Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Neurol Sci ; 45(4): 1707-1717, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37940750

RESUMO

BACKGROUND AND OBJECTIVES: Myasthenia gravis (MG) is an autoimmune disease affecting the neuromuscular junction. No cohort study has investigated the efficacy of inactivated vaccines in patients with MG. MATERIALS AND METHODS: This prospective observational cohort study included healthy controls (HCs) and patients with MG with or without immunosuppressive treatment. Vaccination occurred between May and December 2021. Patients with MG were subjected to a clinical scale assessment for disease severity. The neutralization antibodies (Nabs) levels were measured in all participants using the pseudovirus neutralization assay. RESULTS: Twenty-one patients (Female/Male:10/11); age median [interquartile range (IQR)]: 43 [30, 56]) were included in this study. Two patients (2/21) were lost during follow-up after enrollment. No sustained vaccine-related adverse effects occurred in any visit of patients with MG. No exacerbation of MG was observed. Acetylcholine receptor antibody (AChR-Ab) levels showed no statistically significant changes between the first and second visit (median [IQR]: 2.22 [0.99, 2.63] nmol/L vs. 1.54 [1.07, 2.40] nmol/L, p = 0.424). However, levels of AChR-Ab decreased at the third visit (median [IQR]: 2.22 [0.96, 2.70] nmol/L vs. 1.69 [0.70, 1.85] nmol/L, p = 0.011). No statistically significant difference in Nabs levels was found between HCs and patients with MG (median [IQR]: 102.89 [33.13, 293.86] vs. 79.29 [37.50, 141.93], p = 0.147). DISCUSSION: The safety of the SARS-CoV-2 inactivated vaccine was reconfirmed in this study. No significant difference in Nabs level was found between patients with MG and HCs. Nabs levels correlated with AChR-Ab levels before vaccination and ΔAChR-Ab levels.


Assuntos
COVID-19 , Miastenia Gravis , Adulto , Feminino , Humanos , Masculino , Estudos de Coortes , Vacinas contra COVID-19/efeitos adversos , Miastenia Gravis/tratamento farmacológico , Estudos Prospectivos , SARS-CoV-2 , Vacinas de Produtos Inativados/efeitos adversos , Pessoa de Meia-Idade
2.
EMBO J ; 38(15): e101964, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31267557

RESUMO

The IGF1R signaling is important in the malignant progression of cancer. However, overexpression of IGF1R has not been properly assessed in HCC. Here, we revealed that GSTZ1-1, the enzyme in phenylalanine/tyrosine catabolism, is downregulated in HCC, and its expression was negatively correlated with IGF1R. Mechanistically, GSTZ1-1 deficiency led to succinylacetone accumulation, alkylation modification of KEAP1, and NRF2 activation, thus promoting IGF1R transcription by recruiting SP1 to its promoter. Moreover, inhibition of IGF1R or NRF2 significantly inhibited tumor-promoting effects of GSTZ1 knockout in vivo. These findings establish succinylacetone as an oncometabolite, and GSTZ1-1 as an important tumor suppressor by inhibiting NRF2/IGF1R axis in HCC. Targeting NRF2 or IGF1R may be a promising treatment approach for this subset HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Dietilnitrosamina/efeitos adversos , Regulação para Baixo , Glutationa Transferase/genética , Heptanoatos/metabolismo , Neoplasias Hepáticas/patologia , Animais , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células Hep G2 , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias Experimentais , Prognóstico , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais , Análise de Sobrevida
3.
PLoS Pathog ; 17(11): e1010053, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34748603

RESUMO

COVID-19 patients transmitted SARS-CoV-2 to minks in the Netherlands in April 2020. Subsequently, the mink-associated virus (miSARS-CoV-2) spilled back over into humans. Genetic sequences of the miSARS-CoV-2 identified a new genetic variant known as "Cluster 5" that contained mutations in the spike protein. However, the functional properties of these "Cluster 5" mutations have not been well established. In this study, we found that the Y453F mutation located in the RBD domain of miSARS-CoV-2 is an adaptive mutation that enhances binding to mink ACE2 and other orthologs of Mustela species without compromising, and even enhancing, its ability to utilize human ACE2 as a receptor for entry. Structural analysis suggested that despite the similarity in the overall binding mode of SARS-CoV-2 RBD to human and mink ACE2, Y34 of mink ACE2 was better suited to interact with a Phe rather than a Tyr at position 453 of the viral RBD due to less steric clash and tighter hydrophobic-driven interaction. Additionally, the Y453F spike exhibited resistance to convalescent serum, posing a risk for vaccine development. Thus, our study suggests that since the initial transmission from humans, SARS-CoV-2 evolved to adapt to the mink host, leading to widespread circulation among minks while still retaining its ability to efficiently utilize human ACE2 for entry, thus allowing for transmission of the miSARS-CoV-2 back into humans. These findings underscore the importance of active surveillance of SARS-CoV-2 evolution in Mustela species and other susceptible hosts in order to prevent future outbreaks.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/epidemiologia , Adaptação ao Hospedeiro , Vison/imunologia , Mutação , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética , Adulto , Idoso , Enzima de Conversão de Angiotensina 2/genética , Animais , Sítios de Ligação , COVID-19/imunologia , COVID-19/terapia , COVID-19/transmissão , COVID-19/virologia , Feminino , Humanos , Imunização Passiva/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Vison/virologia , Simulação de Dinâmica Molecular , Países Baixos/epidemiologia , Ligação Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Adulto Jovem , Soroterapia para COVID-19
4.
J Med Virol ; 95(10): e29189, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37855689

RESUMO

Infectious diseases remain a major global issue in public health. It is important to develop rapid, sensitive, and accurate diagnostic methods to detect pathogens and their mutations. Cas12f1 is an exceptionally compact RNA-guided nuclease and have the potential to fulfill the clinical needs. Based on the interaction between crRNA-SSDNA binary sequence and Cas12f1, here, we addressed the essential features that determine the recognition ability of CRISPR-Cas12f1 single-nucleotide polymorphism (SNP), such as the length of spacer region and the base pairing region that determines the trans-cleavage of ssDNA. A fine-tuning spacer design strategy is also proposed to enhance the SNP recognition capability of CRISPR-Cas12f1. The optimized spacer confers the Cas12f1 system a strong SNP identification capability for viral or bacterial drug-resistance mutations, with a specificity ratio ranging from 19.63 to 110.20 and an admirable sensitivity up to 100  copy/µL. Together, the spacer screening and CRISPR-Cas12f1 based SNP identification method, is sensitive and versatile, and will have a wide application prospect in pathogen DNA mutation diagnosis and other mutation profiling.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Polimorfismo de Nucleotídeo Único , Humanos , RNA/genética , DNA de Cadeia Simples/genética , Mutação
5.
J Med Virol ; 94(12): 5691-5701, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35906179

RESUMO

Immune responses elicited by viral infection or vaccination play key roles in the viral elimination and the prevention of reinfection, as well as the protection of healthy persons. As one of the most widely used Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines, there have been increasing concerns about the necessity of additional doses of inactivated vaccines, due to the waning immune response several months after vaccination. To further optimize inactivated SARS-CoV-2 vaccines, we compared immune responses to SARS-CoV-2 elicited by natural infection and immunization with inactivated vaccines in the early phase. We observed the lower antibody levels against SARS-CoV-2 spike (S) and nucleocapsid (N) proteins in the early phase of postvaccination with a slow increase, compared to the acute phase of SARS-CoV-2 natural infection. Specifically, IgA antibodies have the most significant differences. Moreover, we further analyzed cytokine expression between these two groups. A wide variety of cytokines presented high expression in the infected individuals, while a few cytokines were elicited by inactivated vaccines. The differences in antibody responses and cytokine levels between natural SARS-CoV-2 infection and vaccination with the inactivated vaccines may provide implications for the optimization of inactivated SARS-CoV-2 vaccines and the additional application of serological tests.


Assuntos
COVID-19 , Vacinas Virais , Anticorpos Antivirais , Formação de Anticorpos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Citocinas , Humanos , Imunoglobulina A , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinação , Vacinas de Produtos Inativados
6.
Eur J Clin Microbiol Infect Dis ; 41(9): 1155-1163, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35927536

RESUMO

Coronavirus disease 2019 (COVID-19) is a global public health concern. The purpose of this study was to investigate the association between genetic variants and SARS-CoV-2 infection and the COVID-19 severity in Chinese population. A total of 256 individuals including 87 symptomatic patients (tested positive for SARS-CoV-2), 84 asymptomatic cases, and 85 close contacts of confirmed patients (tested negative for SARS-CoV-2) were recruited from February 2020 to May 2020. We carried out the whole exome genome sequencing between the individuals and conducted a genetic association study for SARS-CoV-2 infection and the COVID-19 severity. In total, we analyzed more than 100,000 single-nucleotide polymorphisms. The genome-wide association study suggested potential correlation between genetic variability in POLR2A, ANKRD27, MAN1A2, and ERAP1 genes and SARS-CoV-2 infection susceptibility. The most significant gene locus associated with SARS-CoV-2 infection was located in POLR2A (p = 5.71 × 10-6). Furthermore, genetic variants in PCNX2, CD200R1L, ZMAT3, PLCL2, NEIL3, and LINC00700 genes (p < 1 × 10-5) were closely associated with the COVID-19 severity in Chinese population. Our study confirmed that new genetic variant loci had significant association with SARS-CoV-2 infection and the COVID-19 severity in Chinese population, which provided new clues for the studies on the susceptibility of SARS-CoV-2 infection and the COVID-19 severity. These findings may give a better understanding on the molecular pathogenesis of COVID-19 and genetic basis of heterogeneous susceptibility, with potential impact on new therapeutic options.


Assuntos
COVID-19 , Aminopeptidases , COVID-19/epidemiologia , COVID-19/genética , China/epidemiologia , Estudo de Associação Genômica Ampla , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Antígenos de Histocompatibilidade Menor , Polimorfismo de Nucleotídeo Único , SARS-CoV-2/genética
7.
J Nanobiotechnology ; 20(1): 27, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34991617

RESUMO

BACKGROUND: Currently, there are no curative drugs for hepatitis B virus (HBV). Complete elimination of HBV covalently closed circular DNA (cccDNA) is key to the complete cure of hepatitis B virus infection. The CRISPR/Cas9 system can directly destroy HBV cccDNA. However, a CRISPR/Cas9 delivery system with low immunogenicity and high efficiency has not yet been established. Moreover, effective implementation of precise remote spatiotemporal operations in CRISPR/Cas9 is a major limitation. RESULTS: In this work, we designed NIR-responsive biomimetic nanoparticles (UCNPs-Cas9@CM), which could effectively deliver Cas9 RNP to achieve effective genome editing for HBV therapy. HBsAg, HBeAg, HBV pgRNA and HBV DNA along with cccDNA in HBV-infected cells were found to be inhibited. These findings were confirmed in HBV-Tg mice, which did not exhibit significant cytotoxicity and minimal off-target DNA damage. CONCLUSIONS: The UCNPs-based biomimetic nanoplatforms achieved the inhibition of HBV replication via CRISPR therapy and it is a potential system for efficient treatment of human HBV diseases.


Assuntos
Materiais Biomiméticos , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Hepatite B/terapia , Nanopartículas , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/efeitos da radiação , Técnicas de Transferência de Genes , Vírus da Hepatite B , Raios Infravermelhos , Camundongos , Camundongos Transgênicos , Nanopartículas/química , Nanopartículas/efeitos da radiação
8.
Clin Infect Dis ; 73(3): e531-e539, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-32745196

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a global pandemic with no licensed vaccine or specific antiviral agents for therapy. Little is known about the longitudinal dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific neutralizing antibodies (NAbs) in patients with COVID-19. METHODS: Blood samples (n = 173) were collected from 30 patients with COVID-19 over a 3-month period after symptom onset and analyzed for SARS-CoV-2-specific NAbs using the lentiviral pseudotype assay, coincident with the levels of IgG and proinflammatory cytokines. RESULTS: SARS-CoV-2-specific NAb titers were low for the first 7-10 days after symptom onset and increased after 2-3 weeks. The median peak time for NAbs was 33 days (interquartile range [IQR], 24-59 days) after symptom onset. NAb titers in 93.3% (28/30) of the patients declined gradually over the 3-month study period, with a median decrease of 34.8% (IQR, 19.6-42.4%). NAb titers increased over time in parallel with the rise in immunoglobulin G (IgG) antibody levels, correlating well at week 3 (r = 0.41, P < .05). The NAb titers also demonstrated a significant positive correlation with levels of plasma proinflammatory cytokines, including stem cell factor (SCF), TNF-related apoptosis-inducing ligand (TRAIL), and macrophage colony-stimulating factor (M-CSF). CONCLUSIONS: These data provide useful information regarding dynamic changes in NAbs in patients with COVID-19 during the acute and convalescent phases.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , Pandemias
9.
J Hepatol ; 74(3): 522-534, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32987030

RESUMO

BACKGROUND & AIMS: Current antiviral therapies help keep HBV under control, but they are not curative, as they are unable to eliminate the intracellular viral replication intermediate termed covalently closed circular DNA (cccDNA). Therefore, there remains an urgent need to develop strategies to cure CHB. Functional silencing of cccDNA is a crucial curative strategy that may be achieved by targeting the viral protein HBx. METHODS: We screened 2,000 small-molecule compounds for their ability to inhibit HiBiT-tagged HBx (HiBiT-HBx) expression by using a HiBiT lytic detection system. The antiviral activity of a candidate compound and underlying mechanism of its effect on cccDNA transcription were evaluated in HBV-infected cells and a humanised liver mouse model. RESULTS: Dicoumarol, an inhibitor of NAD(P)H:quinone oxidoreductase 1 (NQO1), significantly reduced HBx expression. Moreover, dicoumarol showed potent antiviral activity against HBV RNAs, HBV DNA, HBsAg and HBc protein in HBV-infected cells and a humanised liver mouse model. Mechanistic studies demonstrated that endogenous NQO1 binds to and protects HBx protein from 20S proteasome-mediated degradation. NQO1 knockdown or dicoumarol treatment significantly reduced the recruitment of HBx to cccDNA and inhibited the transcriptional activity of cccDNA, which was associated with the establishment of a repressive chromatin state. The absence of HBx markedly blocked the antiviral effect induced by NQO1 knockdown or dicoumarol treatment in HBV-infected cells. CONCLUSIONS: Herein, we report on a novel small molecule that targets HBx to combat chronic HBV infection; we also reveal that NQO1 has a role in HBV replication through the regulation of HBx protein stability. LAY SUMMARY: Current antiviral therapies for hepatitis B are not curative because of their inability to eliminate covalently closed circular DNA (cccDNA), which persists in the nuclei of infected cells. HBV X (HBx) protein has an important role in regulating cccDNA transcription. Thus, targeting HBx to silence cccDNA transcription could be an important curative strategy. We identified that the small molecule dicoumarol could block cccDNA transcription by promoting HBx degradation; this is a promising therapeutic strategy for the treatment of chronic hepatitis B.


Assuntos
Antivirais/administração & dosagem , DNA Circular/metabolismo , Dicumarol/administração & dosagem , Vírus da Hepatite B/metabolismo , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/metabolismo , NAD(P)H Desidrogenase (Quinona)/antagonistas & inibidores , NAD(P)H Desidrogenase (Quinona)/metabolismo , Proteólise/efeitos dos fármacos , Transativadores/metabolismo , Transcrição Gênica/efeitos dos fármacos , Proteínas Virais Reguladoras e Acessórias/metabolismo , Animais , DNA Circular/isolamento & purificação , Modelos Animais de Doenças , Células Hep G2 , Vírus da Hepatite B/efeitos dos fármacos , Hepatite B Crônica/virologia , Hepatócitos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NAD(P)H Desidrogenase (Quinona)/genética , Transfecção , Resultado do Tratamento , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
10.
Clin Sci (Lond) ; 135(12): 1505-1522, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34128977

RESUMO

Chronic hepatitis B virus (HBV) infection is a significant public health burden worldwide. HBV covalently closed circular DNA (cccDNA) organized as a minichromosome in nucleus is responsible for viral persistence and is the key obstacle for a cure of chronic hepatitis B (CHB). Recent studies suggest cccDNA transcription is epigenetically regulated by histone modifications, especially histone acetylation and methylation. In the present study, we identified transcriptionally active histone succinylation (H3K122succ) as a new histone modification on cccDNA minichromosome by using cccDNA ChIP-Seq approach. Silent mating type information regulation 2 homolog 7 (SIRT7), as an NAD+-dependent histone desuccinylase, could bind to cccDNA through interaction with HBV core protein where it catalyzed histone 3 lysine 122 (H3K122) desuccinylation. Moreover, SIRT7 acts cooperatively with histone methyltransferase, suppressor of variegation 3-9 homolog 1 (SUV39H1) and SET domain containing 2 (SETD2) to induce silencing of HBV transcription through modulation of chromatin structure. Our data improved the understanding of histone modifications of the cccDNA minichromosome, thus transcriptional silencing of cccDNA may represent a novel antiviral strategy for the prevention or treatment of HBV infection.


Assuntos
Catálise , DNA Circular/metabolismo , Histona Metiltransferases/genética , Histonas/metabolismo , Sirtuínas/metabolismo , DNA Viral/genética , Hepatite B/prevenção & controle , Hepatite B/terapia , Hepatite B/virologia , Vírus da Hepatite B/patogenicidade , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/prevenção & controle , Humanos , Sirtuínas/genética , Transcrição Gênica/genética , Replicação Viral/genética
11.
J Infect Dis ; 222(2): 189-193, 2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32382737

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel ß-coronavirus, causes severe pneumonia and has spread throughout the globe rapidly. The disease associated with SARS-CoV-2 infection is named coronavirus disease 2019 (COVID-19). To date, real-time reverse-transcription polymerase chain reaction (RT-PCR) is the only test able to confirm this infection. However, the accuracy of RT-PCR depends on several factors; variations in these factors might significantly lower the sensitivity of detection. METHODS: In this study, we developed a peptide-based luminescent immunoassay that detected immunoglobulin (Ig)G and IgM. The assay cutoff value was determined by evaluating the sera from healthy and infected patients for pathogens other than SARS-CoV-2. RESULTS: To evaluate assay performance, we detected IgG and IgM in the sera from confirmed patients. The positive rate of IgG and IgM was 71.4% and 57.2%, respectively. CONCLUSIONS: Therefore, combining our immunoassay with real-time RT-PCR might enhance the diagnostic accuracy of COVID-19.


Assuntos
Anticorpos Antivirais/sangue , Betacoronavirus/imunologia , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Técnicas Imunoenzimáticas/métodos , Pneumonia Viral/diagnóstico , Testes Sorológicos/métodos , Adulto , COVID-19 , Teste para COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/imunologia , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Medições Luminescentes , Masculino , Pessoa de Meia-Idade , Pandemias , Peptídeos/imunologia , Pneumonia Viral/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2 , Sensibilidade e Especificidade , Proteínas Virais/imunologia
12.
Acta Biochim Biophys Sin (Shanghai) ; 52(9): 998-1006, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32582951

RESUMO

Bimolecular fluorescence complementation (BiFC) is a popular method used to detect protein-protein interactions. For a BiFC assay, a fluorescent protein is usually split into two parts, and the fluorescence is recovered upon the interaction between the fused proteins of interest. As an elegant extension of BiFC, a tripartite superfold green fluorescent protein (sfGFP) system that has the advantages of low background fluorescence and small fusion tag size has been developed. However, the tripartite system exhibits a low fluorescence signal in some cases. To address this problem, we proposed to increase the affinity between the two parts, G1-9 and G11, of the tripartite system by adding affinity pairs. Among the three affinity pairs tested, LgBiT-HiBiT improved both the signal and signal-to-noise (S/N) ratio to the greatest extent. More strikingly, the direct covalent fusion of G11 to G1-9, which converted the tripartite system into a new bipartite system, enhanced the S/N ratio from 20 to 146, which is superior to the bipartite sfGFP system split at 157/158 or 173/174. Our results implied that the 10th ß-strand of sfGFP has a low affinity and a good recovery efficiency to construct a robust BiFC system, and this concept might be applied to other fluorescent proteins with similar structure to construct new BiFC systems.


Assuntos
Fluorescência , Proteínas de Fluorescência Verde , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Microscopia de Fluorescência
13.
J Cell Physiol ; 234(11): 19774-19784, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30937925

RESUMO

Mycobacterium tuberculosis, the leading causative agent of tuberculosis, remains one of the most deadly infectious pathogens. PE_PGRS proteins become a new focus as their species specificity in mycobacteria, especially in pathogenic mycobacteria. Despite intensive research, PE_PGRS proteins are still a mysterious aspect of mycobacterial pathogenesis with unknown mechanism. Herein, we focused on a PE_PGRS member from M. tuberculosis, PE_PGRS62, characterized by a surface-exposed protein function in disrupting phagolysosome maturation. Expression of PE_PGRS62 in Mycobacterium smegmatis, a nonpathogenic species naturally deficient in PE_PGRS genes, resulted in enhanced resistance to various in vitro stresses and cellular survival in macrophage. As a consequence, the cytokine profiles of macrophage were disturbed and cell apoptosis were inhibited via decreasing endoplasmic reticulum stress response.


Assuntos
Proteínas de Bactérias/genética , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Tuberculose/genética , Apoptose/genética , Proteínas de Bactérias/metabolismo , Estresse do Retículo Endoplasmático/genética , Regulação Bacteriana da Expressão Gênica/genética , Humanos , Macrófagos/microbiologia , Mycobacterium smegmatis/patogenicidade , Mycobacterium tuberculosis/patogenicidade , Fagossomos/genética , Tuberculose/microbiologia
14.
PLoS Pathog ; 13(12): e1006784, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29287110

RESUMO

Hepadnavirus covalently closed circular (ccc) DNA is the bona fide viral transcription template, which plays a pivotal role in viral infection and persistence. Upon infection, the non-replicative cccDNA is converted from the incoming and de novo synthesized viral genomic relaxed circular (rc) DNA, presumably through employment of the host cell's DNA repair mechanisms in the nucleus. The conversion of rcDNA into cccDNA requires preparation of the extremities at the nick/gap regions of rcDNA for strand ligation. After screening 107 cellular DNA repair genes, we herein report that the cellular DNA ligase (LIG) 1 and 3 play a critical role in cccDNA formation. Ligase inhibitors or functional knock down/out of LIG1/3 significantly reduced cccDNA production in an in vitro cccDNA formation assay, and in cccDNA-producing cells without direct effect on viral core DNA replication. In addition, transcomplementation of LIG1/3 in the corresponding knock-out or knock-down cells was able to restore cccDNA formation. Furthermore, LIG4, a component in non-homologous end joining DNA repair apparatus, was found to be responsible for cccDNA formation from the viral double stranded linear (dsl) DNA, but not rcDNA. In conclusion, we demonstrate that hepadnaviruses utilize the whole spectrum of host DNA ligases for cccDNA formation, which sheds light on a coherent molecular pathway of cccDNA biosynthesis, as well as the development of novel antiviral strategies for treatment of hepatitis B.


Assuntos
DNA Ligases/metabolismo , DNA Circular/biossíntese , DNA Viral/biossíntese , Hepadnaviridae/metabolismo , Linhagem Celular , DNA Ligase Dependente de ATP/antagonistas & inibidores , DNA Ligase Dependente de ATP/genética , DNA Ligase Dependente de ATP/metabolismo , DNA Ligases/antagonistas & inibidores , DNA Ligases/genética , Reparo do DNA/genética , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Células HEK293 , Células Hep G2 , Hepadnaviridae/genética , Hepadnaviridae/patogenicidade , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Vírus da Hepatite B/patogenicidade , Hepatócitos/metabolismo , Hepatócitos/virologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Redes e Vias Metabólicas , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo
15.
Hepatology ; 68(4): 1260-1276, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29624717

RESUMO

Hepatitis B virus (HBV) infection remains a major health problem worldwide. Maintenance of the covalently closed circular DNA (cccDNA), which serves as a template for HBV RNA transcription, is responsible for the failure of eradicating chronic HBV during current antiviral therapy. cccDNA is assembled with cellular histone proteins into chromatin, but little is known about the regulation of HBV chromatin by histone posttranslational modifications. In this study, we identified silent mating type information regulation 2 homolog 3 (SIRT3) as a host factor restricting HBV transcription and replication by screening seven members of the sirtuin family, which is the class III histone deacetylase. Ectopic SIRT3 expression significantly reduced total HBV RNAs, 3.5-kb RNA, as well as replicative intermediate DNA in HBV-infected HepG2-Na+ /taurocholate cotransporting polypeptide cells and primary human hepatocytes. In contrast, gene silencing of SIRT3 promoted HBV transcription and replication. A mechanistic study found that nuclear SIRT3 was recruited to the HBV cccDNA, where it deacetylated histone 3 lysine 9. Importantly, occupancy of SIRT3 on cccDNA could increase the recruitment of histone methyltransferase suppressor of variegation 3-9 homolog 1 to cccDNA and decrease recruitment of SET domain containing 1A, leading to a marked increase of trimethyl-histone H3 (Lys9) and a decrease of trimethyl-histone H3 (Lys4) on cccDNA. Moreover, SIRT3-mediated HBV cccDNA transcriptional repression involved decreased binding of host RNA polymerase II and transcription factor Yin Yang 1 to cccDNA. Finally, hepatitis B viral X protein could relieve SIRT3-mediated cccDNA transcriptional repression by inhibiting both SIRT3 expression and its recruitment to cccDNA. CONCLUSION: SIRT3 is a host factor epigenetically restricting HBV cccDNA transcription by acting cooperatively with histone methyltransferase; these data provide a rationale for the use of SIRT3 activators in the prevention or treatment of HBV infection. (Hepatology 2018).


Assuntos
DNA Viral/genética , Epigênese Genética/genética , Hepatite B/genética , Domínios PR-SET/genética , Sirtuína 3/genética , Replicação Viral/genética , DNA Complementar/genética , Hepatite B/fisiopatologia , Vírus da Hepatite B/genética , Histona Metiltransferases/metabolismo , Humanos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sensibilidade e Especificidade
16.
Artigo em Inglês | MEDLINE | ID: mdl-30224531

RESUMO

The capsid of the hepatitis B virus is an attractive antiviral target for developing therapies against chronic hepatitis B infection. Currently available core protein allosteric modulators (CpAMs) mainly affect one of the two major types of protein-protein interactions involved in the process of capsid assembly, namely, the interaction between the core dimers. Compounds targeting the interaction between two core monomers have not been rigorously screened due to the lack of screening models. We report here a cell-based assay in which the formation of core dimers is indicated by split luciferase complementation (SLC). Making use of this model, 2 compounds, Arbidol (umifenovir) and 20-deoxyingenol, were identified from a library containing 672 compounds as core dimerization regulators. Arbidol and 20-deoxyingenol inhibit the hepatitis B virus (HBV) DNA replication in vitro by decreasing and increasing the formation of core dimer and capsid, respectively. Our results provided a proof of concept for the cell model to be used to screen new agents targeting the step of core dimer and capsid formation.


Assuntos
Antivirais/farmacologia , Diterpenos/farmacologia , Regulação Viral da Expressão Gênica , Vírus da Hepatite B/efeitos dos fármacos , Indóis/farmacologia , Multimerização Proteica/efeitos dos fármacos , Proteínas do Core Viral/antagonistas & inibidores , Capsídeo/efeitos dos fármacos , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Linhagem Celular , Replicação do DNA/efeitos dos fármacos , DNA Viral/antagonistas & inibidores , DNA Viral/biossíntese , DNA Viral/genética , Genes Reporter , Células HEK293 , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Ensaios de Triagem em Larga Escala , Humanos , Luciferases/genética , Luciferases/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas do Core Viral/genética , Proteínas do Core Viral/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-29555628

RESUMO

AB-423 is a member of the sulfamoylbenzamide (SBA) class of hepatitis B virus (HBV) capsid inhibitors in phase 1 clinical trials. In cell culture models, AB-423 showed potent inhibition of HBV replication (50% effective concentration [EC50] = 0.08 to 0.27 µM; EC90 = 0.33 to 1.32 µM) with no significant cytotoxicity (50% cytotoxic concentration > 10 µM). Addition of 40% human serum resulted in a 5-fold increase in the EC50s. AB-423 inhibited HBV genotypes A through D and nucleos(t)ide-resistant variants in vitro Treatment of HepDES19 cells with AB-423 resulted in capsid particles devoid of encapsidated pregenomic RNA and relaxed circular DNA (rcDNA), indicating that it is a class II capsid inhibitor. In a de novo infection model, AB-423 prevented the conversion of encapsidated rcDNA to covalently closed circular DNA, presumably by interfering with the capsid uncoating process. Molecular docking of AB-423 into crystal structures of heteroaryldihydropyrimidines and an SBA and biochemical studies suggest that AB-423 likely also binds to the dimer-dimer interface of core protein. In vitro dual combination studies with AB-423 and anti-HBV agents, such as nucleos(t)ide analogs, RNA interference agents, or interferon alpha, resulted in additive to synergistic antiviral activity. Pharmacokinetic studies with AB-423 in CD-1 mice showed significant systemic exposures and higher levels of accumulation in the liver. A 7-day twice-daily administration of AB-423 in a hydrodynamic injection mouse model of HBV infection resulted in a dose-dependent reduction in serum HBV DNA levels, and combination with entecavir or ARB-1467 resulted in a trend toward antiviral activity greater than that of either agent alone, consistent with the results of the in vitro combination studies. The overall preclinical profile of AB-423 supports its further evaluation for safety, pharmacokinetics, and antiviral activity in patients with chronic hepatitis B.


Assuntos
Antivirais/farmacologia , Capsídeo/metabolismo , Vírus da Hepatite B/efeitos dos fármacos , Hepatite B/tratamento farmacológico , Montagem de Vírus/efeitos dos fármacos , Animais , Sítios de Ligação , Linhagem Celular Tumoral , DNA Circular/metabolismo , DNA Viral/sangue , DNA Viral/metabolismo , Feminino , Guanina/análogos & derivados , Guanina/farmacologia , Vírus da Hepatite B/crescimento & desenvolvimento , Humanos , Camundongos , Simulação de Acoplamento Molecular , Ligação Proteica , RNA Viral/genética
18.
Eur J Clin Microbiol Infect Dis ; 37(6): 1153-1162, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29629487

RESUMO

Hepatitis B vaccination prevents 80-95% of transmission and reduces the incidence of HBV in children. The variations in the a determinant of HBV surface antigen (HBsAg) have been reported to be the most prevalent cause for vaccine or antibody escape. There is a conflicting evidence on as to whether escape mutants arise de novo in infected infants or whether the mutants, that have preexisted maternally, subsequently undergo selective replication in the infant under immune pressure. Here, we report that nearly 65% (55 of 85) vaccination failure in child patients has no amino acid substitution in a determinant as seen by Sanger sequencing. We further employed an Illumina sequencing platform-based method to detect HBV quasispecies in four immunoprophylaxis failure infants and their mothers. In our data, the substitution rate of amino acid located at a determinant is relatively low (< 10%), I/T126A, C124S, F134Y, K141Q, Q129H, D144A, G145V, and N146K, which showed no statistical difference to their mothers, proving that these vaccine escape mutants preexist maternally as minor variants. Besides that, bioinformatical analysis showed that the binding affinity of high variation epitopes (amino acid divergence in mother and their infants > 20%) to related HLA molecules was generally decreased, these traces of immune escape suggesting that immune pressure was present and was effective in all samples.


Assuntos
Antígenos de Superfície da Hepatite B/genética , Vírus da Hepatite B/genética , Imunização/efeitos adversos , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Quase-Espécies/genética , Substituição de Aminoácidos/imunologia , Anticorpos Antivirais/biossíntese , Criança , Pré-Escolar , DNA Viral , Feminino , Anticorpos Anti-Hepatite B/imunologia , Antígenos de Superfície da Hepatite B/imunologia , Vírus da Hepatite B/imunologia , Vírus da Hepatite B/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Evasão da Resposta Imune , Lactente , Masculino , Mães , Mutação , Gravidez , Complicações Infecciosas na Gravidez/epidemiologia
19.
Antimicrob Agents Chemother ; 59(3): 1782-5, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25534729

RESUMO

The absence of the Holliday-junction Ruv resolvase of Mycobacterium smegmatis increased the bacteriostatic and bactericidal activities of the fluoroquinolone moxifloxacin, an important antituberculosis agent. The treatment of ruvAB-deficient cells with thiourea and 2,2'-bipyridyl lowered moxifloxacin lethality to wild-type levels, indicating that the absence of ruvAB stimulates a lethal pathway involving reactive oxygen species. A hexapeptide that traps the Holliday junction substrate of RuvAB potentiated moxifloxacin-mediated lethality, supporting the development of small-molecule enhancers for moxifloxacin activity against mycobacteria.


Assuntos
Fluoroquinolonas/farmacologia , Resolvases de Junção Holliday/metabolismo , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/metabolismo , Antituberculosos/farmacologia , DNA Cruciforme/efeitos dos fármacos , DNA Cruciforme/metabolismo , Proteínas de Ligação a DNA/metabolismo , Moxifloxacina , Espécies Reativas de Oxigênio/metabolismo , Tioureia/farmacologia
20.
Yi Chuan ; 37(5): 465-72, 2015 05.
Artigo em Inglês | MEDLINE | ID: mdl-25998435

RESUMO

There are significant differences in clinical characteristics between chronic hepatitis B virus infected (CHB) child and adult patients. Viral quasispecies characteristics are associated with its pathogenic properties. For hepatitis B virus (HBV), its core region is the main immune recognition region for its enriched epitopes. In our study, we discuss the quasispecies characteristics and positive selection within core gene within chronic HBV infected child and adult patients. By analyzing 170 core gene sequences from child CHB patients and 121 core genes sequences from adult CHB patients, quasispecies characteristics were described by sequence complexity, diversity, non-synonymous substitution ratio (dN) and synonymous substitution ratios (dS). In addition, positive selection sites were also determined by bioinformatics tools. Then, all these parameters were compared between child and adult CHB patient groups. Compared with child patients, adult patients with CHB showed distinct quasispecies characteristics within the core region, had a higher sequence complexity and diversity and more positive selection sites, suggesting that the adult CHB patients had a higher immune selection pressure on the HBV core gene. Reduced selection pressure on the HBV core gene in hepatitis B e antigen (HBeAg)-positive CHB patients than HBeAg negative CHB patients were observed in both adult and child patient groups. The majority of the screened positive selection sites lay within human leukocyte antigens (HLA)-restricted epitopes. In conclusion, this study analyzed the quasispecies characteristics discrepancy between child and adult patients with CHB, and revealed the possible reason for the distinct clinical characteristics in the perspective of population genetics.


Assuntos
Antígenos E da Hepatite B/genética , Vírus da Hepatite B/genética , Vírus da Hepatite B/isolamento & purificação , Hepatite B Crônica/virologia , Seleção Genética , Adulto , Criança , Pré-Escolar , Feminino , Variação Genética , Vírus da Hepatite B/classificação , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA