RESUMO
Native mass spectrometry (MS) of proteins and protein assemblies reveals size and binding stoichiometry, but elucidating structures to understand their function is more challenging. Native top-down MS (nTDMS), i.e., fragmentation of the gas-phase protein, is conventionally used to derive sequence information, locate post-translational modifications (PTMs), and pinpoint ligand binding sites. nTDMS also endeavors to dissociate covalent bonds in a conformation-sensitive manner, such that information about higher-order structure can be inferred from the fragmentation pattern. However, the activation/dissociation method used can greatly affect the resulting information on protein higher-order structure. Methods such as electron capture/transfer dissociation (ECD and ETD, or ExD) and ultraviolet photodissociation (UVPD) can produce product ions that are sensitive to structural features of protein complexes. For multi-subunit complexes, a long-held belief is that collisionally activated dissociation (CAD) induces unfolding and release of a subunit, and thus is not useful for higher-order structure characterization. Here we show not only that sequence information can be obtained directly from CAD of native protein complexes but that the fragmentation pattern can deliver higher-order structural information about their gas- and solution-phase structures. Moreover, CAD-generated internal fragments (i.e., fragments containing neither N-/C-termini) reveal structural aspects of protein complexes.
Assuntos
Projetos de Pesquisa , Espectrometria de MassasRESUMO
Theta capillary nanoelectrospray ionization (θ-nanoESI) can be used to "supercharge" protein ions directly from solution for detection by mass spectrometry (MS). In native top-down MS, the extent of protein charging is low. Given that ions with more charge fragment more readily, increasing charge can enhance the extent of sequence information obtained by top-down MS. For θ-nanoESI, dual-channeled nanoESI emitters are used to mix two solutions in low to sub-µs prior to MS. The mechanism for θ-nanoESI mixing has been reported to primarily occur: (i) in a single shared Taylor cone and in the droplets formed from the Taylor cone or (ii) by the fusion of droplets formed from two separate Taylor cones. Using θ-nanoESI-ion mobility MS, native protein solutions were rapidly mixed with denaturing supercharging solutions to form protein ions in significantly higher charge states and with more elongated structures than those formed by premixing the solutions prior to nanoESI-MS. If θ-nanoESI mixing occurred in the Taylor cone and in the droplets resulting from the single Taylor cone, then the extent of protein charging and unfolding should be comparable to or less than that obtained by premixing solutions. Thus, these data are consistent with mixing occurring via droplet fusion rather than in the Taylor cone prior to ESI droplet formation. These data also suggest that highly charged protein ions can be formed by the near-complete mixing of each solution. The presence of supercharging additives in premixed solutions can suppress volatile electrolyte evaporation, limiting the extent of protein charging compared to when the additive is delivered via one channel of a θ-nanoESI emitter. In θ-nanoESI, the formation of two Taylor cones can presumably result in substantial electrolyte evaporation from the ESI droplets containing native-like proteins prior to droplet fusion, thereby enhancing ion charging.
Assuntos
Proteínas , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Mobilidade Iônica , Íons , Proteínas/química , Espectrometria de Massas por Ionização por Electrospray/métodosRESUMO
Prefractionation of complex mixtures of proteins derived from biological samples is indispensable for proteome analysis via top-down mass spectrometry (MS). Polyacrylamide gel electrophoresis (PAGE), which enables high-resolution protein separation based on molecular size, is a widely used technique in biochemical experiments and has the potential to be useful in sample fractionation for top-down MS analysis. However, the lack of a means to efficiently recover the separated proteins in-gel has always been a barrier to its use in sample prefractionation. In this study, we present a novel experimental workflow, called Passively Eluting Proteins from Polyacrylamide gels as Intact species for MS ("PEPPI-MS"), which allows top-down MS of PAGE-separated proteins. The optimization of Coomassie brilliant blue staining followed by the passive extraction step in the PEPPI-MS workflow enabled the efficient recovery of proteins, separated on commercial precast gels, from a wide range of molecular weight regions in under 10 min. Two-dimensional separation combining offline PEPPI-MS with online reversed-phase liquid chromatographic separation resulted in identification of over 1000 proteoforms recovered from the target region of the gel (≤50 kDa). Given the widespread availability and relatively low cost of traditional sodium dodecyl sulfate (SDS)-PAGE equipment, the PEPPI-MS workflow will be a powerful prefractionation strategy for top-down proteomics.
Assuntos
Resinas Acrílicas , Eletroforese em Gel de Poliacrilamida , Espectrometria de MassasRESUMO
BACKGROUND: Rapid identification of novel targets and advancement of a vascular targeting strategy requires a comprehensive assessment of AVM endothelial membrane protein changes in response to irradiation. The aim of this study is to provide additional potential target protein molecules for evaluation in animal trials to promote intravascular thrombosis in AVM vessels post radiosurgery. METHODS: We employed in vivo biotinylation methodology that we developed, to label membrane proteins in the rat model of AVM post radiosurgery. Mass spectrometry expression (MSE) analysis was used to identify and quantify surface protein expression between irradiated and non irradiated rats, which mimics a radiosurgical treatment approach. RESULTS: Our proteomics data revealed differentially expressed membrane proteins between irradiated and non irradiated rats, e.g. profilin-1, ESM-1, ion channel proteins, annexin A2 and lumican. CONCLUSION: This work provides additional potential target protein molecules for evaluation in animal trials to promote intravascular thrombosis in AVM vessels post radiosurgery.
RESUMO
Biologists' preeminent toolbox for separating, analyzing, and visualizing proteins is SDS-PAGE, yet recovering the proteins embedded in these polyacrylamide media as intact species is a long-standing challenge for mass spectrometry. In conventional workflows, protein mixtures from crude biological samples are electrophoretically separated at high-resolution within N,N'-methylene-bis-acrylamide cross-linked polyacrylamide gels to reduce sample complexity and facilitate sensitive characterization. However, low protein recoveries, especially for high molecular weight proteins, often hinder characterization by mass spectrometry. We describe a workflow for top-down/bottom-up mass spectrometric analyses of proteins in polyacrylamide slab gels using dissolvable, bis-acryloylcystamine-cross-linked polyacrylamide, enabling high-resolution protein separations while recovering intact proteins over a broad size range efficiently. The inferior electrophoretic resolution long associated with reducible gels has been overcome, as demonstrated by SDS-PAGE of crude tissue extracts. This workflow elutes intact proteins efficiently, supporting MS and MS/MS from proteins resolved on biologists' preferred separation platform.
Assuntos
Resinas Acrílicas/química , Géis/química , Proteínas de Insetos/análise , Animais , Drosophila melanogaster , Eletroforese em Gel de Poliacrilamida/instrumentação , Eletroforese em Gel de Poliacrilamida/métodos , Espectrometria de Massas/métodos , Proteômica/métodosRESUMO
BACKGROUND: To develop a new molecular targeted treatment for brain (AVMs), identification of membrane proteins that are localised on the AVM endothelium is crucial. Current treatment methods are surgery and radiosurgery. However, complete occlusion post radiosurgery are achieved within 3 years, while patient remain at risk of haemorrhage. This study aims to identify potential protein targets in AVM endothelial cells that discriminate these vessels from normal vessels; these proteins targets will be investigated for the molecular therapy of brain AVMs to promote rapid thrombosis after radiosurgery. METHODS: We employed in vitro biotinylation that we developed, and mass spectrometry to detect cell surface-exposed proteins in cultures of murine cerebral endothelial cells (bEnd.3). Two forms of mass spectrometry were applied (iTRAQ-MS and MSE) to identify and quantify membrane protein expression at various time-points following irradiation which simulates a radiosurgical treatment approach. Immunocytochemistry was used to confirm the expression of selected membrane proteins. ProteinPilot V4.0 software was used to analyse the iTRAQ-MS data and the MSE data was analysed using ProteinLynx Global Server version 2.5 software. RESULTS: The proteomics data revealed several differentially expressed membrane proteins between irradiated and non-irradiated cells at specific time points, e.g. PECAM-1, cadherin-5, PDI, EPCR and integrins. Immunocytochemistry data confirmed the expression of these proteins. CONCLUSION: Cell surface protein biotinylation and proteomics analysis successfully identified membrane proteins from murine brain endothelial cells in response to irradiation. This work suggests potential target protein molecules for evaluation in animal models of brain-AVM.
RESUMO
The application of ion pre-activation with 266 nm ultraviolet (UV) laser irradiation combined with electron capture dissociation (ECD) is demonstrated to enhance top-down mass spectrometry sequence coverage of disulfide bond containing proteins. UV-based activation can homolytically cleave a disulfide bond to yield two separated thiol radicals. Activated ECD experiments of insulin and ribonuclease A containing three and four disulfide bonds, respectively, were performed. UV-activation in combination with ECD allowed the three disulfide bonds of insulin to be cleaved and the overall sequence coverage to be increased. For the larger sized ribonuclease A with four disulfide bonds, irradiation from an infrared laser (10.6 µm) to disrupt non-covalent interactions was combined with UV-activation to facilitate the cleavage of up to three disulfide bonds. Preferences for disulfide bond cleavage are dependent on protein structure and sequence. Disulfide bonds can reform if the generated radicals remain in close proximity. By varying the time delay between the UV-activation and the ECD events, it was determined that disulfide bonds reform within 10-100 msec after their UV-homolytic cleavage.
RESUMO
The integrity of quantitative proteomic experiments depends on the reliability and the robustness of the protein extraction, solubilization, and digestion methods utilized. Combinations of detergents, chaotropes, and mechanical disruption can yield successful protein preparations; however, the methods subsequently required to eliminate these added contaminants, in addition to the salts, nucleic acids, and lipids already in the sample, can result in significant sample losses and incomplete contaminant removal. A recently introduced method for proteomic sample preparation, filter-aided sample preparation (FASP), cleverly circumvents many of the challenges associated with traditional protein purification methods but is associated with significant sample loss. Presented here is an enhanced FASP (eFASP) approach that incorporates alternative reagents to those of traditional FASP, improving sensitivity, recovery, and proteomic coverage for processed samples. The substitution of 0.2% deoxycholic acid for urea during eFASP digestion increases tryptic digestion efficiency for both cytosolic and membrane proteins yet obviates needed cleanup steps associated with use of the deoxycholate sodium salt. For classic FASP, prepassivating Microcon filter surfaces with 5% TWEEN-20 reduces peptide loss by 300%. An express eFASP method uses tris(2-carboxyethyl)phosphine and 4-vinylpyridine to alkylate proteins prior to deposition on the Microcon filter, increasing alkylation specificity and speeding processing.
Assuntos
Fracionamento Químico/métodos , Proteômica/métodos , Ácido Desoxicólico/química , Escherichia coli , Proteínas de Escherichia coli/análise , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Proteoma/análise , Proteoma/química , Proteoma/metabolismo , Tensoativos/química , Tripsina/metabolismoRESUMO
BACKGROUND: Neurotrauma or injuries to the central nervous system (CNS) are a serious public health problem worldwide. Approximately 75% of all traumatic brain injuries (TBIs) are concussions or other mild TBI (mTBI) forms. Evaluation of concussion injury today is limited to an assessment of behavioral symptoms, often with delay and subject to motivation. Hence, there is an urgent need for an accurate chemical measure in biofluids to serve as a diagnostic tool for invisible brain wounds, to monitor severe patient trajectories, and to predict survival chances. Although a number of neurotrauma marker candidates have been reported, the broad spectrum of TBI limits the significance of small cohort studies. Specificity and sensitivity issues compound the development of a conclusive diagnostic assay, especially for concussion patients. Thus, the neurotrauma field currently has no diagnostic biofluid test in clinical use. CONTENT: We discuss the challenges of discovering new and validating identified neurotrauma marker candidates using proteomics-based strategies, including targeting, selection strategies and the application of mass spectrometry (MS) technologies and their potential impact to the neurotrauma field. SUMMARY: Many studies use TBI marker candidates based on literature reports, yet progress in genomics and proteomics have started to provide neurotrauma protein profiles. Choosing meaningful marker candidates from such 'long lists' is still pending, as only few can be taken through the process of preclinical verification and large scale translational validation. Quantitative mass spectrometry targeting specific molecules rather than random sampling of the whole proteome, e.g., multiple reaction monitoring (MRM), offers an efficient and effective means to multiplex the measurement of several candidates in patient samples, thereby omitting the need for antibodies prior to clinical assay design. Sample preparation challenges specific to TBI are addressed. A tailored selection strategy combined with a multiplex screening approach is helping to arrive at diagnostically suitable candidates for clinical assay development. A surrogate marker test will be instrumental for critical decisions of TBI patient care and protection of concussion victims from repeated exposures that could result in lasting neurological deficits.
RESUMO
Cofilin is a member of the actin depolymerizing factor (ADF)/cofilin family of proteins. It plays a key role in actin dynamics by promoting disassembly and assembly of actin filaments. Upon its binding, cofilin has been shown to bridge two adjacent protomers in filamentous actin (F-actin) and promote the displacement and disordering of subdomain 2 of actin. Here, we present evidence for cofilin promoting a new structural change in the actin filament, as detected via a switch in cross-linking sites. Benzophenone-4-maleimide, which normally forms intramolecular cross-linking in F-actin, cross-links F-actin intermolecularly upon cofilin binding. We mapped the cross-linking sites and found that in the absence of cofilin intramolecular cross-linking occurred between residues Cys374 and Asp11. In contrast, cofilin shifts the cross-linking by this reagent to intermolecular, between residue Cys374, located within subdomain 1 of the upper protomer, and Met44, located in subdomain 2 of the lower protomer. The intermolecular cross-linking of F-actin slows the rate of cofilin dissociation from the filaments and decreases the effect of ionic strength on cofilin-actin binding. These results are consistent with a significant role of filament flexibility in cofilin-actin interactions.
Assuntos
Fatores de Despolimerização de Actina/química , Actinas/química , Benzofenonas/química , Reagentes de Ligações Cruzadas/química , Maleimidas/química , Conformação Proteica , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Animais , Benzofenonas/metabolismo , Sítios de Ligação , Reagentes de Ligações Cruzadas/metabolismo , Maleimidas/metabolismo , Modelos Moleculares , CoelhosRESUMO
Pancreatic cancer is a deadly disease characterized by poor prognosis and patient survival. Green tea polyphenols have been shown to exhibit multiple antitumor activities in various cancers, but studies on the pancreatic cancer are very limited. To identify the cellular targets of green tea action, we exposed a green tea extract (GTE) to human pancreatic ductal adenocarcinoma HPAF-II cells and performed two-dimensional gel electrophoresis of the cell lysates. We identified 32 proteins with significantly altered expression levels. These proteins are involved in drug resistance, gene regulation, motility, detoxification and metabolism of cancer cells. In particular, we found GTE inhibited molecular chaperones heat-shock protein 90 (Hsp90), its mitochondrial localized homologue Hsp75 (tumor necrosis factor receptor-associated protein 1, or Trap1) and heat-shock protein 27 (Hsp27) concomitantly. Western blot analysis confirmed the inhibition of Hsp90, Hsp75 and Hsp27 by GTE, but increased phosphorylation of Ser78 of Hsp27. Furthermore, we showed that GTE inhibited Akt activation and the levels of mutant p53 protein, and induced apoptosis and growth suppression of the cells. Our study has identified multiple new molecular targets of GTE and provided further evidence on the anticancer activity of green tea in pancreatic cancer.
Assuntos
Camellia sinensis/química , Proteínas de Choque Térmico HSP27/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Extratos Vegetais/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico , Humanos , Chaperonas Moleculares , Neoplasias Pancreáticas/metabolismo , Polifenóis/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Supressora de Tumor p53/metabolismoRESUMO
The Gram-negative bacterium Vibrio cholerae is the causative agent of a severe diarrheal disease that afflicts three to five million persons annually, causing up to 200,000 deaths. Nearly all V. cholerae strains produce a large multifunctional-autoprocessing RTX toxin (MARTX(Vc)), which contributes significantly to the pathogenesis of cholera in model systems. The actin cross-linking domain (ACD) of MARTX(Vc) directly catalyzes a covalent cross-linking of monomeric G-actin into oligomeric chains and causes cell rounding, but the nature of the cross-linked bond and the mechanism of the actin cytoskeleton disruption remained elusive. To elucidate the mechanism of ACD action and effect on actin, we identified the covalent cross-link bond between actin protomers using limited proteolysis, X-ray crystallography, and mass spectrometry. We report here that ACD catalyzes the formation of an intermolecular iso-peptide bond between residues E270 and K50 located in the hydrophobic and the DNaseI-binding loops of actin, respectively. Mutagenesis studies confirm that no other residues on actin can be cross-linked by ACD both in vitro and in vivo. This cross-linking locks actin protomers into an orientation different from that of F-actin, resulting in strong inhibition of actin polymerization. This report describes a microbial toxin mechanism acting via iso-peptide bond cross-linking between host proteins and is, to the best of our knowledge, the only known example of a peptide linkage between nonterminal glutamate and lysine side chains.
Assuntos
Actinas/química , Toxinas Bacterianas/toxicidade , Peptídeos/química , Vibrio cholerae/química , Animais , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Hidrólise , Espectrometria de Massas , Modelos Moleculares , Coelhos , Espectrometria de FluorescênciaRESUMO
Top-down proteomics by mass spectrometry (MS) involves the mass measurement of an intact protein followed by subsequent activation of the protein to generate product ions. Electron-based fragmentation methods like electron capture dissociation and electron transfer dissociation are widely used for these types of analyses. Recently, electron ionization dissociation (EID), which utilizes higher energy electrons (>20 eV) has been suggested to be more efficient for top-down protein fragmentation compared to other electron-based dissociation methods. Here, we demonstrate that the use of EID enhances protein fragmentation and subsequent detection of protein fragments. Protein product ions can form by either single cleavage events, resulting in terminal fragments containing the C-terminus or N-terminus of the protein, or by multiple cleavage events to give rise to internal fragments that include neither the C-terminus nor the N-terminus of the protein. Conventionally, internal fragments have been disregarded, as reliable assignments of these fragments were limited. Here, we demonstrate that internal fragments generated by EID can account for â¼20-40% of the mass spectral signals detected by top-down EID-MS experiments. By including internal fragments, the extent of the protein sequence that can be explained from a single tandem mass spectrum increases from â¼50 to â¼99% for 29 kDa carbonic anhydrase II and 8.6 kDa ubiquitin. When searching for internal fragments during data analysis, previously unassigned peaks can be readily and accurately assigned to confirm a given protein sequence and to enhance the utility of top-down protein sequencing experiments.
Assuntos
Espectrometria de Massas/métodos , Fragmentos de Peptídeos/química , Proteínas/química , Proteômica/métodos , Animais , Íons/análise , Íons/química , Fragmentos de Peptídeos/análise , Proteínas/análise , Análise de Sequência de ProteínaRESUMO
BACKGROUND: Cadmium ion (Cd2+) is a ubiquitous environmental contaminant, and it is a potent teratogen in mice. An intraperitoneal dose of 4 mg/kg of CdCl2 at gestational day 9 causes forelimb ectrodactyly in the C57BL/6N mouse strain, but the SWV/Fnn strain is resistant. The objective of this study was to identify differentially displayed proteins in two target tissues for cadmium teratogenesis, and to derive hypotheses regarding the mechanisms involved in the murine strain difference in Cd-induced forelimb ectrodactyly. METHODS: The global proteomics strategy used two-dimensional polyacrylamide gel electrophoresis for protein separation, and MALDI-TOF-MS and LC-MS/MS for protein identification, to compare and identify proteins in forelimb buds and yolk sacs from the two mouse strains following Cd administration. RESULTS: More than 1,000 protein spots were detected by two-dimensional polyacrylamide gel electrophoresis in day 10.0 mouse forelimb buds and yolk sacs. Thirty-eight proteins had identifiable differences in abundance levels in Cd-treated forelimb buds between the two strains. Of those 38 proteins, 14 could be associated with the unfolded protein response process and seven are associated with actin polymerization. The proteins that were found to be differentially abundant between the strains in yolk sacs that were exposed to CdCl2 were predominantly different than the proteins detected differentially in the limb buds of the two strains with an overlap of approximately 20%. CONCLUSIONS: These patterns of differentially displayed proteins rationalize a hypothesis that the differential murine strain response to cadmium-induced forelimb ectrodactyly is due to differences in their pathways for the unfolded protein response and/or actin polymerization.
Assuntos
Anormalidades Induzidas por Medicamentos/metabolismo , Cádmio/toxicidade , Resistência a Medicamentos , Membro Anterior/anormalidades , Deformidades Congênitas dos Membros/induzido quimicamente , Proteômica , Anormalidades Induzidas por Medicamentos/patologia , Actinas/metabolismo , Animais , Condrogênese/efeitos dos fármacos , Eletroforese em Gel Bidimensional , Embrião de Mamíferos , Feminino , Membro Anterior/efeitos dos fármacos , Membro Anterior/embriologia , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Modelos Biológicos , Organogênese/efeitos dos fármacos , Polímeros/metabolismo , Gravidez , Especificidade da EspécieRESUMO
Native mass spectrometry (MS) with electrospray ionization (ESI) has evolved as an invaluable tool for the characterization of intact native proteins and non-covalently bound protein complexes. Here we report the structural characterization by high resolution native top-down MS of human thrombin and its complex with the Bock thrombin binding aptamer (TBA), a 15-nucleotide DNA with high specificity and affinity for thrombin. Accurate mass measurements revealed that the predominant form of native human α-thrombin contains a glycosylation mass of 2205 Da, corresponding to a sialylated symmetric biantennary oligosaccharide structure without fucosylation. Native MS showed that thrombin and TBA predominantly form a 1:1 complex under near physiological conditions (pH 6.8, 200 mM NH4OAc), but the binding stoichiometry is influenced by the solution ionic strength. In 20 mM ammonium acetate solution, up to two TBAs were bound to thrombin, whereas increasing the solution ionic strength destabilized the thrombin-TBA complex and 1 M NH4OAc nearly completely dissociated the complex. This observation is consistent with the mediation of thrombin-aptamer binding through electrostatic interactions and it is further consistent with the human thrombin structure that contains two anion binding sites on the surface. Electron capture dissociation (ECD) top-down MS of the thrombin-TBA complex performed with a high resolution 15 Tesla Fourier transform ion cyclotron resonance (FTICR) mass spectrometer showed the primary binding site to be at exosite I located near the N-terminal sequence of the heavy chain, consistent with crystallographic data. High resolution native top-down MS is complementary to traditional structural biology methods for structurally characterizing native proteins and protein-DNA complexes. Graphical Abstract á .
Assuntos
Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Espectrometria de Massas/métodos , Trombina/química , Trombina/metabolismo , Sítios de Ligação , Humanos , Modelos Moleculares , Ligação ProteicaRESUMO
Enhanced Filter Aided Sample Preparation (eFASP) incorporates plastics passivation and digestion-enhancing surfactants into the traditional FASP workflow to reduce sample loss and increase hydrophobic protein representation in qualitative and quantitative proteomics experiments. Resulting protein digests are free of contaminants and can be analyzed directly by LC-MS.
Assuntos
Proteínas/química , Proteínas/isolamento & purificação , Proteoma , Proteômica/métodosRESUMO
Native electrospray ionization-mass spectrometry, with gas-phase activation and solution compositions that partially release subcomplexes, can elucidate topologies of macromolecular assemblies. That so much complexity can be preserved in gas-phase assemblies is remarkable, although a long-standing conundrum has been the differences between their gas- and solution-phase decompositions. Collision-induced dissociation of multimeric noncovalent complexes typically distributes products asymmetrically (i.e., by ejecting a single subunit bearing a large percentage of the excess charge). That unexpected behavior has been rationalized as one subunit "unfolding" to depart with more charge. We present an alternative explanation based on heterolytic ion-pair scission and rearrangement, a mechanism that inherently partitions charge asymmetrically. Excessive barriers to dissociation are circumvented in this manner, when local charge rearrangements access a lower-barrier surface. An implication of this ion pair consideration is that stability differences between high- and low-charge state ions usually attributed to Coulomb repulsion may, alternatively, be conveyed by attractive forces from ion pairs (salt bridges) stabilizing low-charge state ions. Should the number of ion pairs be roughly inversely related to charge, symmetric dissociations would be favored from highly charged complexes, as observed. Correlations between a gas-phase protein's size and charge reflect the quantity of restraining ion pairs. Collisionally-facilitated salt bridge rearrangement (SaBRe) may explain unusual size "contractions" seen for some activated, low charge state complexes. That some low-charged multimers preferentially cleave covalent bonds or shed small ions to disrupting noncovalent associations is also explained by greater ion pairing in low charge state complexes. Graphical Abstract á .
Assuntos
Proteínas/química , Espectrometria de Massas por Ionização por Electrospray , Gases , ÍonsRESUMO
Archaea use flagella known as archaella-distinct both in protein composition and structure from bacterial flagella-to drive cell motility, but the structural basis of this function is unknown. Here, we report an atomic model of the archaella, based on the cryo electron microscopy (cryoEM) structure of the Methanospirillum hungatei archaellum at 3.4â Å resolution. Each archaellum contains â¼61,500 archaellin subunits organized into a curved helix with a diameter of 10â nm and average length of 10,000â nm. The tadpole-shaped archaellin monomer has two domains, a ß-barrel domain and a long, mildly kinked α-helix tail. Our structure reveals multiple post-translational modifications to the archaella, including six O-linked glycans and an unusual N-linked modification. The extensive interactions among neighbouring archaellins explain how the long but thin archaellum maintains the structural integrity required for motility-driving rotation. These extensive inter-subunit interactions and the absence of a central pore in the archaellum distinguish it from both the bacterial flagellum and type IV pili.
Assuntos
Microscopia Crioeletrônica , Flagelos/ultraestrutura , Methanospirillum/ultraestruturaRESUMO
Mass spectrometry, proteomics, and protein chemistry methods are used to characterize the cleavage products of 79 kDa transferrin proteins induced by iron-catalyzed oxidation, including a novel C-terminal polypeptide released upon disulfide reduction. Top-down electrospray ionization tandem mass spectrometry (ESI-MS/MS) of intact multiply-charged transferrin from a variety of species (human, bovine, rabbit, chicken) performed on a quadrupole time-of-flight mass spectrometer yields multiply-charged b(n)-products originating near residues 56-69 from the N-terminal region, in addition to their complementary y(n)-products. Incubation of transferrin with reductants, such as dithiothreitol (DTT) or tris(2-carboxyethyl)-phosphine (TCEP), yields an increase in multiple charging observed by ESI-MS and an increase in molecular weight consistent with disulfide reduction. However, mammalian transferrins release a 6-8 kDa fragment upon disulfide reduction. Protein acetylation and MS/MS sequencing demonstrate that the fragment originates from the C-terminus of the protein, and that it is a separate polypeptide linked via three disulfide bonds to the main transferrin chain. The existence of a separate C-terminal chain is not annotated in protein sequence databases and, to date, has not been reported in the literature. Iron-catalyzed cleavage induces fragments originating from both the N- and C-terminus of transferrin.
Assuntos
Fragmentos de Peptídeos/química , Transferrina/química , Sequência de Aminoácidos , Animais , Catálise , Bovinos , Galinhas , Dissulfetos/química , Ditiotreitol/química , Eletroforese em Gel de Poliacrilamida , Humanos , Ferro/química , Dados de Sequência Molecular , Oxirredução , Peptídeos/química , Coelhos , Espectrometria de Massas por Ionização por Electrospray , Reagentes de Sulfidrila/químicaRESUMO
Mass spectrometry of protein assemblies reveals size and stoichiometry. In this issue of Structure, Hall and colleagues demonstrate that gas-phase dissociations can recapitulate solution structure for complexes with few intersubunit salt bridges, high charge density, inflexible subunits, or small intersubunit interfaces.