Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 113(44): E6731-E6740, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27791119

RESUMO

Immunological complexity in atherosclerosis warrants targeted treatment of specific inflammatory cells that aggravate the disease. With the initiation of large phase III trials investigating immunomodulatory drugs for atherosclerosis, cardiovascular disease treatment enters a new era. We here propose a radically different approach: implementing and evaluating in vivo a combinatorial library of nanoparticles with distinct physiochemical properties and differential immune cell specificities. The library's nanoparticles are based on endogenous high-density lipoprotein, which can preferentially deliver therapeutic compounds to pathological macrophages in atherosclerosis. Using the apolipoprotein E-deficient (Apoe-/-) mouse model of atherosclerosis, we quantitatively evaluated the library's immune cell specificity by combining immunological techniques and in vivo positron emission tomography imaging. Based on this screen, we formulated a liver X receptor agonist (GW3965) and abolished its liver toxicity while still preserving its therapeutic function. Screening the immune cell specificity of nanoparticles can be used to develop tailored therapies for atherosclerosis and other inflammatory diseases.


Assuntos
Aterosclerose/tratamento farmacológico , Aterosclerose/imunologia , Imunoterapia , Nanopartículas/química , Animais , Anti-Inflamatórios , Apolipoproteínas E/deficiência , Aterosclerose/patologia , Autorradiografia , Benzoatos/agonistas , Benzoatos/química , Benzilaminas/agonistas , Benzilaminas/química , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos/métodos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Lipoproteínas HDL/química , Lipoproteínas HDL/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Imagem Molecular , Nanomedicina , Nanopartículas/metabolismo , Tomografia por Emissão de Pósitrons/métodos , RNA Mensageiro/metabolismo
2.
Mol Pharm ; 15(6): 2133-2141, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29684277

RESUMO

Antibodies labeled with positron-emitting isotopes have been used for tumor detection, predicting which patients may respond to tumor antigen-directed therapy, and assessing pharmacodynamic effects of drug interventions. Prolactin receptor (PRLR) is overexpressed in breast and prostate cancers and is a new target for cancer therapy. We evaluated REGN2878, an anti-PRLR monoclonal antibody, as an immunoPET reagent. REGN2878 was labeled with Zr-89 after conjugation with desferrioxamine B or labeled with I-131/I-124. In vitro determination of the half-maximal inhibitory concentration (IC50) of parental REGN2878, DFO-REGN2878, and iodinated REGN2878 was performed by examining the effect of the increasing amounts of these on uptake of trace-labeled I-131 REGN2878. REGN1932, a non-PRLR binding antibody, was used as a control. Imaging and biodistribution studies were performed in mice bearing tumor xenografts with various expression levels of PRLR, including MCF-7, transfected MCF-7/PRLR, PC3, and transfected PC3/PRLR and T4D7v11 cell lines. The specificity of uptake in tumors was evaluated by comparing Zr-89 REGN2878 and REGN1932, and in vivo competition compared Zr-89 REGN2878 uptake in tumor xenografts with and without prior injection of 2 mg of nonradioactive REGN2878. The competition binding assay of DFO-REGN2878 at ratios of 3.53-5.77 DFO per antibody showed IC50 values of 0.4917 and 0.7136 nM, respectively, compared to 0.3455 nM for parental REGN2878 and 0.3343 nM for I-124 REGN2878. Imaging and biodistribution studies showed excellent targeting of Zr-89 REGN2878 in PRLR-positive xenografts at delayed times of 189 h (presented as mean ± 1 SD, percent injected activity per mL (%IA/mL) 74.6 ± 33.8%IA/mL). In contrast, MCF-7/PRLR tumor xenografts showed a low uptake (7.0 ± 2.3%IA/mL) of control Zr-89 REGN1932 and a very low uptake and rapid clearance of I-124 REGN2878 (1.4 ± 0.6%IA/mL). Zr-89 REGN2878 has excellent antigen-specific targeting in various PRLR tumor xenograft models. We estimated, using image-based kinetic modeling, that PRLR antigen has a very rapid in vivo turnover half-life of ∼14 min from the cell membrane. Despite relatively modest estimated tumor PRLR expression numbers, PRLR-expressing cells have shown final retention of the Zr-89 REGN2878 antibody, with an uptake that appeared to be related to PRLR expression. This reagent has the potential to be used in clinical trials targeting PRLR.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Imunoconjugados/administração & dosagem , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/administração & dosagem , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacocinética , Linhagem Celular Tumoral , Feminino , Humanos , Imunoconjugados/química , Imunoconjugados/imunologia , Imunoconjugados/farmacocinética , Camundongos , Camundongos Nus , Imagem Molecular/métodos , Neoplasias/patologia , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/imunologia , Compostos Radiofarmacêuticos/farmacocinética , Receptores da Prolactina/imunologia , Receptores da Prolactina/metabolismo , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Bioconjug Chem ; 27(9): 2014-23, 2016 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-27396694

RESUMO

pH (low) insertion peptides (pHLIP peptides) target acidic extracellular environments in vivo due to pH-dependent cellular membrane insertion. Two variants (Var3 and Var7) and wild-type (WT) pHLIP peptides have shown promise for in vivo imaging of breast cancer. Two positron emitting radionuclides ((64)Cu and (18)F) were used to label the NOTA- and NO2A-derivatized Var3, Var7, and WT peptides for in vivo biodistribution studies in 4T1 orthotopic tumor-bearing BALB/c mice. All of the constructs were radiolabeled with (64)Cu or [(18)F]-AlF in good yield. The in vivo biodistribution of the 12 constructs in 4T1 orthotopic allografted female BALB/c mice indicated that NO2A-cysVar3, radiolabeled with either (18)F (4T1 uptake; 8.9 ± 1.7%ID/g at 4 h p.i.) or (64)Cu (4T1 uptake; 8.2 ± 0.9%ID/g at 4 h p.i. and 19.2 ± 1.8% ID/g at 24 h p.i.), shows the most promise for clinical translation. Additional studies to investigate other tumor models (melanoma, prostate, and brain tumor models) indicated the universality of tumor targeting of these tracers. From this study, future clinical translation will focus on (18)F- or (64)Cu-labeled NO2A-cysVar3.


Assuntos
Radioisótopos de Cobre , Espaço Extracelular/química , Radioisótopos de Flúor , Proteínas de Membrana , Tomografia por Emissão de Pósitrons/métodos , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/farmacocinética , Camundongos , Camundongos Endogâmicos BALB C , Traçadores Radioativos , Relação Estrutura-Atividade , Distribuição Tecidual
4.
Nano Lett ; 15(2): 864-8, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25559467

RESUMO

Chelator-free nanoparticles for intrinsic radiolabeling are highly desirable for whole-body imaging and therapeutic applications. Several reports have successfully demonstrated the principle of intrinsic radiolabeling. However, the work done to date has suffered from much of the same specificity issues as conventional molecular chelators, insofar as there is no singular nanoparticle substrate that has proven effective in binding a wide library of radiosotopes. Here we present amorphous silica nanoparticles as general substrates for chelator-free radiolabeling and demonstrate their ability to bind six medically relevant isotopes of various oxidation states with high radiochemical yield. We provide strong evidence that the stability of the binding correlates with the hardness of the radioisotope, corroborating the proposed operating principle. Intrinsically labeled silica nanoparticles prepared by this approach demonstrate excellent in vivo stability and efficacy in lymph node imaging.


Assuntos
Nanopartículas/química , Radioisótopos/química , Dióxido de Silício/química , Animais , Quelantes/química , Camundongos , Camundongos Nus , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Imagem Multimodal , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X
5.
FASEB J ; 28(2): 676-82, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24186964

RESUMO

We investigated the therapeutic efficacy of a replication-competent oncolytic vaccinia virus, GLV-1h153, carrying human sodium iodide symporter (hNIS), in combination with radioiodine in an orthotopic triple-negative breast cancer (TNBC) murine model. In vitro viral infection was confirmed by immunoblotting and radioiodine uptake assays. Orthotopic xenografts (MDA-MB-231 cells) received intratumoral injection of GLV-1h153 or PBS. One week after viral injection, xenografts were randomized into 4 treatment groups: GLV-1h153 alone, GLV-1h153 and (131)I (∼ 5 mCi), (131)I alone, or PBS, and followed for tumor growth. Kruskal-Wallis and Wilcoxon tests were performed for statistical analysis. Radiouptake assay showed a 178-fold increase of radioiodine uptake in hNIS-expressing infected cells compared with PBS control. Systemic (131)I-iodide in combination with GLV-1h153 resulted in a 6-fold increase in tumor regression (24 compared to 146 mm(3) for the virus-only treatment group; P<0.05; d 40). We demonstrated that a novel vaccinia virus, GLV-1h153, expresses hNIS, increases the expression of the symporter in TNBC cells, and serves both as a gene marker for noninvasive imaging of virus and as a vehicle for targeted radionuclide therapy with (131)I.


Assuntos
Radioisótopos do Iodo/uso terapêutico , Neoplasias de Mama Triplo Negativas/radioterapia , Neoplasias de Mama Triplo Negativas/terapia , Vaccinia virus/fisiologia , Animais , Western Blotting , Linhagem Celular Tumoral , Feminino , Imunofluorescência , Humanos , Immunoblotting , Camundongos , Neoplasias de Mama Triplo Negativas/metabolismo , Vaccinia virus/genética
6.
Cell Metab ; 36(6): 1394-1410.e12, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38838644

RESUMO

A vexing problem in mitochondrial medicine is our limited capacity to evaluate the extent of brain disease in vivo. This limitation has hindered our understanding of the mechanisms that underlie the imaging phenotype in the brain of patients with mitochondrial diseases and our capacity to identify new biomarkers and therapeutic targets. Using comprehensive imaging, we analyzed the metabolic network that drives the brain structural and metabolic features of a mouse model of pyruvate dehydrogenase deficiency (PDHD). As the disease progressed in this animal, in vivo brain glucose uptake and glycolysis increased. Propionate served as a major anaplerotic substrate, predominantly metabolized by glial cells. A combination of propionate and a ketogenic diet extended lifespan, improved neuropathology, and ameliorated motor deficits in these animals. Together, intermediary metabolism is quite distinct in the PDHD brain-it plays a key role in the imaging phenotype, and it may uncover new treatments for this condition.


Assuntos
Encéfalo , Glucose , Propionatos , Doença da Deficiência do Complexo de Piruvato Desidrogenase , Animais , Doença da Deficiência do Complexo de Piruvato Desidrogenase/metabolismo , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Glucose/metabolismo , Propionatos/metabolismo , Camundongos , Dieta Cetogênica , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Masculino , Glicólise
7.
Mol Imaging ; 12(1): 67-73, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23348793

RESUMO

Based on their inability to express argininosuccinate synthetase (ASS), some cancer entities feature the characteristic of L-arginine (Arg) auxotrophy. This inability to intrinsically generate Arg makes them applicable for arginine deiminase (ADI) treatment, an Arg-depleting drug. Arg is also used for the synthesis of endothelial nitric oxide (NO), which mainly confers vasodilatation but is also considered to have a major influence on tumor vascularization. The purpose of this study was to define changes in tumor vasculature in an ADI-treated melanoma xenograft mouse model using the blood pool agent AngioSense 750 and fluorescence molecular tomography (FMT). We used an ASS-negative melanoma xenograft mouse model and subjected it to weekly ADI treatment. Changes in tumor size were measured, and alterations in tumor vasculature were depicted by FMT and CD31 immunohistochemistry (IHC). On ADI treatment and effective antitumor therapy, we observed a drop in NO plasma levels and visualized changes in tumor vascularization with FMT and IHC. ADI treatment in melanoma xenografts has a tumor-reducing effect, which can be noninvasively imaged by quantifying tumor vascularization with FMT and IHC.


Assuntos
Hidrolases/farmacologia , Melanoma/irrigação sanguínea , Melanoma/tratamento farmacológico , Imagem Óptica/métodos , Tomografia/métodos , Animais , Argininossuccinato Sintase/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Imuno-Histoquímica , Camundongos , Camundongos SCID , Imagem Molecular/métodos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Óxido Nítrico/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Bioconjug Chem ; 24(11): 1784-9, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24180480

RESUMO

Liposomes are attractive vehicles for the controlled release of drugs and cytotoxins and have a long-standing history in medical research and clinical practice. In addition to established therapeutic indications, liposomes have several favorable properties for molecular imaging, including high stability and the ability to be labeled with radioisotopes, as well as paramagnetic and fluorescent contrast agents. However, long circulation times and difficulties in creating targeted liposomes have proven challenges for imaging. In this study, we have addressed these limitations using a recently developed strategy for bioorthogonal conjugation, the reaction between tetrazines and trans-cyclooctenes. By coating radiolabeled liposomes with trans-cyclooctene and pretargeting with a tetrazine coupled to a targeted peptide, we were able to selectively enhance the retention of liposomes and bind them to tumor tissue in live animals. The rapid reaction between tetrazines and trans-cyclooctenes allowed imaging to be performed with the short-lived PET tracer (18)F, yielding signal-to-background activity ratios of 7:1. The covalent, bioorthogonally driven tumor-targeting of liposomes by in vivo click chemistry is promising and should be explored for more selective and rapid delivery of radiodiagnostics and radiotherapeutics, two classes of drugs which particularly benefit from fast clearance, low nonspecific binding, and the associated reduced toxicity to kidneys and bone marrow.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Radioisótopos de Flúor/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Animais , Linhagem Celular Tumoral , Química Click , Ciclo-Octanos/química , Humanos , Lipossomos/farmacocinética , Camundongos , Modelos Moleculares , Estrutura Molecular , Neoplasias Experimentais/diagnóstico , Neoplasias Experimentais/metabolismo , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/metabolismo , Tomografia por Emissão de Pósitrons , Tetrazóis/química
9.
AJR Am J Roentgenol ; 200(6): 1347-51, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23701074

RESUMO

OBJECTIVE: Iodinated contrast agent for CT has a short half-life in the vasculature. As the field of interventional procedures expands, a more durable contrast agent would be highly useful. Our study investigated whether gold nanoparticles are feasible as a long-lasting vascular contrast agent for CT. MATERIALS AND METHODS: Gold nanoparticles were synthesized by a modified Turkevich method, coated with methoxy-polyethylene glycol-thiol chains, and compared with an iodine-based contrast agent used in mice. Contrast agents were imaged in tubes by CT at 40, 60, and 140 kVp and then were tested in vivo by tail vein injection. Nine mice received gold nanoparticles, two received iodine-based contrast agent, and one received saline. CT of mice was performed at 60 kVp immediately, 6 hours, and 24 hours after injection. RESULTS: In an isolated form in tubes, gold nanoparticles had greater radiographic density than did iodine-based contrast agent at 40 kVp and were comparable at the other CT voltages. In mice, gold nanoparticles provided bright contrast enhancement that enabled clear visualization of the abdominal aorta and renal arteries, which could not be distinguished without contrast agent. This persisted up to 24 hours, which was the last time point assessed. Contrast enhancement of the vasculature by iodine-based contrast agent was present immediately after injection but had disappeared by 6 hours. CONCLUSION: Gold nanoparticles can provide clear and durable contrast enhancement of the vasculature even at 24 hours. These findings merit further study of gold nanoparticles for their potential as a contrast agent in CT and CT-guided interventional procedures.


Assuntos
Meios de Contraste/química , Ouro/química , Nanopartículas Metálicas/química , Tomografia Computadorizada por Raios X , Animais , Gadolínio/química , Meia-Vida , Camundongos
10.
ACS Nano ; 17(7): 6178-6192, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36971591

RESUMO

Macrophages comprise a significant portion of the immune cell compartment within tumors and are known contributors to tumor pathology; however, cancer immunotherapies targeting these cells are not clinically available. The iron oxide nanoparticle, ferumoxytol (FH), may be utilized as a nanophore for drug delivery to tumor-associated macrophages. We have demonstrated that a vaccine adjuvant, monophosphoryl lipid A (MPLA), can be stably captured within the carbohydrate shell of ferumoxytol without chemical modification of either the drug or the nanophore. This drug-nanoparticle combination (FH-MPLA) activated macrophages to an antitumorigenic phenotype at clinically relevant concentrations. In the immunotherapy-resistant B16-F10 model of murine melanoma, FH-MPLA treatment induced tumor necrosis and regression in combination with agonistic α-CD40 monoclonal antibody therapy. FH-MPLA, composed of clinically approved nanoparticle and drug payload, represents a potential cancer immunotherapy with translational relevance. FH-MPLA may be useful as an adjunctive therapy to existing antibody-based cancer immunotherapies which target only lymphocytic cells, reshaping the tumor immune environment.


Assuntos
Anticorpos Monoclonais , Melanoma , Camundongos , Animais , Preparações Farmacêuticas , Anticorpos Monoclonais/farmacologia , Óxido Ferroso-Férrico , Imunoterapia , Melanoma/tratamento farmacológico
11.
Proc Natl Acad Sci U S A ; 106(19): 7979-84, 2009 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-19416908

RESUMO

We developed mice with germline endogenous expression of oncogenic Hras to study effects on development and mechanisms of tumor initiation. They had high perinatal mortality, abnormal cranial dimensions, defective dental ameloblasts, and nasal septal deviation, consistent with some of the features of human Costello syndrome. These mice developed papillomas and angiosarcomas, which were associated with Hras(G12V) allelic imbalance and augmented Hras signaling. Endogenous expression of Hras(G12V) was also associated with a higher mutation rate in vivo. Tumor initiation by Hras(G12V) likely requires augmentation of signal output, which in papillomas and angiosarcomas is achieved via increased Hras-gene copy number, which may be favored by a higher mutation frequency in cells expressing the oncoprotein.


Assuntos
Neoplasias/genética , Neoplasias/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo , Alelos , Animais , Análise Mutacional de DNA , Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Mutação , Oncogenes , Transdução de Sinais , Tomografia Computadorizada por Raios X/métodos
12.
Sci Rep ; 10(1): 13826, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32778663

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

13.
Sci Rep ; 10(1): 10379, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32587315

RESUMO

The emergence of PET probes for amyloid plaques and neurofibrillary tangles, hallmarks of Alzheimer disease (AD), enables monitoring of pathology in AD mouse models. However, small-animal PET imaging is limited by coarse spatial resolution. We have installed a custom-fabricated PET insert into our small-animal MRI instrument and used PET/MRI hybrid imaging to define regions of amyloid vulnerability in 5xFAD mice. We compared fluorine-18 [18F]-Florbetapir uptake in the 5xFAD brain by dedicated small-animal PET/MRI and PET/CT to validate the quantitative measurement of PET/MRI. Next, we used PET/MRI to define uptake in six brain regions. As expected, uptake was comparable to wild-type in the cerebellum and elevated in the cortex and hippocampus, regions implicated in AD. Interestingly, uptake was highest in the thalamus, a region often overlooked in AD studies. Development of small-animal PET/MRI enables tracking of brain region-specific pathology in mouse models, which may prove invaluable to understanding AD progression and therapeutic development.


Assuntos
Doença de Alzheimer/patologia , Modelos Animais de Doenças , Hipocampo/patologia , Imageamento por Ressonância Magnética/métodos , Placa Amiloide/patologia , Tomografia por Emissão de Pósitrons/métodos , Tálamo/patologia , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Animais , Radioisótopos de Flúor/metabolismo , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Placa Amiloide/diagnóstico por imagem , Placa Amiloide/metabolismo , Compostos Radiofarmacêuticos/metabolismo , Tálamo/diagnóstico por imagem , Tálamo/metabolismo
14.
Clin Cancer Res ; 26(1): 147-158, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31515460

RESUMO

PURPOSE: Small-molecule inhibitors have revolutionized treatment of certain genomically defined solid cancers. Despite breakthroughs in treating systemic disease, central nervous system (CNS) metastatic progression is common, and advancements in treating CNS malignancies remain sparse. By improving drug penetration across a variably permeable blood-brain barrier and diffusion across intratumoral compartments, more uniform delivery and distribution can be achieved to enhance efficacy. EXPERIMENTAL DESIGN: Ultrasmall fluorescent core-shell silica nanoparticles, Cornell prime dots (C' dots), were functionalized with αv integrin-binding (cRGD), or nontargeting (cRAD) peptides, and PET labels (124I, 89Zr) to investigate the utility of dual-modality cRGD-C' dots for enhancing accumulation, distribution, and retention (ADR) in a genetically engineered mouse model of glioblastoma (mGBM). mGBMs were systemically treated with 124I-cRGD- or 124I-cRAD-C' dots and sacrificed at 3 and 96 hours, with concurrent intravital injections of FITC-dextran for mapping blood-brain barrier breakdown and the nuclear stain Hoechst. We further assessed target inhibition and ADR following attachment of dasatinib, creating nanoparticle-drug conjugates (Das-NDCs). Imaging findings were confirmed with ex vivo autoradiography, fluorescence microscopy, and p-S6RP IHC. RESULTS: Improvements in brain tumor delivery and penetration, as well as enhancement in the ADR, were observed following administration of integrin-targeted C' dots, as compared with a nontargeted control. Furthermore, attachment of the small-molecule inhibitor, dasatinib, led to its successful drug delivery throughout mGBM, demonstrated by downstream pathway inhibition. CONCLUSIONS: These results demonstrate that highly engineered C' dots are promising drug delivery vehicles capable of navigating the complex physiologic barriers observed in a clinically relevant brain tumor model.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Dasatinibe/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Glioblastoma/tratamento farmacológico , Nanopartículas/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Dióxido de Silício/química , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Dasatinibe/química , Modelos Animais de Doenças , Glioblastoma/patologia , Radioisótopos do Iodo/química , Camundongos , Nanopartículas/química , Gradação de Tumores , Oligopeptídeos/química , Tomografia por Emissão de Pósitrons/métodos , Inibidores de Proteínas Quinases/química , Radioisótopos/química , Zircônio/química
15.
J Biomed Opt ; 14(2): 024045, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19405773

RESUMO

The procedures we propose make possible the mapping of two-dimensional (2-D) bioluminescence image (BLI) data onto a skin surface derived from a three-dimensional (3-D) anatomical modality [magnetic resonance (MR) or computed tomography (CT)] dataset. This mapping allows anatomical information to be incorporated into bioluminescence tomography (BLT) reconstruction procedures and, when applied using sources visible to both optical and anatomical modalities, can be used to evaluate the accuracy of those reconstructions. Our procedures, based on immobilization of the animal and a priori determined fixed projective transforms, should be more robust and accurate than previously described efforts, which rely on a poorly constrained retrospectively determined warping of the 3-D anatomical information. Experiments conducted to measure the accuracy of the proposed registration procedure found it to have a mean error of 0.36+/-0.23 mm. Additional experiments highlight some of the confounds that are often overlooked in the BLT reconstruction process, and for two of these confounds, simple corrections are proposed.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Medições Luminescentes/métodos , Imageamento por Ressonância Magnética/métodos , Tomografia Óptica/métodos , Tomografia Computadorizada por Raios X/métodos , Imagem Corporal Total/métodos , Animais , Aumento da Imagem/métodos , Medições Luminescentes/instrumentação , Medições Luminescentes/veterinária , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/veterinária , Camundongos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Técnica de Subtração/instrumentação , Técnica de Subtração/veterinária , Tomografia Óptica/instrumentação , Tomografia Óptica/veterinária , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/veterinária , Imagem Corporal Total/instrumentação , Imagem Corporal Total/veterinária
16.
Nat Nanotechnol ; 14(6): 616-622, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30911166

RESUMO

Acute myeloid leukaemia is a fatal disease for most patients. We have found that ferumoxytol (Feraheme), an FDA-approved iron oxide nanoparticle for iron deficiency treatment, demonstrates an anti-leukaemia effect in vitro and in vivo. Using leukaemia cell lines and primary acute myeloid leukaemia patient samples, we show that low expression of the iron exporter ferroportin results in a susceptibility of these cells via an increase in intracellular iron from ferumoxytol. The reactive oxygen species produced by free ferrous iron lead to increased oxidative stress and cell death. Ferumoxytol treatment results in a significant reduction of disease burden in a murine leukaemia model and patient-derived xenotransplants bearing leukaemia cells with low ferroportin expression. Our findings show how a clinical nanoparticle previously considered largely biologically inert could be rapidly incorporated into clinical trials for patients with leukaemia with low ferroportin levels.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Óxido Ferroso-Férrico , Leucemia Mieloide Aguda , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentais , Animais , Linhagem Celular Tumoral , Aprovação de Drogas , Óxido Ferroso-Férrico/farmacocinética , Óxido Ferroso-Férrico/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Camundongos , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Espécies Reativas de Oxigênio/metabolismo , Estados Unidos , United States Food and Drug Administration , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Nucl Med ; 49(3): 422-9, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18287265

RESUMO

UNLABELLED: 3'-Deoxy-3'-(18)F-fluorothymidine ((18)F-FLT), a partially metabolized thymidine analog, has been used in preclinical and clinical settings for the diagnostic evaluation and therapeutic monitoring of tumor proliferation status. We investigated the use of (18)F-FLT for detecting and characterizing genetically engineered mouse (GEM) high-grade gliomas and evaluating the pharmacokinetics in GEM gliomas and normal brain tissue. Our goal was to develop a robust and reproducible method of kinetic analysis for the quantitative evaluation of tumor proliferation. METHODS: Dynamic (18)F-FLT PET imaging was performed for 60 min in glioma-bearing mice (n = 10) and in non-tumor-bearing control mice (n = 4) by use of a dedicated small-animal PET scanner. A 3-compartment, 4-parameter model was used to characterize (18)F-FLT kinetics in vivo. For compartmental analysis, the arterial input was measured by placing a region of interest over the left ventricular blood pool and was corrected for partial-volume averaging. The (18)F-FLT "trapping" and tissue flux model parameters were correlated with measured uptake (percentage injected dose per gram [%ID/g]) values at 60 min. RESULTS: (18)F-FLT uptake values (%ID/g) at 1 h in brain tumors were significantly greater than those in control brains (mean +/- SD: 4.33 +/- 0.58 and 0.86 +/- 0.22, respectively; P < 0.0004). Kinetic analyses of the measured time-activity curves yielded independent, robust estimates of tracer transport and metabolism, with compartmental model-derived time-activity data closely fitting the measured data. Except for tracer transport, statistically significant differences were found between the applicable model parameters for tumors and normal brains. The tracer retention rate constant strongly correlated with measured (18)F-FLT uptake values (r = 0.85, P < 0.0025), whereas a more moderate correlation was found between net (18)F-FLT flux and (18)F-FLT uptake values (r = 0.61, P < 0.02). CONCLUSION: A clinically relevant mouse glioma model was characterized by both static and dynamic small-animal PET imaging of (18)F-FLT uptake. Time-activity curves were kinetically modeled to distinguish early transport from a subsequent tracer retention phase. Estimated (18)F-FLT rate constants correlated positively with %ID/g measurements. Dynamic evaluation of (18)F-FLT uptake offers a promising approach for noninvasively assessing cellular proliferation in vivo and for quantitatively monitoring new antiproliferation therapies.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Didesoxinucleosídeos , Modelos Animais de Doenças , Glioma/diagnóstico por imagem , Glioma/patologia , Tomografia por Emissão de Pósitrons/métodos , Animais , Neoplasias Encefálicas/metabolismo , Didesoxinucleosídeos/farmacocinética , Glioma/metabolismo , Radioisótopos do Iodo/farmacocinética , Taxa de Depuração Metabólica , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Distribuição Tecidual
18.
Mol Imaging Biol ; 19(5): 754-761, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28194631

RESUMO

PURPOSE: The folate receptor (FR) has emerged as an interesting diagnostic and therapeutic drug target with many potential applications in oncologic and inflammatory disorders. It was therefore the aim of this study to develop a folate-derived Ga-68-based positron emission tomography (PET) imaging tracer that is straightforward to radiolabel and could be broadly used in clinical studies. We validated its target binding affinity and specificity and compared it to [99mTc]EC20, the folate single-photon emission computed tomography (SPECT) imaging tracer that has been most extensively studied clinically so far. PROCEDURES: The new folic acid-derived PET imaging agent is linked via a polyethyleneglycol linker to the chelator 1,4,7-triazacyclononane-1,4,7-trisacetic acid (NOTA). This new compound, NOTA-folate, was labeled with gallium-68. We tested the probe's stability in human plasma and its selectivity in vitro, using the FR-positive KB cell line as well as the FR-negative A549 cell line. The pharmacokinetic profile of [68Ga]NOTA-folate was evaluated in FR-positive KB mouse xenografts. Following intravenous injection of [68Ga]NOTA-folate (383 ± 53 µCi), PET/computed tomography (CT) imaging studies as well as biodistribution studies were performed using KB tumor-bearing mice (n = 3). In vitro as well as in vivo studies were performed in parallel with the SPECT imaging tracer [99mTc]EC20. RESULTS: In comparison to [99mTc]EC20 (radiochemical yield (RCY) = 82.0 ± 2.9 %, 91.8 ± 2.0 % purity), similar radiochemical yield (87.2 ± 6.9 %) and radiochemical purity (95.6 ± 1.8 %) could be achieved for [68Ga]NOTA-folate. For both tracers, we observed high affinity for FR-positive cells in vitro and high plasma stability. In PET/CT and biodistribution studies, [68Ga]NOTA-folate appeared to display slightly superior in vivo performance in comparison to [99mTc]EC20. In detail, 68Ga-NOTA-folate showed very good tumor uptake and retention (6.6 ± 1.1 %ID/g), relatively low kidney uptake (21.7 ± 1.1 %ID/g), and very low liver uptake (0.38 ± 0.08 %ID/g). In vivo blocking studies using a fivefold excess of EC20 reduced the tumor uptake to 2.5 ± 0.7 %ID/g, confirming receptor specific binding of [68Ga]NOTA-folate in vivo. CONCLUSION: We validated a new Ga-68 folate-based PET imaging agent with excellent pharmacokinetics and tumor uptake. Based on a head-to-head comparison between both tracers, [68Ga]NOTA-folate is a suitable imaging probe for the delineation of FR-positive tumors and a promising candidate for clinical translation.


Assuntos
Ácido Fólico/química , Radioisótopos de Gálio/química , Tomografia por Emissão de Pósitrons/métodos , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos Nus , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Ligação Proteica , Soro/metabolismo , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único
19.
Mol Imaging Biol ; 18(3): 386-92, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26493053

RESUMO

PURPOSE: The current study presents [(18)F]PARPi as imaging agent for PARP1 expression. PROCEDURES: [(18)F]PARPi was generated by conjugating a 2H-phthalazin-1-one scaffold to 4-[(18)F]fluorobenzoic acid. Biochemical assays, optical in vivo competition, biodistribution analysis, positron emission tomography (PET)/X-ray computed tomography, and PET/magnetic resonance imaging studies were performed in subcutaneous and orthotopic mouse models of glioblastoma. RESULTS: [(18)F]PARPi shows suitable pharmacokinetic properties for brain tumor imaging (IC50 = 2.8 ± 1.1 nM; logPCHI = 2.15 ± 0.41; plasma-free fraction = 63.9 ± 12.6 %) and accumulates selectively in orthotopic brain tumor tissue. Tracer accumulation in subcutaneous brain tumors was 1.82 ± 0.21 %ID/g, whereas in healthy brain, the uptake was only 0.04 ± 0.01 %ID/g. CONCLUSIONS: [(18)F]PARPi is a selective PARP1 imaging agent that can be used to visualize glioblastoma in xenograft and orthotopic mouse models with high precision and good signal/noise ratios. It offers new opportunities to non-invasively image tumor growth and monitor interventions.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/enzimologia , Glioblastoma/diagnóstico por imagem , Glioblastoma/enzimologia , Poli(ADP-Ribose) Polimerases/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Animais , Autorradiografia , Proteínas Sanguíneas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Radioisótopos de Flúor , Glioblastoma/patologia , Meia-Vida , Humanos , Imageamento por Ressonância Magnética , Camundongos , Inibidores de Poli(ADP-Ribose) Polimerases/sangue , Inibidores de Poli(ADP-Ribose) Polimerases/química , Inibidores de Poli(ADP-Ribose) Polimerases/farmacocinética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Distribuição Tecidual/efeitos dos fármacos , Tomografia Computadorizada por Raios X
20.
Surgery ; 157(2): 331-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25616946

RESUMO

BACKGROUND: Peritoneal carcinomatosis (PC) is a terminal progression of colorectal cancer (CRC). Poor response to cytoreductive operation and chemotherapy coupled with the inability to reliably track disease progression by the use of established diagnostic methods, make this a deadly disease. We examined the effectiveness of the oncolytic vaccinia virus GLV-1h153 as a therapeutic and diagnostic vehicle. We believe that viral expression of the human sodium iodide transporter (hNIS) provides both real-time monitoring of viral therapy and effective treatment of colorectal peritoneal carcinomatosis (CRPC). METHODS: Infectivity and cytotoxic effect of GLV-1h153 on CRC cell lines was assayed in vitro. Viral replication was examined by standard viral plaque assays. Orthotopic CRPC xenografts were generated in athymic nude mice and subsequently administered GLV-1h153 intraperitoneally. A decrease in tumor burden was assessed by mass. Orthotopic tumors were visualized by single-photon emission computed tomography/computed tomography after Iodine ((131)I) administration and by fluorescence optical imaging. RESULTS: GLV-1h153 infected and killed CRC cells in a time- and concentration-dependent manner. Viral replication demonstrated greater than a 2.35 log increase in titer over 4 days. Intraperitoneal treatment of orthotopic CRPC xenografts resulted in a substantial decrease in tumor burden. Infection of orthotopic xenografts was therapeutic and facilitated monitoring by (131)I-single-photon emission computed tomography/computed tomography via expression of hNIS in infected tissue. CONCLUSION: GLV-1h153 kills CRC in vitro effectively and decreases tumor burden in vivo. We demonstrate that GLV-1h153 can be used as an agent to provide accurate delineation of tumor burden in vivo. These findings indicate that GLV-1h153 has potential for use as a therapeutic and diagnostic agent in the treatment of CRPC.


Assuntos
Neoplasias Colorretais/terapia , Terapia Viral Oncolítica/métodos , Neoplasias Peritoneais/secundário , Neoplasias Peritoneais/terapia , Vaccinia virus/genética , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Progressão da Doença , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Humanos , Radioisótopos do Iodo , Camundongos , Camundongos Nus , Inoculação de Neoplasia , Vírus Oncolíticos/genética , Neoplasias Peritoneais/patologia , Compostos Radiofarmacêuticos , Proteínas Recombinantes/genética , Simportadores/genética , Tomografia Computadorizada de Emissão de Fóton Único , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA