Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(1): 23-27, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38105593

RESUMO

Human antibodies are heterogeneous molecules primarily due to clonal sequence variations. Analytical techniques to assess antibody levels quantitatively, such as ELISA, lack the power to resolve abundances at the clonal level. Recently, we introduced an LC-MS-based approach that can distinguish and quantify antibody clones using the mass and retention time of their corresponding Fab-fragments. We used specific hinge-cleaving protease IgdE (FabALACTICA) to release the Fab-fragments from the constant Fc region of the antibody. Here, we explore an alternative IgG1 hinge-cleaving protease, BdpK (FabDELLO), and compare it directly to IgdE for use in IgG1 repertoire profiling. We used IgdE and BdpK in parallel to digest all IgG1s from the same set of plasma samples. Both proteases cleave IgG1 specifically in the hinge, albeit via different mechanisms and at two distinct cleavage sites. Notwithstanding these differences, the Fab fragments generated by IgdE or BdpK produced highly similar clonal repertoires. However, IgdE required ∼16 h of incubation to digest plasma IgG1s, while BdpK required ∼2 h. We authenticated the similarity of the clones by top-down proteomics using electron transfer dissociation. We conclude that BdpK performs very well in digesting polyclonal plasma IgG1s and that neither BdpK nor IgdE displays detectable biases in cleaving IgG1s. We anticipate that BdpK may emerge as the preferred protease for IgG1 hinge-digestion because it offers a shorter digestion time compared to IgdE, an equally specific digestion site, and no bias against any IgG1 present in plasma.


Assuntos
Imunoglobulina G , Peptídeo Hidrolases , Humanos , Espectrometria de Massa com Cromatografia Líquida , Cromatografia Líquida , Espectrometria de Massas em Tandem , Endopeptidases , Fragmentos Fab das Imunoglobulinas , Células Clonais
2.
PLoS Pathog ; 18(3): e1010420, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35344565

RESUMO

Cutibacterium acnes (C. acnes) is a gram-positive bacterium and a member of the human skin microbiome. Despite being the most abundant skin commensal, certain members have been associated with common inflammatory disorders such as acne vulgaris. The availability of the complete genome sequences from various C. acnes clades have enabled the identification of putative methyltransferases, some of them potentially belonging to restriction-modification (R-M) systems which protect the host of invading DNA. However, little is known on whether these systems are functional in the different C. acnes strains. To investigate the activity of these putative R-M and their relevance in host protective mechanisms, we analyzed the methylome of six representative C. acnes strains by Oxford Nanopore Technologies (ONT) sequencing. We detected the presence of a 6-methyladenine modification at a defined DNA consensus sequence in strain KPA171202 and recombinant expression of this R-M system confirmed its methylation activity. Additionally, a R-M knockout mutant verified the loss of methylation properties of the strain. We studied the potential of one C. acnes bacteriophage (PAD20) in killing various C. acnes strains and linked an increase in its specificity to phage DNA methylation acquired upon infection of a methylation competent strain. We demonstrate a therapeutic application of this mechanism where phages propagated in R-M deficient strains selectively kill R-M deficient acne-prone clades while probiotic ones remain resistant to phage infection.


Assuntos
Acne Vulgar , Bacteriófagos , Acne Vulgar/genética , Acne Vulgar/microbiologia , Bacteriófagos/genética , Epigênese Genética , Humanos , Propionibacterium acnes/genética , Pele/microbiologia
3.
Environ Res ; 246: 118052, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38163547

RESUMO

The Nordic countries (Denmark, Finland, Iceland, Norway, and Sweden) have effectively kept lower antibiotic-resistant bacterial (ARB) pathogen rates than many other countries. However, in recent years, these five countries have encountered a rise in ARB cases and challenges in treating infections due to the growing prevalence of ARB pathogens. Wastewater-based surveillance (WBS) is a valuable supplement to clinical methods for ARB surveillance, but there is a lack of comprehensive understanding of WBS application for ARB in the Nordic countries. This review aims to compile the latest state-of-the-art developments in WBS for ARB monitoring in the Nordic countries and compare them with clinical surveillance practices. After reviewing 1480 papers from the primary search, 54 were found relevant, and 15 additional WBS-related papers were included. Among 69 studies analyzed, 42 dedicated clinical epidemiology, while 27 focused on wastewater monitoring. The PRISMA review of the literature revealed that Nordic countries focus on four major WBS objectives of ARB: assessing ARB in the human population, identifying ARB evading wastewater treatment, quantifying removal rates, and evaluating potential ARB evolution during the treatment process. In both clinical and wastewater contexts, the most studied targets were pathogens producing carbapenemase and extended-spectrum beta-lactamase (ESBL), primarily Escherichia coli and Klebsiella spp. However, vancomycin-resistant Enterococcus (VRE) and methicillin-resistant Staphylococcus aureus (MRSA) have received more attention in clinical epidemiology than in wastewater studies, probably due to their lower detection rates in wastewater. Clinical surveillance has mostly used culturing, antibiotic susceptibility testing, and genotyping, but WBS employed PCR-based and metagenomics alongside culture-based techniques. Imported cases resulting from international travel and hospitalization abroad appear to have frequently contributed to the rise in ARB pathogen cases in these countries. The many similarities between the Nordic countries (e.g., knowledge exchange practices, antibiotic usage patterns, and the current ARB landscape) could facilitate collaborative efforts in developing and implementing WBS for ARB in population-level screening.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Águas Residuárias , Humanos , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , beta-Lactamases , Escherichia coli , Países Escandinavos e Nórdicos/epidemiologia
4.
Environ Microbiol ; 24(10): 4869-4884, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35799549

RESUMO

Antibiotic resistance is currently an extensive medical challenge worldwide, with global numbers increasing steadily. Recent data have highlighted wastewater treatment plants as a reservoir of resistance genes. The impact of these findings for human health can best be summarized using a One Health concept. However, the molecular mechanisms impacting resistance spread have not been carefully evaluated. Bacterial viruses, that is bacteriophages, have recently been shown to be important mediators of bacterial resistance genes in environmental milieus and are transferrable to human pathogens. Herein, we investigated the biogeographical impact on resistance spread through river-borne bacteriophages using amplicon deep sequencing of the microbiota, absolute quantification of resistance genes using ddPCR, and phage induction capacity within wastewater. Microbial biodiversity of the rivers is significantly affected by river site, surrounding milieu and time of sampling. Furthermore, areas of land associated with agriculture had a significantly higher ability to induce bacteriophages carrying antibiotic resistance genes, indicating their impact on resistance spread. It is imperative that we continue to analyse global antibiotic resistance problem from a One Health perspective to gain novel insights into mechanisms of resistance spread.


Assuntos
Bacteriófagos , Agricultura , Antibacterianos/farmacologia , Bacteriófagos/genética , Farmacorresistência Bacteriana/genética , Genes Bacterianos , Humanos , Águas Residuárias/microbiologia
5.
J Bacteriol ; 202(18)2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32601070

RESUMO

Bdellovibrio bacteriovorus is an obligate predatory bacterium that invades and kills a broad range of Gram-negative prey cells, including human pathogens. Its potential therapeutic application has been the subject of increased research interest in recent years. However, an improved understanding of the fundamental molecular aspects of the predatory life cycle is crucial for developing this bacterium as a "living antibiotic." During intracellular growth, B. bacteriovorus secretes an arsenal of hydrolases, which digest the content of the host cell to provide growth nutrients for the predator, e.g., prey DNA is completely degraded by the nucleases. Here, we have, on a genetic and molecular level, characterized two secreted DNases from B. bacteriovorus, Bd0934 and Bd3507, and determined the temporal expression profile of other putative secreted nucleases. We conclude that Bd0934 and Bd3507 are likely a part of the predatosome but are not essential for the predation, host-independent growth, prey biofilm degradation, and self-biofilm formation. The detailed temporal expression analysis of genes encoding secreted nucleases revealed that these enzymes are produced in a sequential orchestrated manner. This work contributes to our understanding of the sequential breakdown of the prey nucleic acid by the nucleases secreted during the predatory life cycle of B. bacteriovorusIMPORTANCE Antibiotic resistance is a major global concern with few available new means to combat it. From a therapeutic perspective, predatory bacteria constitute an interesting tool. They not only eliminate the pathogen but also reduce the overall pool of antibiotic resistance genes through secretion of nucleases and complete degradation of exogenous DNA. Molecular knowledge of how these secreted DNases act will give us further insight into how antibiotic resistance, and the spread thereof, can be limited through the action of predatory bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Bdellovibrio bacteriovorus/enzimologia , Biofilmes , Endonucleases/metabolismo , Bdellovibrio bacteriovorus/crescimento & desenvolvimento , Escherichia coli , Regulação Bacteriana da Expressão Gênica
6.
Glycobiology ; 30(4): 254-267, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-31616919

RESUMO

The importance of IgG glycosylation has been known for many years not only by scientists in glycobiology but also by human pathogens that have evolved specific enzymes to modify these glycans with fundamental impact on IgG function. The rise of IgG as a major therapeutic scaffold for many cancer and immunological indications combined with the availability of unique enzymes acting specifically on IgG Fc-glycans have spurred a range of applications to study this important post-translational modification on IgG. This review article introduces why the IgG glycans are of distinguished interest, gives a background on the unique enzymatic tools available to study the IgG glycans and finally presents an overview of applications utilizing these enzymes for various modifications of the IgG glycans. The applications covered include site-specific glycan transglycosylation and conjugation, analytical workflows for monoclonal antibodies and serum diagnostics. Additionally, the review looks ahead and discusses the importance of O-glycosylation for IgG3, Fc-fusion proteins and other new formats of biopharmaceuticals.


Assuntos
Glicosídeo Hidrolases/metabolismo , Imunoglobulina G/metabolismo , Polissacarídeos/metabolismo , Animais , Glicosídeo Hidrolases/química , Humanos , Imunoglobulina G/química , Polissacarídeos/química
7.
Int J Med Microbiol ; 309(7): 151325, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31257068

RESUMO

Aerococcus urinae is an emerging pathogen that causes urinary tract infections, bacteremia and infective endocarditis. The mechanisms through which A. urinae cause infection are largely unknown. The aims of this study were to describe the surface proteome of A. urinae and to analyse A. urinae genomes in search for genes encoding surface proteins. Two proteins, denoted Aerococcal surface protein (Asp) 1 and 2, were through the use of mass spectrometry based proteomics found to quantitatively dominate the aerococcal surface. The presence of these proteins on the surface was also shown using ELISA with serum from rabbits immunized with the recombinant Asp. These proteins had a signal sequence in the amino-terminal end and a cell wall-sorting region in the carboxy-terminal end, which contained an LPATG-motif, a hydrophobic domain and a positively charged tail. Twenty-three additional A. urinae genomes were sequenced using Illumina HiSeq technology. Six different variants of asp genes were found (denoted asp1-6). All isolates had either one or two of these asp-genes located in a conserved locus, designated Locus encoding Aerococcal Surface Proteins (LASP). The 25 genomes had in median 13 genes encoding LPXTG-proteins (range 6-24). For other Gram-positive bacteria, cell wall-anchored surface proteins with an LPXTG-motif play a key role for virulence. Thus, it will be of great interest to explore the function of the Asp proteins of A. urinae to establish a better understanding of the molecular mechanisms by which A. urinae cause disease.


Assuntos
Aerococcus/química , Proteínas de Bactérias/metabolismo , Parede Celular/química , Proteínas de Membrana/metabolismo , Aerococcus/genética , Aerococcus/metabolismo , Aerococcus/patogenicidade , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Parede Celular/metabolismo , Ensaio de Imunoadsorção Enzimática , Genoma Bacteriano/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Sinais Direcionadores de Proteínas , Proteoma , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Virulência/genética
8.
Appl Environ Microbiol ; 83(4)2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27940543

RESUMO

The development of therapeutic and diagnostic antibodies is a rapidly growing field of research, being the fastest expanding group of products on the pharmaceutical market, and appropriate quality controls are crucial for their application. We have identified and characterized the serine protease termed BspK (Bdellovibrio serine protease K) from Bdellovibrio bacteriovorus and here show its activity on antibodies. Mutation of the serine residue at position 230 rendered the protease inactive. Further investigations of BspK enzymatic characteristics revealed autoproteolytic activity, resulting in numerous cleavage products. Two of the autoproteolytic cleavage sites in the BspK fusion protein were investigated in more detail and corresponded to cleavage after K28 and K210 in the N- and C-terminal parts of BspK, respectively. Further, BspK displayed stable enzymatic activity on IgG within the pH range of 6.0 to 9.5 and was inhibited in the presence of ZnCl2 BspK demonstrated preferential hydrolysis of human IgG1 compared to other immunoglobulins and isotypes, with hydrolysis of the heavy chain at position K226 generating two separate Fab fragments and an intact IgG Fc domain. Finally, we show that BspK preferentially cleaves its substrates C-terminally to lysines similar to the protease LysC. However, BspK displays a unique cleavage profile compared to several currently used proteases on the market. IMPORTANCE: The rapid development of novel therapeutic antibodies is partly hindered by difficulties in assessing their quality and safety. The lack of tools and methods facilitating such quality controls obstructs and delays the process of product approval, eventually affecting the patients in need of treatment. These difficulties in product evaluations indicate a need for new and comprehensive tools for such analysis. Additionally, recent concerns raised regarding the limitations of established products on the market (e.g., trypsin) further highlight a general need for a larger array of proteases with novel cleavage profiles to meet current and future needs, within both the life science industry and the academic research community.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Bdellovibrio bacteriovorus/genética , Bdellovibrio bacteriovorus/metabolismo , Imunoglobulina G/metabolismo , Serina Proteases/metabolismo , Sequência de Aminoácidos , Anticorpos Monoclonais/metabolismo , Cloretos/farmacologia , Regulação Bacteriana da Expressão Gênica , Humanos , Hidrólise , Proteólise , Serina Proteases/genética , Serina Proteases/imunologia , Compostos de Zinco/farmacologia
9.
Antimicrob Agents Chemother ; 60(5): 2671-9, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26856847

RESUMO

Acinetobacter baumannii is a Gram-negative bacterial pathogen responsible for a range of nosocomial infections. The recent rise and spread of multidrug-resistant A. baumannii clones has fueled a search for alternative therapies, including bacteriophage endolysins with potent antibacterial activities. A common feature of these lysins is the presence of a highly positively charged C-terminal domain with a likely role in promoting outer membrane penetration. In the present study, we show that the C-terminal amino acids 108 to 138 of phage lysin PlyF307, named P307, alone were sufficient to kill A. baumannii (>3 logs). Furthermore, P307 could be engineered for improved activity, the most active derivative being P307SQ-8C (>5-log kill). Both P307 and P307SQ-8C showed high in vitro activity against A. baumannii in biofilms. Moreover, P307SQ-8C exhibited MICs comparable to those of levofloxacin and ceftazidime and acted synergistically with polymyxin B. Although the peptides were shown to kill by disrupting the bacterial cytoplasmic membrane, they did not lyse human red blood cells or B cells; however, serum was found to be inhibitory to lytic activity. In a murine model of A. baumannii skin infection, P307SQ-8C reduced the bacterial burden by ∼2 logs in 2 h. This study demonstrates the prospect of using peptide derivatives from bacteriophage lysins to treat topical infections and remove biofilms caused by Gram-negative pathogens.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Acinetobacter baumannii/patogenicidade , Animais , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Ceftazidima/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Feminino , Levofloxacino/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Peptídeos/farmacologia , Polimixina B/farmacologia , Estrutura Secundária de Proteína
10.
Antimicrob Agents Chemother ; 59(4): 1983-91, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25605353

RESUMO

Acinetobacter baumannii, a Gram-negative multidrug-resistant (MDR) bacterium, is now recognized as one of the more common nosocomial pathogens. Because most clinical isolates are found to be multidrug resistant, alternative therapies need to be developed to control this pathogen. We constructed a bacteriophage genomic library based on prophages induced from 13 A. baumannii strains and screened it for genes encoding bacteriolytic activity. Using this approach, we identified 21 distinct lysins with different activities and sequence diversity that were capable of killing A. baumannii. The lysin (PlyF307) displaying the greatest activity was further characterized and was shown to efficiently kill (>5-log-unit decrease) all tested A. baumannii clinical isolates. Treatment with PlyF307 was able to significantly reduce planktonic and biofilm A. baumannii both in vitro and in vivo. Finally, PlyF307 rescued mice from lethal A. baumannii bacteremia and as such represents the first highly active therapeutic lysin specific for Gram-negative organisms in an array of native lysins found in Acinetobacter phage.


Assuntos
Infecções por Acinetobacter/tratamento farmacológico , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Bacteriemia/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Infecções por Acinetobacter/microbiologia , Animais , Bacteriemia/microbiologia , Biofilmes/efeitos dos fármacos , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Muramidase/farmacologia , Sepse/tratamento farmacológico , Sepse/microbiologia
11.
Antimicrob Agents Chemother ; 58(6): 3073-84, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24637688

RESUMO

Bacteriophage endolysins have shown great efficacy in killing Gram-positive bacteria. PlyC, a group C streptococcal phage lysin, represents the most efficient lysin characterized to date, with a remarkably high specificity against different streptococcal species, including the important pathogen Streptococcus pyogenes. However, PlyC is a unique lysin, in terms of both its high activity and structure (two distinct subunits). We sought to discover and characterize a phage lysin active against S. pyogenes with an endolysin architecture distinct from that of PlyC to determine if it relies on the same mechanism of action as PlyC. In this study, we identified and characterized an endolysin, termed PlyPy (phage lysin from S. pyogenes), from a prophage infecting S. pyogenes. By in silico analysis, PlyPy was found to have a molecular mass of 27.8 kDa and a pI of 4.16. It was active against a majority of group A streptococci and displayed high levels of activity as well as binding specificity against group B and C streptococci, while it was less efficient against other streptococcal species. PlyPy showed the highest activity at neutral pH in the presence of calcium and NaCl. Surprisingly, its activity was not affected by the presence of the group A-specific carbohydrate, while the activity of PlyC was partly inhibited. Additionally, PlyPy was active in vivo and could rescue mice from systemic bacteremia. Finally, we developed a novel method to determine the peptidoglycan bond cleaved by lysins and concluded that PlyPy exhibits a rare d-alanyl-l-alanine endopeptidase activity. PlyPy thus represents the first lysin characterized from Streptococcus pyogenes and has a mechanism of action distinct from that of PlyC.


Assuntos
Endopeptidases/metabolismo , Enzimas/metabolismo , Infecções Estreptocócicas/prevenção & controle , Fagos de Streptococcus/enzimologia , Streptococcus pyogenes/virologia , Alanina/metabolismo , Animais , Bacteriemia , Endopeptidases/química , Endopeptidases/isolamento & purificação , Enzimas/química , Enzimas/isolamento & purificação , Feminino , Camundongos
12.
Front Microbiol ; 15: 1340109, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38304711

RESUMO

Oral biofilms, comprising hundreds of bacteria and other microorganisms on oral mucosal and dental surfaces, play a central role in oral health and disease dynamics. Streptococcus oralis, a key constituent of these biofilms, contributes significantly to the formation of which, serving as an early colonizer and microcolony scaffold. The interaction between S. oralis and the orally predominant mucin, MUC5B, is pivotal in biofilm development, yet the mechanism underlying MUC5B degradation remains poorly understood. This study introduces MdpS (Mucin Degrading Protease from Streptococcus oralis), a protease that extensively hydrolyses MUC5B and offers an insight into its evolutionary conservation, physicochemical properties, and substrate- and amino acid specificity. MdpS exhibits high sequence conservation within the species and also explicitly among early biofilm colonizing streptococci. It is a calcium or magnesium dependent serine protease with strict physicochemical preferences, including narrow pH and temperature tolerance, and high sensitivity to increasing concentrations of sodium chloride and reducing agents. Furthermore, MdpS primarily hydrolyzes proteins with O-glycans, but also shows activity toward immunoglobulins IgA1/2 and IgM, suggesting potential immunomodulatory effects. Significantly, MdpS extensively degrades MUC5B in the N- and C-terminal domains, emphasizing its role in mucin degradation, with implications for carbon and nitrogen sequestration for S. oralis or oral biofilm cross-feeding. Moreover, depending on substrate glycosylation, the amino acids serine, threonine or cysteine triggers the enzymatic action. Understanding the interplay between S. oralis and MUC5B, facilitated by MdpS, has significant implications for the management of a healthy eubiotic oral microenvironment, offering potential targets for interventions aimed at modulating oral biofilm composition and succession. Additionally, since MdpS does not rely on O-glycan removal prior to extensive peptide backbone hydrolysis, the MdpS data challenges the current model of MUC5B degradation. These findings emphasize the necessity for further research in this field.

13.
J Am Soc Mass Spectrom ; 35(6): 1320-1329, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38767111

RESUMO

Immunoglobulins M (IgM) are key natural antibodies produced initially in humoral immune response. Due to their large molecular weights and extensive glycosylation loads, IgMs represent a challenging target for conventional mass analysis. Charge detection mass spectrometry (CDMS) may provide a unique approach to tackle heterogeneous IgM assemblies, although this technique can be quite laborious and technically challenging. Here, we describe the use of online size exclusion chromatography (SEC) to automate buffer exchange and sample introduction, and demonstrate its adaptability with Orbitrap-based CDMS. We discuss optimal experimental parameters for online SEC-CDMS experiments, including ion activation, choice of column, and resolution. Using this approach, CDMS histograms containing hundreds of individual ion signals can be obtained in as little as 5 min from single injections of <1 µg of sample. To demonstrate the unique utility of online SEC-CDMS, we performed real-time kinetic monitoring of pentameric IgM digestion by the protease IgMBRAZOR, which cleaves specifically in the hinge region of IgM. Several digestion intermediates corresponding to processive losses of F(ab')2 subunits could be mass-resolved and identified by SEC-CDMS. Interestingly, we find that for the J-chain linked IgM pentamer, cleavage of one of the F(ab')2 subunits is much slower than the other four F(ab')2 subunits, which we attribute to the symmetry-breaking interactions of the J-chain within the pentameric IgM structure. The online SEC-CDMS methodologies described here open new avenues into the higher throughput automated analysis of heterogeneous, high-mass protein assemblies by CDMS.


Assuntos
Cromatografia em Gel , Imunoglobulina M , Espectrometria de Massas , Imunoglobulina M/química , Imunoglobulina M/análise , Cromatografia em Gel/métodos , Espectrometria de Massas/métodos , Humanos
14.
Nat Biotechnol ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195987

RESUMO

Microorganisms can be equipped with synthetic genetic programs for the production of targeted therapeutic molecules. Cutibacterium acnes is the most abundant commensal of the human skin, making it an attractive chassis to create skin-delivered therapeutics. Here, we report the engineering of this bacterium to produce and secrete the therapeutic molecule neutrophil gelatinase-associated lipocalin, in vivo, for the modulation of cutaneous sebum production.

15.
Arthritis Rheum ; 64(8): 2698-706, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22392566

RESUMO

OBJECTIVE: Systemic lupus erythematosus (SLE) is an autoimmune disease with chronic or episodic inflammation in several organ systems, related to the presence of circulating and tissue-deposited immune complexes (ICs) that stimulate leukocytes through Fcγ receptors (FcγR) with subsequent inflammation. Treatment with endoglycosidase S (EndoS), an IgG glycan-hydrolyzing bacterial enzyme from Streptococcus pyogenes, has shown beneficial effects in several experimental animal models of chronic inflammatory disease. This study was undertaken to investigate whether EndoS affects the proinflammatory properties of ICs and has the potential to be developed as a therapy for SLE. METHODS: ICs purified from SLE patients or RNA-containing ICs formed in vitro were treated with EndoS and used in several assays reflecting different important features of SLE pathogenesis, such as phagocytosis by polymorphonuclear cells (PMNs) and plasmacytoid dendritic cells (PDCs), complement activation, and interferon-α (IFNα) production by PDCs. RESULTS: EndoS treatment abolished all proinflammatory properties of the ICs investigated. This included FcγR-mediated phagocytosis by PDCs (P = 0.001) and subsequent production of IFNα (P = 0.002), IC-induced classical pathway of complement activation (P = 0.008), chemotaxis, and oxidative burst activity of PMNs (P = 0.002). EndoS treatment also had a direct effect on the molecular structure of ICs, causing decreased IC size and glycosylation. CONCLUSION: Our findings indicate that EndoS treatment has prominent effects on several pathogenetically important IC-mediated events, and suggest that EndoS has the potential to be developed as a novel therapy for SLE.


Assuntos
Complexo Antígeno-Anticorpo/efeitos dos fármacos , Proteínas de Bactérias/farmacologia , Glicosídeo Hidrolases/farmacologia , Imunoglobulina G/metabolismo , Inflamação/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Polissacarídeos/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Complexo Antígeno-Anticorpo/metabolismo , Quimiotaxia/fisiologia , Células Dendríticas/metabolismo , Feminino , Humanos , Hidrólise/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/patologia , Interferon-alfa/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Masculino , Pessoa de Meia-Idade , Neutrófilos/fisiologia , Fagocitose/fisiologia , Receptores de IgG/fisiologia , Adulto Jovem
16.
Front Microbiol ; 14: 1127466, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36925480

RESUMO

MUC5B is the predominant glycoprotein in saliva and is instrumental in the establishment and maintenance of multi-species eubiotic biofilms in the oral cavity. Investigations of the aciduric Lactobacillaceae family, and its role in biofilms emphasizes the diversity across different genera of the proteolytic systems involved in the nutritional utilization of mucins. We have characterized a protease from Limosilactobacillus fermentum, MdpL (Mucin degrading protease from Limosilactobacillus) with a high protein backbone similarity with commensals that exploit mucins for attachment and nutrition. MdpL was shown to be associated with the bacterial cell surface, in close proximity to MUC5B, which was sequentially degraded into low molecular weight fragments. Mapping the substrate preference revealed multiple hydrolytic sites of proteins with a high O-glycan occurrence, although hydrolysis was not dependent on the presence of O-glycans. However, since proteolysis of immunoglobulins was absent, and general protease activity was low, a preference for glycoproteins similar to MUC5B in terms of glycosylation and structure is suggested. MdpL preferentially hydrolyzed C-terminally located hydrophobic residues in peptides larger than 20 amino acids, which hinted at a limited sequence preference. To secure proper enzyme folding and optimal conditions for activity, L. fermentum incorporates a complex system that establishes a reducing environment. The importance of overall reducing conditions was confirmed by the activity boosting effect of the added reducing agents L-cysteine and DTT. High activity was retained in low to neutral pH 5.5-7.0, but the enzyme was completely inhibited in the presence of Zn2+. Here we have characterized a highly conserved mucin degrading protease from L. fermentum. MdpL, that together with the recently discovered O-glycanase and O-glycoprotease enzyme groups, increases our understanding of mucin degradation and complex biofilm dynamics.

17.
Methods Mol Biol ; 2674: 131-146, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37258965

RESUMO

Bacterial proteases are important enzymes used in several technical applications where controlled cleavage of proteins is needed. They are challenging enzymes to express recombinantly as parts of the proteome can be hydrolyzed by their activity. The eukaryotic model organism Saccharomyces cerevisiae is potentially a good expression host as it tolerates several stress conditions and is known to better express insoluble proteins compared to bacterial systems. In this chapter we describe how the protease IdeS from Streptococcus pyogenes can be expressed in S. cerevisiae. The expression of IdeS was followed by constructing a fused protein with GFP and measuring the fluorescence with flow cytometry. The protease presence was confirmed with a Western blot assay and activity was measured with an in vitro assay. To reduce potentially toxic effect on the host cell, the growth and production phases were separated by using the inducible promoter GAL1p to control recombinant gene expression. The protocol provided may be adopted for other bacterial proteases through minor modifications of the fused protein.


Assuntos
Proteínas de Bactérias , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fluorescência , Peptídeo Hidrolases/metabolismo
18.
Microorganisms ; 11(9)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37764104

RESUMO

Cutibacterium acnes is one of the most abundant bacteria on the skin. Being exposed to oxygen and oxic stress, the secretion of the bacterial antioxidant protein RoxP ensures an endogenous antioxidant system for the preservation of skin health. To investigate the impact of the antioxidant RoxP on oxidation of the bacteria, wildtype and an isogenic roxp mutant were cultured in anaerobic and oxic conditions. The carbonylated status of proteins were recorded, as were the most significant modifications in a relative intensity of free fatty acids (FFA) and lipids containing fatty acids (FA), such as di- (DG) and triglycerides (TG), di- (DGDG) and sulfoquinozyldiacylglycerol (SQDG) and ceramides. Concerning the fatty acid types, it was observed that the free fatty acids contained mainly C12:0-C26:0 in hydroxy and acylated forms, the DG contained mainly C29:0-C37:0, the TG contained mainly C19:0-C33:0, and the DGDG/SQDGs contained very long fatty acids (C29:0-C37:0) demonstrating the interdependence of de novo synthesis of lipids and RoxP. The area of DGDG peaks (924.52, 929.56 and 930.58) were affected by bacterial growth conditions, with the exception of m/z 910.61. Moreover, the FFA unsaturation is wider in the SQDG species (C30:0 to C36:6) than in DG, TG or free FFA species. It could be concluded that both environmental oxidative statuses, as well as the prevalence of bacterial antioxidant systems, significantly shape the lipidome of C. acnes.

19.
Microorganisms ; 11(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37894148

RESUMO

The emergence of antibiotic resistance is a global health concern. Therefore, understanding the mechanisms of its spread is crucial for implementing evidence-based strategies to tackle resistance in the context of the One Health approach. In developing countries where sanitation systems and access to clean and safe water are still major challenges, contamination may introduce bacteria and bacteriophages harboring antibiotic resistance genes (ARGs) into the environment. This contamination can increase the risk of exposure and community transmission of ARGs and infectious pathogens. However, there is a paucity of information on the mechanisms of bacteriophage-mediated spread of ARGs and patterns through the environment. Here, we deploy Droplet Digital PCR (ddPCR) and metagenomics approaches to analyze the abundance of ARGs and bacterial pathogens disseminated through clean and wastewater systems. We detected a relatively less-studied and rare human zoonotic pathogen, Vibrio metschnikovii, known to spread through fecal--oral contamination, similarly to V. cholerae. Several antibiotic resistance genes were identified in both bacterial and bacteriophage fractions from water sources. Using metagenomics, we detected several resistance genes related to tetracyclines and beta-lactams in all the samples. Environmental samples from outlet wastewater had a high diversity of ARGs and contained high levels of blaOXA-48. Other identified resistance profiles included tetA, tetM, and blaCTX-M9. Specifically, we demonstrated that blaCTX-M1 is enriched in the bacteriophage fraction from wastewater. In general, however, the bacterial community has a significantly higher abundance of resistance genes compared to the bacteriophage population. In conclusion, the study highlights the need to implement environmental monitoring of clean and wastewater to inform the risk of infectious disease outbreaks and the spread of antibiotic resistance in the context of One Health.

20.
J Pharm Biomed Anal ; 209: 114487, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34864593

RESUMO

Antibiotic residues are being continuously recognized in the aquatic environment and in food. Though the concentration of antibiotic residues is typically low, adverse effects on the environment and human health have been observed. Hence, an efficient method to determine numerous antibiotic residues should be simple, inexpensive, selective, with high throughput and with low detection limits. Liquid-based extractions have been exceedingly used for clean-up and preconcentration of antibiotics prior to chromatographic analysis. In order to make methods more green and environmentally sustainable, conventional hazardous organic solvents can be replaced with green solvents. This review presents sampling strategies as well as comprehensive and up-to-date methods for chemical analysis of antibiotic residues in different sample matrices. Particularly, solvent-based sample preparation techniques using green solvents are discussed along with applications in antibiotic residue analysis.


Assuntos
Antibacterianos , Cromatografia Gasosa , Humanos , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA