Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674428

RESUMO

Roots are essential for plant growth, and studies on root-related genes, exemplified by WUSCHEL-RELATED HOMEOBOX5 (WOX5), have mainly concentrated on model organisms with less emphasis on the function of these genes in woody plants. Here, we report that overexpression of the WOX5 gene from Liriodendron hybrid (LhWOX5) in Arabidopsis leads to significant morphological changes in both the aerial and subterranean organs. In the Arabidopsis aerial parts, overexpression of LhWOX5 results in the production of ectopic floral meristems and leaves, possibly via the ectopic activation of CLV3 and LFY. In addition, in the Arabidopsis root, overexpression of LhWOX5 alters root apical meristem morphology, leading to a curled and shortened primary root. Importantly, these abnormal phenotypes in the aerial and subterranean organs caused by constitutive ectopic expression of LhWOX5 mimic the observed phenotypes when overexpressing AtWUS and AtWOX5 in Arabidopsis, respectively. Taken together, we propose that the LhWOX5 gene, originating from the Magnoliaceae plant Liriodendron, is a functional homolog of the AtWUS gene from Arabidopsis, while showing the highest degree of sequence similarity with its ortholog, AtWOX5. Our study provides insight into the potential role of LhWOX5 in the development of both the shoot and root.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Meristema/genética , Folhas de Planta/metabolismo , Plantas/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
2.
BMC Plant Biol ; 20(1): 508, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33153428

RESUMO

BACKGROUND: Cunninghamia lanceolata (Chinese fir), a member of the conifer family Cupressaceae, is one of the most popular cultivated trees for wood production in China. Continuous research is being performed to improve C. lanceolata breeding values. Given the high rate of seed abortion (one of the reasons being the failure of ovule and pollen development) in C. lanceolata, the proper formation of female/male cones could theoretically increase the number of offspring in future generations. MIKC MADS-box genes are well-known for their roles in the flower/cone development and comprise the typical/atypical floral development model for both angiosperms and gymnosperms. RESULTS: We performed a transcriptomic analysis to find genes differentially expressed between female and male cones at a single, carefully determined developmental stage, focusing on the MIKC MADS-box genes. We finally obtained 47 unique MIKC MADS-box genes from C. lanceolata and divided these genes into separate branches. 27 out of the 47 MIKC MADS-box genes showed differential expression between female and male cones, and most of them were not expressed in leaves. Out of these 27 genes, most B-class genes (AP3/PI) were up-regulated in the male cone, while TM8 genes were up-regulated in the female cone. Then, with no obvious overall preference for AG (class C + D) genes in female/male cones, it seems likely that these genes are involved in the development of both cones. Finally, a small number of genes such as GGM7, SVP, AGL15, that were specifically expressed in female/male cones, making them candidate genes for sex-specific cone development. CONCLUSIONS: Our study identified a number of MIKC MADS-box genes showing differential expression between female and male cones in C. lanceolata, illustrating a potential link of these genes with C. lanceolata cone development. On the basis of this, we postulated a possible cone development model for C. lanceolata. The gene expression library showing differential expression between female and male cones shown here, can be used to discover unknown regulatory networks related to sex-specific cone development in the future.


Assuntos
Cunninghamia/genética , Genes de Plantas/fisiologia , Proteínas de Domínio MADS/fisiologia , Componentes Aéreos da Planta/crescimento & desenvolvimento , Transcriptoma/genética , Cunninghamia/crescimento & desenvolvimento , Cunninghamia/ultraestrutura , Perfilação da Expressão Gênica , Genes de Plantas/genética , Proteínas de Domínio MADS/genética , Microscopia Eletrônica de Varredura , Componentes Aéreos da Planta/metabolismo , Componentes Aéreos da Planta/ultraestrutura , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma/fisiologia
3.
Front Plant Sci ; 13: 802128, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371158

RESUMO

A highly efficient genetic transformation system of Liriodendron hybrid embryogenic calli through Agrobacterium-mediated genetic transformation was established and optimized. The Agrobacterium tumefaciens strain EHA105, harboring the plasmid pBI121, which contained the ß-glucuronidase (GUS) gene and neomycin phosphotransferase II (npt II) gene under the control of the CaMV35S promoter, was used for transformation. Embryogenic calli were used as the starting explant to study several factors affecting the Agrobacterium-mediated genetic transformation of the Liriodendron hybrid, including the effects of various media, selection by different Geneticin (G418) concentrations, pre-culture period, Agrobacterium optical density, infection duration, co-cultivation period, and delayed selection. Transformed embryogenic calli were obtained through selection on medium containing 90 mg L-1 G418. Plant regeneration was achieved and selected via somatic embryogenesis on medium containing 15 mg L-1 G418. The optimal conditions included a pre-culture time of 2 days, a co-culture time of 3 days, an optimal infection time of 10 min, and a delayed selection time of 7 days. These conditions, combined with an OD600 value of 0.6, remarkably enhanced the transformation rate. The results of GUS chemical tissue staining, polymerase chain reaction (PCR), and southern blot analysis demonstrated that the GUS gene was successfully expressed and integrated into the Liriodendron hybrid genome. A transformation efficiency of 60.7% was achieved for the regenerated callus clumps. Transgenic plantlets were obtained in 5 months, and the PCR analysis showed that 97.5% of plants from the tested G418-resistant lines were PCR positive. The study of the Liriodendron hybrid reported here will facilitate the insertion of functional genes into the Liriodendron hybrid via Agrobacterium-mediated transformation.

4.
Mitochondrial DNA B Resour ; 6(3): 851-852, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33796654

RESUMO

Clerodendrum japonicum (Thunb.) sweet, a member of Verbenaceae, is a traditional Chinese medicinal plant mainly distributed in tropical and subtropical Asia. Herein, we reported the complete chloroplast genome sequence of C. japonicum. The size of the chloroplast genome is 152,171 bp in length, including a large single-copy region (LSC) of 83,415 bp, a small single-copy region (SSC) of 17,318 bp, which was separated by a pair of inverted repeated regions of 25,719 bp. The C. japonicum chloroplast genome encodes 133 genes, including 88 protein-coding genes, 37 tRNA genes, and eight rRNA genes. The phylogenetic tree showed that C. japonicum is closely related to C. mandarinorum and C. yunnanense.

5.
Plant Physiol Biochem ; 162: 634-646, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33774468

RESUMO

The auxin efflux carrier PIN-FORMED (PIN) proteins are required for the polar transport of auxin between cells through their asymmetric distribution on the plasma membrane, thus mediating the differential distribution of auxin in plants, finally, affecting plant growth and developmental processes. In this study, 11 LcPIN genes were identified. The structural characteristics and evolutionary status of LcPIN genes were thoroughly investigated and interpreted combining physicochemical property analysis, evolutionary analysis, gene structure analysis, chromosomal localization, etc. Multi-species protein sequence analysis showed that angiosperm PIN genes have strong purification options and some functional sites were predicted about PIN protein polarity, trafficking and activity in L. chinense. Further qRT-PCR and transcriptome data analysis indicated that the long LcPINs have highly expressed from globular embryo to plantlet, and the LcPIN6a started upregulated in cotyledon embryo. The LcPIN3 and LcPIN6a are both highly expressed during the development of stamens and petals and the expression of LcPIN2 is related to root elongation, suggesting that they may play an important role in these processes. Experiment data indicates that LcPIN5 and LcPIN8 might play a key role in auxin transport in Liriodendron stems and leaves under abiotic stress. Analyzed the response of LcPIN genes to abiotic stress and as a basis for uncovering the biological role of LcPIN genes in development and adaption to adverse environments. This study provides a foundation for further genetic and functional analyses.


Assuntos
Proteínas de Membrana Transportadoras , Proteínas de Plantas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Proteínas de Membrana Transportadoras/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
6.
Tree Physiol ; 41(10): 1953-1971, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-33791793

RESUMO

Polyploidy generally provides an advantage in phenotypic variation and growth vigor. However, the underlying mechanisms remain poorly understood. The tetraploid Liriodendron sino-americanum (Liriodendron × sinoamericanum P.C Yieh ex C.B. Shang & Zhang R.Wang) exhibits altered morphology compared with its diploid counterpart, including larger, thicker and deeper green leaves, bigger stomata, thicker stems and increased tree height. Such characteristics can be useful in ornamental and industrial applications. To elucidate the molecular mechanisms behind this variation, we performed a comparative transcriptome and proteome analysis. Our transcriptome data indicated that some photosynthesis genes and pathways were differentially altered and enriched in tetraploid L. sino-americanum, mainly related to F-type ATPase, the cytochrome b6/f complex, photosynthetic electron transport, the light harvesting chlorophyll protein complexes, and photosystem I and II. Most of the differentially expressed proteins we could identify are also involved in photosynthesis. Our physiological results showed that tetraploids have an enhanced photosynthetic capacity, concomitant with great levels of sugar and starch in leaves. This suggests that tetraploid L. sino-americanum might experience comprehensive transcriptome reprogramming of genes related to photosynthesis. This study has especially emphasized molecular changes involved in photosynthesis that accompany polyploidy, and provides a possible explanation for the altered phenotype of polyploidy plants in comparison with their diploid form.


Assuntos
Liriodendron , Tetraploidia , Clorofila , Fotossíntese/genética , Folhas de Planta/genética , Proteoma , Transcriptoma
7.
Medicine (Baltimore) ; 98(52): e18448, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31876726

RESUMO

BACKGROUND: This study aimed to compare the quadratus lumborum block (QLB) method with transversus abdominis plane block (TAPB) for postoperative pain management in patients undergoing laparoscopic colorectal surgery. METHODS: Seventy-four patients scheduled for laparoscopic colorectal surgery were randomly assigned into 2 groups. After surgery, patients received bilateral ultrasound-guided single-dose of QLB or TAPB. Each side was administered with 20 ml of 0.375% ropivacaine. All patients received sufentanil as patient-controlled intravenous analgesia (PCIA). Resting and moving numeric rating scale (NRS) were assessed at 2, 4, 6, 24, 48 hours postoperatively. The primary outcome measure was sufentanil consumption at predetermined time intervals after surgery. RESULTS: Patients in the QLB group used significantly less sufentanil than TAPB group at 24 and 48 hours (P < .05), but not at 6 hours (P = .33) after laparoscopic colorectal surgery. No significant differences in NRS results were found between the two groups at rest or during movement (P > .05). Incidence of dizziness in the QLB group was lower than in TAPB group (P < .05). CONCLUSIONS: The QLB is a more effective postoperative analgesia as it reduces sufentanil consumption compared to TAPB in patients undergoing laparoscopic colorectal surgery.


Assuntos
Músculos Abdominais/inervação , Músculos Abdominais Oblíquos/inervação , Cirurgia Colorretal/métodos , Laparoscopia/métodos , Bloqueio Nervoso/métodos , Dor Pós-Operatória/terapia , Anestésicos Locais/administração & dosagem , Neoplasias Colorretais/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Manejo da Dor/métodos , Ropivacaina/administração & dosagem , Sufentanil/administração & dosagem , Ultrassonografia de Intervenção
9.
Nat Plants ; 5(1): 18-25, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30559417

RESUMO

The genus Liriodendron belongs to the family Magnoliaceae, which resides within the magnoliids, an early diverging lineage of the Mesangiospermae. However, the phylogenetic relationship of magnoliids with eudicots and monocots has not been conclusively resolved and thus remains to be determined1-6. Liriodendron is a relict lineage from the Tertiary with two distinct species-one East Asian (L. chinense (Hemsley) Sargent) and one eastern North American (L. tulipifera Linn)-identified as a vicariad species pair. However, the genetic divergence and evolutionary trajectories of these species remain to be elucidated at the whole-genome level7. Here, we report the first de novo genome assembly of a plant in the Magnoliaceae, L. chinense. Phylogenetic analyses suggest that magnoliids are sister to the clade consisting of eudicots and monocots, with rapid diversification occurring in the common ancestor of these three lineages. Analyses of population genetic structure indicate that L. chinense has diverged into two lineages-the eastern and western groups-in China. While L. tulipifera in North America is genetically positioned between the two L. chinense groups, it is closer to the eastern group. This result is consistent with phenotypic observations that suggest that the eastern and western groups of China may have diverged long ago, possibly before the intercontinental differentiation between L. chinense and L. tulipifera. Genetic diversity analyses show that L. chinense has tenfold higher genetic diversity than L. tulipifera, suggesting that the complicated regions comprising east-west-orientated mountains and the Yangtze river basin (especially near 30° N latitude) in East Asia offered more successful refugia than the south-north-orientated mountain valleys in eastern North America during the Quaternary glacial period.


Assuntos
Genoma de Planta , Liriodendron/genética , Filogenia , Evolução Biológica , China , Cromossomos Artificiais Bacterianos , Elementos de DNA Transponíveis , Ásia Oriental , Ligação Genética , Magnoliopsida/genética , América do Norte , Filogeografia , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA