Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
BMC Microbiol ; 24(1): 255, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982358

RESUMO

BACKGROUND: Alternaria alternata is the primary pathogen of potato leaf spot disease, resulting in significant potato yield losses globally. Endophytic microorganism-based biological control, especially using microorganisms from host plants, has emerged as a promising and eco-friendly approach for managing plant diseases. Therefore, this study aimed to isolate, identify and characterize the endophytic fungi from healthy potato leaves which had great antifungal activity to the potato leaf spot pathogen of A. alternata in vitro and in vivo. RESULTS: An endophytic fungal strain SD1-4 was isolated from healthy potato leaves and was identified as Talaromyces muroii through morphological and sequencing analysis. The strain SD1-4 exhibited potent antifungal activity against the potato leaf spot pathogen A. alternata Lill, with a hyphal inhibition rate of 69.19%. Microscopic and scanning electron microscope observations revealed that the strain SD1-4 grew parallel to, coiled around, shrunk and deformed the mycelia of A. alternata Lill. Additionally, the enzyme activities of chitinase and ß-1, 3-glucanase significantly increased in the hyphae of A. alternata Lill when co-cultured with the strain SD1-4, indicating severe impairment of the cell wall function of A. alternata Lill. Furthermore, the mycelial growth and conidial germination of A. alternata Lill were significantly suppressed by the aseptic filtrate of the strain SD1-4, with inhibition rates of 79.00% and 80.67%, respectively. Decrease of leaf spot disease index from 78.36 to 37.03 was also observed in potato plants treated with the strain SD1-4, along with the significantly increased plant growth characters including plant height, root length, fresh weight, dry weight, chlorophyll content and photosynthetic rate of potato seedlings. CONCLUSION: The endophyte fungus of T. muroii SD1-4 isolated from healthy potato leaves in the present study showed high biocontrol potential against potato leaf spot disease caused by A. alternata via direct parasitism or antifungal metabolites, and had positive roles in promoting potato plant growth.


Assuntos
Alternaria , Endófitos , Doenças das Plantas , Folhas de Planta , Solanum tuberosum , Talaromyces , Alternaria/crescimento & desenvolvimento , Alternaria/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Solanum tuberosum/microbiologia , Talaromyces/genética , Talaromyces/crescimento & desenvolvimento , Endófitos/fisiologia , Endófitos/isolamento & purificação , Endófitos/genética , Folhas de Planta/microbiologia , Hifas/crescimento & desenvolvimento , Antibiose , Quitinases/metabolismo , Agentes de Controle Biológico , Controle Biológico de Vetores/métodos
2.
BMC Plant Biol ; 23(1): 591, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38008764

RESUMO

BACKGROUND: Kiwifruit bacterial canker, caused by Pseudomonas syringae pv. actinidiae (Psa), is a destructive disease worldwide. Resistance genes that respond to Psa infection urgently need to be identified for controlling this disease. Laccase is mainly involved in the synthesis of lignin in the plant cell wall and plays a prominent role in plant growth and resistance to pathogen infection. However, the role of laccase in kiwifruit has not been reported, and whether laccase is pivotal in the response to Psa infection remains unclear. RESULTS: We conducted a bioinformatics analysis to identify 55 laccase genes (AcLAC1-AcLAC55) in the kiwifruit genome. These genes were classified into five cluster groups (I-V) based on phylogenetic analysis, with cluster groups I and II having the highest number of members. Analysis of the exon-intron structure revealed that the number of exons varied from 1 to 8, with an average of 5 introns. Our evolutionary analysis indicated that fragment duplication played a key role in the expansion of kiwifruit laccase genes. Furthermore, evolutionary pressure analysis suggested that AcLAC genes were under purifying selection. We also performed a cis-acting element analysis and found that AcLAC genes contained multiple hormone (337) and stress signal (36) elements in their promoter regions. Additionally, we investigated the expression pattern of laccase genes in kiwifruit stems and leaves infected with Psa. Our findings revealed that laccase gene expression levels in the stems were higher than those in the leaves 5 days after inoculation with Psa. Notably, AcLAC2, AcLAC4, AcLAC17, AcLAC18, AcLAC26, and AcLAC42 showed significantly higher expression levels (p < 0.001) compared to the non-inoculated control (0 d), suggesting their potential role in resisting Psa infection. Moreover, our prediction indicated that 21 kiwifruit laccase genes are regulated by miRNA397, they could potentially act as negative regulators of lignin biosynthesis. CONCLUSIONS: These results are valuable for further analysis of the resistance function and molecular mechanism of laccases in kiwifruit.


Assuntos
Actinidia , Lacase , Lacase/genética , Filogenia , Lignina , Evolução Biológica , Actinidia/genética , Actinidia/microbiologia , Pseudomonas syringae/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
3.
Pestic Biochem Physiol ; 192: 105409, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37105636

RESUMO

Kiwifruit rot caused by the fungus Alternaria alternata occurs in many countries, leading to considerable losses during kiwifruit production. In this study, we evaluated the antifungal activity and mechanism of tetramycin against kiwifruit soft rot caused by Alternaria alternata. Tetramycin exerted antifungal effects through the suppression of mycelial growth, conidial germination, and the pathogenicity of A. alternata. Scanning electron microscopic observations revealed that tetramycin destroyed the mycelial structure, causing the mycelia to twist, shrink, and even break. Furthermore, transmission electron microscopy revealed that tetramycin caused severe plasmolysis and a decrease in cell inclusions, and the cell wall appeared thinner with blurred boundaries. In addition, tetramycin destroyed cell membrane integrity, resulting in the leakage of cellular components such as nucleic acids and proteins in mycelial suspensions. Moreover, tetramycin also caused cell wall lysis by enhancing the activities of chitinase and ß-1,3-glucanase and inducing the overexpression of related chitinase gene (Chit) and ß-1,3-glucanase gene (ß-1,3-glu) in A. alternata. In field trials, tetramycin not only decreased the incidence of kiwifruit rot but also create a beneficial living space for kiwifruit growth. Overall, this study indicated that the application of tetramycin could serve as an alternative measure for the management of kiwifruit rot.


Assuntos
Antifúngicos , Doenças das Plantas , Antifúngicos/farmacologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Alternaria
4.
Int J Mol Sci ; 24(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37762573

RESUMO

Potato Verticillium wilt, caused by Verticillium dahliae, is a serious soil-borne vascular disease, which restricts the sustainable development of the potato industry, and the pathogenic mechanism of the fungus is complex. Therefore, it is of great significance to explore the important pathogenic factors of V. dahliae to expand the understanding of its pathology. Protein kinase C (PKC) gene is located in the Ca2+ signaling pathway, which is highly conserved in filamentous fungi and involved in the regulation of a variety of biological processes. In the current study, the PKC gene in V. dahliae (VdPKC) was characterized, and its effects on the fungal pathogenicity and tolerance to fungicide stress were further studied. The results showed that the VdPKC positively regulated the growth and development, conidial germination, and production of V. dahliae, which was necessary for the fungus to achieve pathogenicity. It also affected the formation of melanin and microsclerotia and changed the adaptability of V. dahliae to different environmental stresses. In addition, VdPKC altered the tolerance of V. dahliae to different fungicides, which may be a potential target for polyoxin. Therefore, our results strongly suggest that VdPKC gene is necessary for the vegetative growth, stress response, and pathogenicity of V. dahliae.

5.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36835042

RESUMO

Verticillium dahliae is a soil-borne pathogenic fungus that causes Verticillium wilt in host plants, a particularly serious problem in potato cultivation. Several pathogenicity-related proteins play important roles in the host infection process, hence, identifying such proteins, especially those with unknown functions, will surely aid in understanding the mechanism responsible for the pathogenesis of the fungus. Here, tandem mass tag (TMT) was used to quantitatively analyze the differentially expressed proteins in V. dahliae during the infection of the susceptible potato cultivar "Favorita". Potato seedlings were infected with V. dahliae and incubated for 36 h, after which 181 proteins were found to be significantly upregulated. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses showed that most of these proteins were involved in early growth and cell wall degradation. The hypothetical, secretory protein with an unknown function, VDAG_07742, was significantly upregulated during infection. The functional analysis with knockout and complementation mutants revealed that the associated gene was not involved in mycelial growth, conidial production, or germination; however, the penetration ability and pathogenicity of VDAG_07742 deletion mutants were significantly reduced. Therefore, our results strongly indicate that VDAG_07742 is essential in the early stage of potato infection by V. dahliae.


Assuntos
Ascomicetos , Solanum tuberosum , Verticillium , Solanum tuberosum/microbiologia , Virulência/genética , Proteínas , Doenças das Plantas/microbiologia
6.
Int J Mol Sci ; 24(14)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37511299

RESUMO

Kiwifruit canker disease, caused by Pseudomonas syringae pv. actinidiae (Psa), is the main threat to kiwifruit production worldwide. Currently, there is no safe and effective disease prevention method; therefore, biological control technologies are being explored for Psa. In this study, Bacillus velezensis WL-23 was isolated from the leaf microbial community of kiwifruit and used to control kiwifruit cankers. Indoor confrontation experiments showed that both WL-23 and its aseptic filtrate had excellent inhibitory activity against the main fungal and bacterial pathogens of kiwifruit. Changes in OD600, relative conductivity, alkaline proteinase, and nucleic acid content were recorded during Psa growth after treatment with the aseptic filtrate, showing that Psa proliferation was inhibited and the integrity of the cell membrane was destroyed; this was further verified using scanning electron microscopy and transmission electron microscopy. In vivo, WL-23 promoted plant growth, increased plant antioxidant enzyme activity, and reduced canker incidence. Therefore, WL-23 is expected to become a biological control agent due to its great potential to contribute to sustainable agriculture.


Assuntos
Actinidia , Bacillus , Pseudomonas syringae , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Actinidia/microbiologia
7.
Arch Virol ; 167(2): 625-630, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35013817

RESUMO

Bidens pilosa is a weed species that invades crop areas in tropical and subtropical regions. To date, only two potyviruses have been reported to infect B. pilosa. Here, we report the complete genome sequence of a tomato zonate spot tospovirus (TZSV) isolate from Bidens named TZSV-Bidens. The tripartite RNA of the TZSV-Bidens genome contains L, M, and S segments that are 8912, 4724, and 2997 nt in length, respectively. The genome contains five open reading frames (ORFs), with 92.23-95.01% amino acid sequence identity to the TZSV-YN isolate. Phylogenetic analysis based on amino acid sequences of members of the family Tospoviridae showed that TZSV-Bidens was grouped into a well-supported Eurasian cluster. The intergenic regions (IGRs) of the M and S RNAs are among the most variable regions and are far shorter than those of the TZSV-YN reference genome.


Assuntos
Bidens , Solanum lycopersicum , Tospovirus , Filogenia , Doenças das Plantas
8.
Phytopathology ; 112(8): 1610-1619, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35240868

RESUMO

The type III secretion system (T3SS) is a key factor in the pathogenesis of Pseudomonas syringae pv. actinidiae biovar 3 (Psa3), the causal agent of a global kiwifruit bacterial canker pandemic. To monitor the T3SS expression levels in Psa3, we constructed a luciferase reporter plasmid-expressing HrpAPsa3-NLuc fusion protein. The expression of HrpA-NLuc was induced in hrp-inducing conditions whereas the level of luciferase activity correlated with the expression of hrp/hrc genes in Psa3 confirmed the reliability of the reporter construct. Based on the readout of the NLuc reporter construct, three small molecule compounds 4-methoxy-cinnamic acid, sulforaphane, and ferulic acid were determined as T3SS inhibitors in Psa3, whereas sodium acetate was determined to be a T3SS inducer. Moreover, the aqueous extract of fruit inhibited the accumulation of HrpA-NLuc in Psa3 in medium and in planta. Additionally, the T3SS inhibitors suppress Psa3 virulence, whereas the T3SS inducer promotes Psa3 virulence on kiwifruit. Thus, our findings may provide clues to why the fruit is not infected by Psa3, and the Psa3 T3SS inhibitors have potential as alternatives to current nonspecific antimicrobials for disease management.


Assuntos
Actinidia , Pseudomonas syringae , Actinidia/microbiologia , Luciferases/genética , Doenças das Plantas/microbiologia , Pseudomonas syringae/genética , Reprodutibilidade dos Testes , Sistemas de Secreção Tipo III/genética
9.
Plant Dis ; 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35316083

RESUMO

Because of its high economic value and potential for adaptation to subtropical climates, Indian jujube (Zizyphus mauritiana Lam.) is one of the most important fruit crops introduced into south of Guizhou Province, China. In December 2020, approximately 10 to 15% of the harvested jujube (Z. mauritiana Lam. Wuqian) showed fruit rot symptoms after storage at 4°C for 10-15 days in Luodian county (25°34'N, 106°82'E). Symptoms of brown, circular, watery lesions were observed on the jujube fruits. Small pieces (c.a. 5 mm) at the margins of rot tissue were incubated on PDA plates at 25°C in darkness after surface sterilization in 1.5% NaClO for 45 s followed with triple washes using sterile distilled water. Two monoconidial isolates were obtained after incubation and identical colony morphologies were observed with olive grey, cottony aerial mycelium which became darker after 10 days growth. The colony reverse began white but turned brown with age. Conidia, produced in orange masses, were mainly cylindrical with the size of 9.2-16.8 µm (average 13.7 µm) × 3.8-6.2 µm (average 4.6 µm) (n = 50), typical of Colletotrichum spp. (Vieira et al. 2014). For further identification, DNA of these two isolates were extracted and were used for multi-locus genotyping. Five loci, including the ITS region, partial sequences of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), actin (ACT), ß-tubulin (BTU) and chitin synthase (CHS) genes, were amplified and sequenced with primers of ITS1/ITS4, GDF1/GDR1, ACT512F/ ACT783R, Bt2a/Bt2b and CHS79F/CHS354R, respectively. No differences was found between the isolates at any of the loci and one sequence for each locus was deposited in the Genebank database under accessions OL376803, OL404925, OL404926, OL404927 and OL404928, respectively. Blastn results indicated that the ITS, GAPDH, ACT, BTU and CHS sequences of the jujube isolates shared 100%, 98.56%, 96.62%, 99.48% and 99.33% similarity with those of ex-type strain ICMP 18581 of C. fructicola (GenBank Accession Nos. JX010165, JX010033, JX009501, JX010405 and JX009866). Phylogenetic analysis including published ITS, GAPDH, ACT, BTU and CHS data for C. fructicola and other Colletotrichum species was performed using MEGA 6.0. Based on morphological and molecular data, the jujube isolates were identified as C. fructicola. Pathogenicity was determined for both isolates on jujube fruits cultivar "Wuqian". Fruit surface was sterilized with 75% ethanol, air dried, and wounded with a needle by piercing into 2 mm depth. Ten microliters of a spore suspension (1 × 106 spores/ml) or sterilized water were applied to one of two wounds on the same fruit. There were six replicate inoculations for each isolate and the whole experiment was repeated twice. Treated fruit were maintained in a growth chamber with 80% relative humidity at 25°C. Symptoms of fruit rots, identical the original observations, developed around the infection sites at 3 days post inoculation. These began as light brown, circular lesions, which got darker with orange spore masses after 7 days and both isolates caused identical symptoms. However, the wounds inoculated with water remained asymptomatic. C. fructicola was successfully reisolated from the infected areas to fulfill Koch's postulates. To the best of our knowledge, this is the first report of jujube fruit rot caused by C. fructicola in China, which may become an emerging problem considering the area expansion of Z. mauritiana cultivation and transportation of its fruit. Funding: Funding was provided by Science and Technology Foundation of Guizhou Province (Guizhou Science Base [2020]1Y104), Talent Development Program of Guizhou Province (Qian Jiaohe KY [2021]080), Innovation and Entrepreneurship Training Program of Guizhou University (Guo Chuangzi [2020]017). Reference: (1) Vieira, W., et al. 2014. Fungal Divers. 67(1): 181-202.

10.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293158

RESUMO

Bacterial canker of kiwifruit is a devastating disease caused by Pseudomonas syringae pv. actinidiae (Psa). The type III secretion system (T3SS), which translocates effectors into plant cells to subvert plant immunity and promote extracellular bacterial growth, is required for Psa virulence. Despite that the "HrpR/S-HrpL" cascade that sophisticatedly regulates the expression of T3SS and effectors has been well documented, the transcriptional regulators of hrpR/S remain to be determined. In this study, the OmpR-like transcription factor, previously identified by DNA pull-down assay, was found to be involved in the regulation of hrpR/S genes, and its regulatory mechanisms and other functions in Psa were explored through techniques including gene knockout and overexpression, ChIP-seq, and RNA-seq. The OmpR-like transcription factor had binding sites in the promoter region of the hrpR/S, and the transcriptional level of the hrpR/S increased after the deletion of OmpR-like and decreased upon its overexpression in an OmpR-like deletion background. Additionally, OmpR-like overexpression reduced the strain's capacity to form biofilms and lipopolysaccharides, led to its slow growth in King's B medium, and reduced its swimming ability, although there was no significant effect on its pathogenicity against kiwifruit hosts. Our results indicated that OmpR-like directly and negatively regulates the transcription of hrpR/S and may be involved in the regulation of multiple biological processes in Psa. Our results provide a basis for further understanding the transcriptional regulation mechanism of hrpR/S in Psa.


Assuntos
Actinidia , Pseudomonas syringae , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Ligação a DNA/metabolismo , Proteínas de Bactérias/metabolismo , Actinidia/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
11.
Pestic Biochem Physiol ; 178: 104942, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34446208

RESUMO

Rice sheath blight is a destructive fungal disease caused by Rhizoctonia solani. To find a safe and green measure, the biological activity of six plant extracts against R. solani was determined by mycelial growth rate method. The results showed that magnolol possessed better antifungal activities against R. solani, with an EC50 value of 7.47 mg/L. further action mechanism of magnolol against R. solani was carried out. Studies by scanning electron microscopy (SEM) showed that the morphology of R. solani mycelia was deformation and surface folds. Transmission electron microscope (TEM) observation on treated R. solani showed that magnolol could induce cytoplasmic membrane rupture and cytoplasmic membrane even disappeared completely accompanied with cellular debris was covered around this fungal, and the mycelia treated with magnolol showed fluorescence after PI staining. Further study showed that the content of malondialdehyde (MDA) and activity of chitinase, ß-1,3-glucanase and relative conductivity of mycelia were increased, while the content of soluble protein and activities of catalase (CAT), polyphenol oxidase (PPO), superoxide dismutase (SOD), succinate dehydrogenase (SDH) and NAD-malate dehydrogenase (NAD-MDH) were significantly decreased. These results indicated that magnolol could significantly damage the plasma membrane of R. solani, and interfere with cell respiratory metabolism, thus inhibiting the growth of mycelium.


Assuntos
Doenças das Plantas , Rhizoctonia , Compostos de Bifenilo , Membrana Celular , Lignanas
12.
Plant Dis ; 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33406861

RESUMO

Plum is commercially cultivated worldwide for the rich nutrient in its fruit. In May 2019, plum with symptoms of fruit rot were collected from fields located in Liuma town, Guizhou Province, China. The incidence of the disease varied from 10 to 20%, which was observed in 15 plum orchards (18 hectares) surveyed. Estimated yield loss was~5 to 10% for each field. Diseased fruits showed deformity, wilting and sunken lesions, and subsequenly became melanized and rotted. Diseased tissues were surface disinfected with 70% ethanol for 45 s and rinsed with sterile distilled water three times. Four morphologically similar colonies with white fluffy aerial mycelium and a reddish pigment were obtained after 3 days incubation on potato dextrose agar (PDA) at 25°C. Four single-spore isolates produced conidia with 1 to 2 septa that were sickle-shaped, thin-walled with a tapering and curved apical cell, measuring 15.6 to 29.6 × 4.8 to 8.7 µm (average 19.5×5.9 µm, n=50). Based on the cultural and conidial morphology, the isolates were identified as Fusarium (Mun et al. 2012; Leslie and Summerell 2006). DNA of two isolates was extracted using the Ezup Column Fungal Genomic DNA Extraction Kit (Sangon Bioengineering Shanghai, LTD.). To confirm the morphological diagnosis, DNA sequence data from three loci were obtained. PCR amplification was carried out with universal primers ITS1/ITS4 (White et al. 1990), translation elongation factor (EF-1α), EF1-H (5'-ATGGGTAAGGAAGACAAGAC-3') and EF2-T (5'-GGAAGTACCAGTGATCATGTT-3') (O'Donnell et al. 1998) and the second largest subunit of RNA polymerase II (RPB2), 5F2(5'-GGGGWGAYCAGAAGAAGGC-3') and 7cR (5'-CCCATRGCTTGYTTRCCCAT-3') (O'Donnell et al. 2007). Primers ITS1 and ITS4 produced a 559-bp amplicon (GenBank accession. MW085028). BLAST analysis showed 100% sequence identity to sequences of several species, deposited in GenBank, including F. fujikuroi. The EF-1α sequence (MW086868) was 100% identical to that of Fusarium fujikuroi (MN193860.1). The RPB2 primers amplified a fragment (MW086869) that was 99.9% identical to that of F. fujikuroi (MN193888.1). The BLASTn results based on the partial EF-1α and RPB2 sequences suggest isolate HJGF1 is F. fujikuroi. A pathogenicity assay was conducted using an agar disk inoculation method on plum. Fruits were stab inoculated with HJGF1 by piercing 1-mm at 3 points using a sterile needle, and fruits were mock inoculated with sterile PDA, each fruit was inoculated with three disks. (Fig. 1). The treated fruit were maintained in a growth chamber with 90% relative humidity at 25°C, and a daily 12-h photoperiod. After 5 days, the artificially inoculated fruit showed blotches with sunken lesions similar to those observed in the orchards, whereas no symptoms were observed on the control fruit. The experiment was repeated twice with similar results. F. fujikuroi was reisolated from infected tissues and confirmed by sequence analysis. To our knowledge, this is the first report of F. fujikuroi causing fruit blotch of plum in China. Considering the economic importance of plum in China and throughout the world, F. fujikuroi may be an emerging problem for plum cultivation. Thus, further study of fruit blotch of plum is warranted.

13.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34884527

RESUMO

Sulfur has been previously reported to modulate plant growth and exhibit significant anti-microbial activities. However, the mechanism underlying its diverse effects on plant pathogens has not been elucidated completely. The present study conducted the two-year field experiment of sulfur application to control kiwifruit canker from 2017 to 2018. For the first time, our study uncovered activation of plant disease resistance by salicylic acid after sulfur application in kiwifruit. The results indicated that when the sulfur concentration was 1.5-2.0 kg m-3, the induced effect of kiwifruit canker reached more than 70%. Meanwhile, a salicylic acid high lever was accompanied by the decline of jasmonic acid. Further analysis revealed the high expression of the defense gene, especially AcPR-1, which is a marker of the salicylic acid signaling pathway. Additionally, AcICS1, another critical gene of salicylic acid synthesis, was also highly expressed. All contributed to the synthesis of increasing salicylic acid content in kiwifruit leaves. Moreover, the first key lignin biosynthetic AcPAL gene was marked up-regulated. Thereafter, accumulation of lignin content in the kiwifruit stem and the higher deposition of lignin were visible in histochemical analysis. Moreover, the activity of the endochitinase activity of kiwifruit leaves increased significantly. We suggest that the sulfur-induced resistance against Pseudomonas syringae pv. actinidiae via salicylic activates systemic acquired resistance to enhance plant immune response in kiwifruit.


Assuntos
Actinidia/imunologia , Resistência à Doença/imunologia , Frutas/imunologia , Doenças das Plantas/imunologia , Pseudomonas syringae/fisiologia , Ácido Salicílico/metabolismo , Enxofre/farmacologia , Actinidia/efeitos dos fármacos , Actinidia/crescimento & desenvolvimento , Actinidia/metabolismo , Resistência à Doença/efeitos dos fármacos , Frutas/efeitos dos fármacos , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Doenças das Plantas/microbiologia , Transdução de Sinais
14.
Int J Mol Sci ; 22(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34830066

RESUMO

Bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa) has led to considerable losses in all major kiwifruit-growing areas. There are no commercial products in the market to effectively control this disease. Therefore, the defense resistance of host plants is a prospective option. In our previous study, sulfur could improve the resistance of kiwifruit to Psa infection. However, the mechanisms of inducing resistance remain largely unclear. In this study, disease severity and protection efficiency were tested after applying sulfur, with different concentrations in the field. The results indicated that sulfur could reduce the disease index by 30.26 and 31.6 and recorded high protection efficiency of 76.67% and 77.00% after one and two years, respectively, when the concentration of induction treatments was 2.0 kg/m3. Ultrastructural changes in kiwifruit stems after induction were demonstrated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and the activities of phenylalanine ammonia-lyase (PAL), peroxidase (POD) and polyphenol oxidase (PPO), and the accumulation of lignin were determined by biochemical analyses. Our results showed that the morphological characteristics of trichomes and lenticels of kiwifruit stem were in the best defensive state respectively when the sulfur concentration was 3.0 kg/m3 and 1.5 kg/m3. Meanwhile, in the range of 0.5 to 2.0 kg/m3, the sulfur could promote the chloroplast and mitochondria of kiwifruit stems infected with Psa to gradually return to health status, increasing the thickness of the cell wall. In addition, sulfur increased the activities of PAL, POD and PPO, and promoted the accumulation of lignin in kiwifruit stems. Moreover, the sulfur protection efficiency was positively correlated with PPO activity (p < 0.05) and lignin content (p < 0.01), which revealed that the synergistic effect of protective enzyme activity and the phenolic metabolism pathway was the physiological effect of sulfur-induced kiwifruit resistance to Psa. This evidence highlights the importance of lignin content in kiwifruit stems as a defense mechanism in sulfur-induced resistance. These results suggest that sulfur enhances kiwifruit canker resistance via an increase in phenolic components and morphology structure modification in the kiwifruit stems. Therefore, this study could provide insights into sulfur to control kiwifruit canker caused by Psa.


Assuntos
Actinidia/efeitos dos fármacos , Actinidia/microbiologia , Fenóis/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Pseudomonas syringae/efeitos dos fármacos , Enxofre/farmacologia , Actinidia/anatomia & histologia , Catecol Oxidase/metabolismo , Correlação de Dados , Lignina/metabolismo , Peroxidase/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Caules de Planta/anatomia & histologia , Caules de Planta/efeitos dos fármacos , Caules de Planta/microbiologia , Caules de Planta/ultraestrutura , Infecções por Pseudomonas/tratamento farmacológico , Enxofre/uso terapêutico , Tricomas/anatomia & histologia , Tricomas/efeitos dos fármacos , Tricomas/microbiologia
15.
Int J Mol Sci ; 23(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35008632

RESUMO

Kiwifruit is moderately sweet and sour and quite popular among consumers; it has been widely planted in some areas of the world. In 2019, the crown gall disease of kiwifruit was discovered in the main kiwifruit-producing area of Guizhou Province, China. This disease can weaken and eventually cause the death of the tree. The phylogeny, morphological and biological characteristics of the bacteria were described, and were related to diseases. The pathogenicity of this species follows the Koch hypothesis, confirming that A. fabacearum is the pathogen of crown gall disease of kiwifruit in China. In this study, Loop-mediated isothermal amplification (LAMP) analysis for genome-specific gene sequences was developed for the specific detection of A. fabacearum. The detection limit of the LAMP method is 5 × 10-7 ng/µL, which has high sensitivity. At the same time, the amplified product is stained with SYBR Green I after the reaction is completed, so that the amplification can be detected with the naked eye. LAMP analysis detected the presence of A. fabacearum in the roots and soil samples of the infected kiwifruit plant. The proposed LAMP detection technology in this study offers the advantages of ease of operation, visibility of results, rapidity, accuracy and high sensitivity, making it suitable for the early diagnosis of crown gall disease of kiwifruit.


Assuntos
Actinidia/microbiologia , Agrobacterium/fisiologia , Frutas/microbiologia , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Tumores de Planta/microbiologia , Agrobacterium/patogenicidade , Sequência de Bases , China , Filogenia , RNA Ribossômico 16S/genética , Especificidade da Espécie
16.
J Environ Manage ; 255: 109848, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31756580

RESUMO

Dimethachlon is a hazardous xenobiotic which poses a potential risk on the ecosystem and human health after foliar spray for mitigating fungal diseases of crops. A novel dimethachlon-degrading strain was isolated and identified as Brevundimonas naejangsanensis J3. Free cells and enzymes of this strain could rapidly eliminate 75 mg/L dimethachlon in liquid medium, especially the latter (>90% of degradation efficiency). Strain J3 completely metabolized dimethachlon by an ideally transformed pathway. Immobilization cells and enzymes exhibited better stability and adaptability for the repeated use, as compared with free cells and enzymes. In laboratory, 68.03 and 65.13%, or 82.67 and 95.41% of dimethachlon were eliminated from non-sterile soils by free or immobilized cells and enzymes within 7 d, respectively. Under the field condition, 95.78 and 98.01% of 20.250 kg a.i./ha dimethachlon wettable powder from soils were degraded by immobilized cells and enzymes in 9 d respectively, which were significant higher than the degradation efficiencies of free cells and enzymes (78.81 and 67.25%). This study highlights immobilized cells and enzymes from strain J3 can be applicable for bioremediating dimethachlon-contaminated soils.


Assuntos
Ecossistema , Solo , Caulobacteraceae , Clorobenzenos , Humanos , Succinimidas
17.
Pestic Biochem Physiol ; 118: 19-25, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25752425

RESUMO

Given the importance of finding alternatives to synthetic fungicides, the antifungal effects of natural product citral on six plant pathogenic fungi (Magnaporthe grisea, Gibberella zeae, Fusarium oxysporum, Valsa mali, Botrytis cinerea, and Rhizoctonia solani) were determined. Mycelial growth rate results showed that citral possessed high antifungal activities on those test fungi with EC50 values ranging from 39.52 to 193.00 µg/mL, which had the highest inhibition rates against M. grisea. Further action mechanism of citral on M. grisea was carried out. Citral treatment was found to alter the morphology of M. grisea hyphae by causing a loss of cytoplasm and distortion of mycelia. Moreover, citral was able to induce an increase in chitinase activity in M. grisea, indicating disruption of the cell wall. These results indicate that citral may act by disrupting cell wall integrity and membrane permeability, thus resulting in physiology changes and causing cytotoxicity. Importantly, the inhibitory effect of citral on M. grisea appears to be associated with its effects on mycelia reducing sugar, soluble protein, chitinase activity, pyruvate content, and malondialdehyde content.


Assuntos
Litsea/química , Magnaporthe/efeitos dos fármacos , Monoterpenos/farmacologia , Doenças das Plantas/microbiologia , Extratos Vegetais/farmacologia , Monoterpenos Acíclicos , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Quitinases/metabolismo , Proteínas Fúngicas/metabolismo , Fungos/efeitos dos fármacos , Fungos/crescimento & desenvolvimento , Fungicidas Industriais/farmacologia , Magnaporthe/enzimologia , Magnaporthe/crescimento & desenvolvimento
18.
Pest Manag Sci ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742618

RESUMO

BACKGROUND: Phytophthora capsici is a destructive oomycete pathogen, causing huge economic losses for agricultural production. The genus Trichoderma represents one of the most extensively researched categories of biocontrol agents, encompassing a diverse array of effective strains. The commercial biocontrol agent Trichoderma harzianum strain T-22 exhibits pronounced biocontrol effects against many plant pathogens, but its activity against P. capsici is not known. RESULTS: T. harzianum T-22 significantly inhibited the growth of P. capsici mycelia and the culture filtrate of T-22 induced lysis of P. capsici zoospores. Electron microscopic analyses indicated that T-22 significantly modulated the ultrastructural composition of P. capsici, with a severe impact on the cell wall integrity. Dual RNA sequencing revealed multiple biological processes involved in the inhibition during the interaction between these two microorganisms. In particular, a marked upregulation of genes was identified in T. harzianum that are implicated in cell wall degradation or disruption. Concurrently, the presence of T. harzianum appeared to potentiate the susceptibility of P. capsici to cell wall biosynthesis inhibitors such as mandipropamid and dimethomorph. Further investigations showed that mandipropamid and dimethomorph could strongly inhibit the growth and development of P. capsici but had no impact on T. harzianum even at high concentrations, demonstrating the feasibility of combining T. harzianum and these cell wall synthesis inhibitors to combat P. capsici. CONCLUSION: These findings provided enhanced insights into the biocontrol mechanisms against P. capsici with T. harzianum and evidenced compatibility between specific biological and chemical control strategies. © 2024 Society of Chemical Industry.

19.
Pest Manag Sci ; 80(4): 1779-1794, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38031205

RESUMO

BACKGROUND: Kiwifruit soft rot is mainly caused by Botryosphaeria dothidea, representing a considerable threat to kiwifruit industry. This investigation assessed the inhibitory consequences and mechanisms of honokiol against B. dothidea, evaluating the inhibitory effects and underlying mechanism. RESULTS: A strain of B.dothidea (XFCT-2) was isolated from infected soft rot kiwifruit. The findings indicate that honokiol hindered the mycelial growth, conidial germination, and pathogenicity of B. dothidea in a dose-dependent manner, both in vitro and in vivo. Furthermore, ultrastructural examinations showed that honokiol impaired the integrity of B. dothidea, leading to an elevation in cell membrane permeability, engendering a multitude of intracellular substance extravasations and hampering energy metabolism. Transcriptome analysis exhibited that honokiol-regulated genes were related to membrane lipid biosynthesis, comprising ACC1, FAS2, Arp2, gk, Cesle, and Etnk1. These findings indicate that honokiol impedes B. dothidea by obstructing lipid biosynthesis within the cell membrane and compromising its integrity, halting the growth of the mycelia, which could potentially cause cellular demise. CONCLUSION: This investigation illustrates how honokiol functions as an eco-friendly approach to prevent the occurrence of soft rot in kiwifruits. © 2023 Society of Chemical Industry.


Assuntos
Actinidia , Compostos Alílicos , Ascomicetos , Compostos de Bifenilo , Fenóis , Perfilação da Expressão Gênica , Lipídeos de Membrana/farmacologia
20.
Pest Manag Sci ; 79(12): 4715-4725, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37555293

RESUMO

Phytophthora infestans causes late blight on potatoes and tomatoes, which has a significant economic impact on agriculture. The management of late blight has been largely dependent on the application of synthetic fungicides, which is not an ultimate solution for sustainable agriculture and environmental safety. Biocontrol strategies are expected to be alternative methods to the conventional chemicals in controlling plant diseases in the integrated pest management (IPM) programs. Well-studied biocontrol agents against Phytophthora infestans include fungi, oomycetes, bacteria, and compounds produced by these antagonists, in addition to certain bioactive metabolites produced by plants. Laboratory and glasshouse experiments suggest a potential for using biocontrol in practical late blight disease management. However, the transition of biocontrol to field applications is problematic for the moment, due to low and variable efficacies. In this review, we provide a comprehensive summary on these biocontrol strategies and the underlying corresponding mechanisms. To give a more intuitive understanding of the promising biocontrol agents against Phytophthora infestans in agricultural systems, we discuss the utilizations, modes of action and future potentials of these antagonists based on their taxonomic classifications. To achieve a goal of best possible results produced by biocontrol agents, it is suggested to work on field trials, strain modifications, formulations, regulations, and optimizations of application. Combined biocontrol agents having different modes of action or biological adaptation traits may be used to strengthen the biocontrol efficacy. More importantly, biological control agents should be applied in the coordination of other existing and forthcoming methods in the IPM programs. © 2023 Society of Chemical Industry.


Assuntos
Phytophthora infestans , Solanum lycopersicum , Solanum tuberosum , Solanum tuberosum/microbiologia , Plantas , Fenótipo , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA