MC on day 6. Day 6 MC was lower in euploid vs. aneuploid embryos and lower in blastocysts vs. arrested embryos. CONCLUSIONS: A lower MC at the blastocyst stage was associated with euploid status and blastocyst formation, indicating better embryo quality compared to those with a higher MC. Higher MC in aneuploid and arrested embryos may be explained by slower cell division or degradation of genomic DNA over time. Blastulation timing may be helpful for selection of higher quality embryos. Combining blastulation timing and MC along with morphologic grading and euploid status may offer a new direction in embryo selection.


Assuntos
Aneuploidia , Criopreservação , Embrião de Mamíferos/fisiologia , Fertilização in vitro/métodos , Infertilidade Feminina/terapia , Mitocôndrias/metabolismo , Diagnóstico Pré-Implantação/métodos , Adulto , Blastocisto , Técnicas de Cultura Embrionária , Implantação do Embrião , Transferência Embrionária , Embrião de Mamíferos/citologia , Feminino , Humanos , Indução da Ovulação , Gravidez , Resultado da Gravidez , Taxa de Gravidez , Estudos Prospectivos
8.
Appl Environ Microbiol ; 83(7)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28130298

RESUMO

Bacteria cope with and adapt to stress by modulating gene expression in response to specific environmental cues. In this study, the transcriptional response of Pseudomonas putida KT2440 to osmotic, oxidative, and imipenem stress conditions at two time points was investigated via identification of differentially expressed mRNAs and small RNAs (sRNAs). A total of 440 sRNA transcripts were detected, of which 10% correspond to previously annotated sRNAs, 40% to novel intergenic transcripts, and 50% to novel transcripts antisense to annotated genes. Each stress elicits a unique response as far as the extent and dynamics of the transcriptional changes. Nearly 200 protein-encoding genes exhibited significant changes in all stress types, implicating their participation in a general stress response. Almost half of the sRNA transcripts were differentially expressed under at least one condition, suggesting possible functional roles in the cellular response to stress conditions. The data show a larger fraction of differentially expressed sRNAs than of mRNAs with >5-fold expression changes. The work provides detailed insights into the mechanisms through which P. putida responds to different stress conditions and increases understanding of bacterial adaptation in natural and industrial settings.IMPORTANCE This study maps the complete transcriptional response of P. putida KT2440 to osmotic, oxidative, and imipenem stress conditions at short and long exposure times. Over 400 sRNA transcripts, consisting of both intergenic and antisense transcripts, were detected, increasing the number of identified sRNA transcripts in the strain by a factor of 10. Unique responses to each type of stress are documented, including both the extent and dynamics of the gene expression changes. The work adds rich detail to previous knowledge of stress response mechanisms due to the depth of the RNA sequencing data. Almost half of the sRNAs exhibit significant expression changes under at least one condition, suggesting their involvement in adaptation to stress conditions and identifying interesting candidates for further functional characterization.


Assuntos
Antibacterianos/farmacologia , Imipenem/farmacologia , Pressão Osmótica , Estresse Oxidativo , Pseudomonas putida/genética , Pseudomonas putida/fisiologia , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Anotação de Sequência Molecular , Pseudomonas putida/efeitos dos fármacos , RNA Antissenso/genética , RNA Bacteriano/genética , RNA Mensageiro/genética , Pequeno RNA não Traduzido/genética , Análise de Sequência de RNA
9.
Environ Microbiol ; 18(10): 3466-3481, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27111755

RESUMO

The environmental bacterium Pseudomonas putida is an organism endowed with a versatile metabolism and stress tolerance traits that are desirable in an efficient production organism. In this work, differential RNA sequencing was used to investigate the primary transcriptome and RNA regulatory elements of P. putida strain KT2440. A total of 7937 putative transcription start sites (TSSs) were identified, where over two-thirds were located either on the opposite strand or internal to annotated genes. For TSSs associated with mRNAs, sequence analysis revealed a clear Shine-Dalgarno sequence but a lack of conserved overrepresented promoter motifs. These TSSs defined approximately 50 leaderless transcripts and an abundance of mRNAs with long leader regions of which 18 contain RNA regulatory elements from the Rfam database. The thiamine pyrophosphate riboswitch upstream of the thiC gene was examined using an in vivo assay with GFP-fusion vectors and shown to function via a translational repression mechanism. Furthermore, 56 novel intergenic small RNAs and 8 putative actuaton transcripts were detected, as well as 8 novel open reading frames (ORFs). This study illustrates how global mapping of TSSs can yield novel insights into the transcriptional features and RNA output of bacterial genomes.


Assuntos
Proteínas de Bactérias/genética , Genoma Bacteriano , Pseudomonas putida/genética , Sítio de Iniciação de Transcrição , Proteínas de Bactérias/metabolismo , Mapeamento Cromossômico , Anotação de Sequência Molecular , Fases de Leitura Aberta , Regiões Promotoras Genéticas , Pseudomonas putida/metabolismo , Análise de Sequência de RNA , Transcriptoma
10.
Microb Cell Fact ; 15(1): 176, 2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27737709

RESUMO

BACKGROUND: Economically viable biobased production of bulk chemicals and biofuels typically requires high product titers. During microbial bioconversion this often leads to product toxicity, and tolerance is therefore a critical element in the engineering of production strains. RESULTS: Here, a systems biology approach was employed to understand the chemical stress response of Escherichia coli, including a genome-wide screen for mutants with increased fitness during chemical stress. Twelve chemicals with significant production potential were selected, consisting of organic solvent-like chemicals (butanol, hydroxy-γ-butyrolactone, 1,4-butanediol, furfural), organic acids (acetate, itaconic acid, levulinic acid, succinic acid), amino acids (serine, threonine) and membrane-intercalating chemicals (decanoic acid, geraniol). The transcriptional response towards these chemicals revealed large overlaps of transcription changes within and between chemical groups, with functions such as energy metabolism, stress response, membrane modification, transporters and iron metabolism being affected. Regulon enrichment analysis identified key regulators likely mediating the transcriptional response, including CRP, RpoS, OmpR, ArcA, Fur and GadX. These regulators, the genes within their regulons and the above mentioned cellular functions therefore constitute potential targets for increasing E. coli chemical tolerance. Fitness determination of genome-wide transposon mutants (Tn-seq) subjected to the same chemical stress identified 294 enriched and 336 depleted mutants and experimental validation revealed up to 60 % increase in mutant growth rates. Mutants enriched in several conditions contained, among others, insertions in genes of the Mar-Sox-Rob regulon as well as transcription and translation related gene functions. CONCLUSIONS: The combination of the transcriptional response and mutant screening provides general targets that can increase tolerance towards not only single, but multiple chemicals.


Assuntos
Escherichia coli/genética , Escherichia coli/fisiologia , Regulação Bacteriana da Expressão Gênica/genética , Regulon , Estresse Fisiológico/genética , 4-Butirolactona/farmacologia , Biocombustíveis , Butanóis/farmacologia , Butileno Glicóis/farmacologia , Tolerância a Medicamentos/genética , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Perfilação da Expressão Gênica , Genes Bacterianos , Genoma Bacteriano , Mutação , Compostos Orgânicos/farmacologia , Solventes/farmacologia , Succinatos/farmacologia , Biologia de Sistemas/métodos
11.
BMC Genomics ; 16: 1051, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26653712

RESUMO

BACKGROUND: Bacterial small RNAs (sRNAs) are recognized as posttranscriptional regulators involved in the control of bacterial lifestyle and adaptation to stressful conditions. Although chemical stress due to the toxicity of precursor and product compounds is frequently encountered in microbial bioprocessing applications, the involvement of sRNAs in this process is not well understood. We have used RNA sequencing to map sRNA expression in E. coli under chemical stress and high cell density fermentation conditions with the aim of identifying sRNAs involved in the transcriptional response and those with potential roles in stress tolerance. RESULTS: RNA sequencing libraries were prepared from RNA isolated from E. coli K-12 MG1655 cells grown under high cell density fermentation conditions or subjected to chemical stress with twelve compounds including four organic solvent-like compounds, four organic acids, two amino acids, geraniol and decanoic acid. We have discovered 253 novel intergenic transcripts with this approach, adding to the roughly 200 intergenic sRNAs previously reported in E. coli. There are eighty-four differentially expressed sRNAs during fermentation, of which the majority are novel, supporting possible regulatory roles for these transcripts in adaptation during different fermentation stages. There are a total of 139 differentially expressed sRNAs under chemical stress conditions, where twenty-nine exhibit significant expression changes in multiple tested conditions, suggesting that they may be involved in a more general chemical stress response. Among those with known functions are sRNAs involved in regulation of outer membrane proteins, iron availability, maintaining envelope homeostasis, as well as sRNAs incorporated into complex networks controlling motility and biofilm formation. CONCLUSIONS: This study has used deep sequencing to reveal a wealth of hitherto undescribed sRNAs in E. coli and provides an atlas of sRNA expression during seventeen different growth and stress conditions. Although the number of novel sRNAs with regulatory functions is unknown, several exhibit specific expression patterns during high cell density fermentation and are differentially expressed in the presence of multiple chemicals, suggesting they may play regulatory roles during these stress conditions. These novel sRNAs, together with specific known sRNAs, are candidates for improving stress tolerance and our understanding of the E. coli regulatory network during fed-batch fermentation.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Pequeno RNA não Traduzido/genética , Solventes/farmacologia , Técnicas de Cultura Celular por Lotes , Escherichia coli/metabolismo , Fermentação , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Bacteriano/genética , Análise de Sequência de RNA/métodos
12.
EBioMedicine ; 101: 105028, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422982

RESUMO

BACKGROUND: Understanding formation of the human tissue resident memory T cell (TRM) repertoire requires longitudinal access to human non-lymphoid tissues. METHODS: By applying flow cytometry and next generation sequencing to serial blood, lymphoid tissue, and gut samples from 16 intestinal transplantation (ITx) patients, we assessed the origin, distribution, and specificity of human TRMs at phenotypic and clonal levels. FINDINGS: Donor age ≥1 year and blood T cell macrochimerism (peak level ≥4%) were associated with delayed establishment of stable recipient TRM repertoires in the transplanted ileum. T cell receptor (TCR) overlap between paired gut and blood repertoires from ITx patients was significantly greater than that in healthy controls, demonstrating increased gut-blood crosstalk after ITx. Crosstalk with the circulating pool remained high for years of follow-up. TCR sequences identifiable in pre-Tx recipient gut but not those in lymphoid tissues alone were more likely to populate post-Tx ileal allografts. Clones detected in both pre-Tx gut and lymphoid tissue had distinct transcriptional profiles from those identifiable in only one tissue. Recipient T cells were distributed widely throughout the gut, including allograft and native colon, which had substantial repertoire overlap. Both alloreactive and microbe-reactive recipient T cells persisted in transplanted ileum, contributing to the TRM repertoire. INTERPRETATION: Our studies reveal human intestinal TRM repertoire establishment from the circulation, preferentially involving lymphoid tissue counterparts of recipient intestinal T cell clones, including TRMs. We have described the temporal and spatial dynamics of this active crosstalk between the circulating pool and the intestinal TRM pool. FUNDING: This study was funded by the National Institute of Allergy and Infectious Diseases (NIAID) P01 grant AI106697.


Assuntos
Células T de Memória , Receptores de Antígenos de Linfócitos T , Humanos , Íleo , Aloenxertos , Memória Imunológica , Linfócitos T CD8-Positivos
13.
Front Immunol ; 15: 1375486, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39007142

RESUMO

Introduction: It is unknown how intestinal B cell populations and B cell receptor (BCR) repertoires are established and maintained over time in humans. Following intestinal transplantation (ITx), surveillance ileal mucosal biopsies provide a unique opportunity to map the dynamic establishment of recipient gut lymphocyte populations in immunosuppressed conditions. Methods: Using polychromatic flow cytometry that includes HLA allele group-specific antibodies distinguishing donor from recipient cells along with high throughput BCR sequencing, we tracked the establishment of recipient B cell populations and BCR repertoire in the allograft mucosa of ITx recipients. Results: We confirm the early presence of naïve donor B cells in the circulation (donor age range: 1-14 years, median: 3 years) and, for the first time, document the establishment of recipient B cell populations, including B resident memory cells, in the intestinal allograft mucosa (recipient age range at the time of transplant: 1-44 years, median: 3 years). Recipient B cell repopulation of the allograft was most rapid in infant (<1 year old)-derived allografts and, unlike T cell repopulation, did not correlate with rejection rates. While recipient memory B cell populations were increased in graft mucosa compared to circulation, naïve recipient B cells remained detectable in the graft mucosa for years. Comparisons of peripheral and intra-mucosal B cell repertoires in the absence of rejection (recipient age range at the time of transplant: 1-9 years, median: 2 years) revealed increased BCR mutation rates and clonal expansion in graft mucosa compared to circulating B cells, but these parameters did not increase markedly after the first year post-transplant. Furthermore, clonal mixing between the allograft mucosa and the circulation was significantly greater in ITx recipients, even years after transplantation, than in deceased adult donors. In available pan-scope biopsies from pediatric recipients, we observed higher percentages of naïve recipient B cells in colon allograft compared to small bowel allograft and increased BCR overlap between native colon vs colon allograft compared to that between native colon vs ileum allograft in most cases, suggesting differential clonal distribution in large intestine vs small intestine. Discussion: Collectively, our data demonstrate intestinal mucosal B cell repertoire establishment from a circulating pool, a process that continues for years without evidence of stabilization of the mucosal B cell repertoire in pediatric ITx patients.


Assuntos
Mucosa Intestinal , Receptores de Antígenos de Linfócitos B , Humanos , Criança , Pré-Escolar , Adolescente , Lactente , Mucosa Intestinal/imunologia , Masculino , Feminino , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/imunologia , Adulto , Linfócitos B/imunologia , Adulto Jovem , Intestinos/imunologia , Intestinos/transplante , Transplante de Órgãos , Rejeição de Enxerto/imunologia
14.
STAR Protoc ; 4(2): 102192, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964907

RESUMO

Understanding immune cell dynamics after intestinal transplantation has provided new insights into human lymphocyte biology. However, isolating and characterizing such cells can be challenging. Here, we provide a protocol to isolate intraepithelial and lamina propria lymphocytes from human ileal biopsies. We describe techniques for flow cytometric analysis and determination of multilineage chimerism and T lymphocyte phenotypes. This protocol can be modified to isolate and analyze lymphocytes from other tissues. For complete details on the use and execution of this protocol, please refer to Fu et al. (2019)1 and Fu et al. (2021).2.

15.
J Med Chem ; 66(8): 5774-5801, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37027002

RESUMO

HAT1 is a central regulator of chromatin synthesis that acetylates nascent histone H4. To ascertain whether targeting HAT1 is a viable anticancer treatment strategy, we sought to identify small-molecule inhibitors of HAT1 by developing a high-throughput HAT1 acetyl-click assay. Screening of small-molecule libraries led to the discovery of multiple riboflavin analogs that inhibited HAT1 enzymatic activity. Compounds were refined by synthesis and testing of over 70 analogs, which yielded structure-activity relationships. The isoalloxazine core was required for enzymatic inhibition, whereas modifications of the ribityl side chain improved enzymatic potency and cellular growth suppression. One compound (JG-2016 [24a]) showed relative specificity toward HAT1 compared to other acetyltransferases, suppressed the growth of human cancer cell lines, impaired enzymatic activity in cellulo, and interfered with tumor growth. This is the first report of a small-molecule inhibitor of the HAT1 enzyme complex and represents a step toward targeting this pathway for cancer therapy.


Assuntos
Histonas , Neoplasias , Humanos , Histonas/metabolismo , Histona Acetiltransferases/metabolismo , Cromatina , Linhagem Celular , Acetilação
16.
medRxiv ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38014202

RESUMO

It is unknown how intestinal B cell populations and B cell receptor (BCR) repertoires are established and maintained over time in humans. Following intestinal transplantation (ITx), surveillance ileal mucosal biopsies provide a unique opportunity to map the dynamic establishment of gut lymphocyte populations. Using polychromatic flow cytometry that includes HLA allele group-specific mAbs distinguishing donor from recipient cells along with high throughput BCR sequencing, we tracked the establishment of recipient B cell populations and BCR repertoire in the allograft mucosa of ITx recipients. We confirm the early presence of naïve donor B cells in the circulation and, for the first time, document the establishment of recipient B cell populations, including B resident memory cells, in the intestinal allograft mucosa. Recipient B cell repopulation of the allograft was most rapid in infant (<1 year old)-derived allografts and, unlike T cell repopulation, did not correlate with rejection rates. While recipient memory B cell populations were increased in graft mucosa compared to circulation, naïve recipient B cells remained detectable in the graft mucosa for years. Comparisons of peripheral and intra-mucosal B cell repertoires in the absence of rejection revealed increased BCR mutation rates and clonal expansion in graft mucosa compared to circulating B cells, but these parameters did not increase markedly after the first year post-transplant. Furthermore, clonal mixing between the allograft mucosa and the circulation was significantly greater in ITx recipients, even years after transplantation, than in healthy control adults. Collectively, our data demonstrate intestinal mucosal B cell repertoire establishment from a circulating pool, a process that continues for years without evidence of establishment of a stable mucosal B cell repertoire.

18.
Antimicrob Agents Chemother ; 56(2): 603-12, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22143525

RESUMO

Linezolid is an oxazolidinone antibiotic in clinical use for the treatment of serious infections of resistant Gram-positive bacteria. It inhibits protein synthesis by binding to the peptidyl transferase center on the ribosome. Almost all known resistance mechanisms involve small alterations to the linezolid binding site, so this review will therefore focus on the various changes that can adversely affect drug binding and confer resistance. High-resolution structures of linezolid bound to the 50S ribosomal subunit show that it binds in a deep cleft that is surrounded by 23S rRNA nucleotides. Mutation of 23S rRNA has for some time been established as a linezolid resistance mechanism. Although ribosomal proteins L3 and L4 are located further away from the bound drug, mutations in specific regions of these proteins are increasingly being associated with linezolid resistance. However, very little evidence has been presented to confirm this. Furthermore, recent findings on the Cfr methyltransferase underscore the modification of 23S rRNA as a highly effective and transferable form of linezolid resistance. On a positive note, detailed knowledge of the linezolid binding site has facilitated the design of a new generation of oxazolidinones that show improved properties against the known resistance mechanisms.


Assuntos
Acetamidas/farmacologia , Antibacterianos/farmacologia , Sítios de Ligação/efeitos dos fármacos , Farmacorresistência Bacteriana , Oxazolidinonas/farmacologia , Ribossomos/efeitos dos fármacos , Acetamidas/química , Acetamidas/metabolismo , Antibacterianos/química , Antibacterianos/metabolismo , Sequência de Bases , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Linezolida , Testes de Sensibilidade Microbiana , Modelos Moleculares , Dados de Sequência Molecular , Oxazolidinonas/química , Oxazolidinonas/metabolismo , RNA Ribossômico 23S/química , RNA Ribossômico 23S/genética , RNA Ribossômico 23S/metabolismo , Ribossomos/metabolismo
19.
Antimicrob Agents Chemother ; 56(7): 3563-7, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22547628

RESUMO

The cfr gene encodes the Cfr methyltransferase that methylates a single adenine in the peptidyl transferase region of bacterial ribosomes. The methylation provides resistance to several classes of antibiotics that include drugs of clinical and veterinary importance. This paper describes a first step toward elucidating natural residences of the worrisome cfr gene and functionally similar genes. Three cfr-like genes from the order Bacillales were identified from BLAST searches and cloned into plasmids under the control of an inducible promoter. Expression of the genes was induced in Escherichia coli, and MICs for selected antibiotics indicate that the cfr-like genes confer resistance to PhLOPSa (phenicol, lincosamide, oxazolidinone, pleuromutilin, and streptogramin A) antibiotics in the same way as the cfr gene. In addition, modification at A2503 on 23S rRNA was confirmed by primer extension. Finally, expression of the Cfr-like proteins was verified by SDS gel electrophoresis of whole-cell extracts. The work shows that cfr-like genes exist in the environment and that Bacillales are natural residences of cfr-like genes.


Assuntos
Antibacterianos/farmacologia , Bacillales/efeitos dos fármacos , Bacillales/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Diterpenos/farmacologia , Resistência Microbiana a Medicamentos , Eletroforese em Gel de Poliacrilamida , Escherichia coli/efeitos dos fármacos , Lincosamidas/farmacologia , Testes de Sensibilidade Microbiana , Oxazolidinonas/farmacologia , Compostos Policíclicos , Estreptogramina A/farmacologia , Pleuromutilinas
20.
J Cell Sci ; 123(Pt 10): 1613-22, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20445012

RESUMO

The expression of adhesion molecules by stem cells within their niches is well described, but what is their function? A conventional view is that these adhesion molecules simply retain stem cells in the niche and thereby maintain its architecture and shape. Here, we review recent literature showing that this is but one of their roles, and that they have essential functions in all aspects of the stem cell-niche interaction--retention, division and exit. We also highlight from this literature evidence supporting a simple model whereby the regulation of centrosome positioning and spindle angle is regulated by both cadherins and integrins, and the differential activity of these two adhesion molecules enables the fundamental stem cell property of switching between asymmetrical and symmetrical divisions.


Assuntos
Caderinas/metabolismo , Integrinas/metabolismo , Nicho de Células-Tronco/metabolismo , Células-Tronco/metabolismo , Animais , Divisão do Núcleo Celular , Humanos , Modelos Biológicos , Nicho de Células-Tronco/patologia , Células-Tronco/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA