RESUMO
BACKGROUND: For female patients with Lynch syndrome (LS), endometrial cancer (EC) is often their first cancer diagnosis. A testing pathway of somatic tumour testing triage followed by germline mismatch repair (MMR) gene testing is an effective way of identifying the estimated 3% of EC caused by LS. METHODS: A retrospective national population-based observational study was conducted using comprehensive national data collections of functional, somatic and germline MMR tests available via the English National Cancer Registration Dataset. For all EC diagnosed in 2019, the proportion tested, median time to test, yield of abnormal results and factors influencing testing pathway initiation were examined. RESULTS: There was an immunohistochemistry (IHC) or microsatellite instability (MSI) test recorded for 17.8% (1408/7928) of patients diagnosed with EC in 2019. Proportions tested varied by Cancer Alliance and age. There was an MLH1 promoter hypermethylation test recorded for 43.1% (149/346) of patients with MLH1 protein IHC loss or MSI. Of patients with EC eligible from tumour-testing, 25% (26/104) had a germline MMR test recorded. Median time from cancer diagnosis to germline MMR test was 315 days (IQR 222-486). CONCLUSION: This analysis highlights the regional variation in recorded testing, patient attrition, delays and missed opportunities to diagnose LS, providing an informative baseline for measuring the impact of the national guidance from the National Institute for Health and Care Excellence on universal reflex LS testing in EC, implemented in 2020.
RESUMO
BACKGROUND: National and international amalgamation of genomic data offers opportunity for research and audit, including analyses enabling improved classification of variants of uncertain significance. Review of individual-level data from National Health Service (NHS) testing of cancer susceptibility genes (2002-2023) submitted to the National Disease Registration Service revealed heterogeneity across participating laboratories regarding (1) the structure, quality and completeness of submitted data, and (2) the ease with which that data could be assembled locally for submission. METHODS: In May 2023, we undertook a closed online survey of 51 clinical scientists who provided consensus responses representing all 17 of 17 NHS molecular genetic laboratories in England and Wales which undertake NHS diagnostic analyses of cancer susceptibility genes. The survey included 18 questions relating to 'next-generation sequencing workflow' (11), 'variant classification' (3) and 'phenotypical context' (4). RESULTS: Widely differing processes were reported for transfer of variant data into their local LIMS (Laboratory Information Management System), for the formatting in which the variants are stored in the LIMS and which classes of variants are retained in the local LIMS. Differing local provisions and workflow for variant classifications were also reported, including the resources provided and the mechanisms by which classifications are stored. CONCLUSION: The survey responses illustrate heterogeneous laboratory workflow for preparation of genomic variant data from local LIMS for centralised submission. Workflow is often labour-intensive and inefficient, involving multiple manual steps which introduce opportunities for error. These survey findings and adoption of the concomitant recommendations may support improvement in laboratory dataflows, better facilitating submission of data for central amalgamation.
Assuntos
Laboratórios , Neoplasias , Humanos , Fluxo de Trabalho , Medicina Estatal , Genômica , Reino UnidoRESUMO
Germline pathogenic variants (GPVs) in the cancer predisposition genes BRCA1, BRCA2, MLH1, MSH2, MSH6, BRIP1, PALB2, RAD51D and RAD51C are identified in approximately 15% of patients with ovarian cancer (OC). While there are clear guidelines around clinical management of cancer risk in patients with GPV in BRCA1, BRCA2, MLH1, MSH2 and MSH6, there are few guidelines on how to manage the more moderate OC risk in patients with GPV in BRIP1, PALB2, RAD51D and RAD51C, with clinical questions about appropriateness and timing of risk-reducing gynaecological surgery. Furthermore, while recognition of RAD51C and RAD51D as OC predisposition genes has been established for several years, an association with breast cancer (BC) has only more recently been described and clinical management of this risk has been unclear. With expansion of genetic testing of these genes to all patients with non-mucinous OC, new data on BC risk and improved estimates of OC risk, the UK Cancer Genetics Group and CanGene-CanVar project convened a 2-day meeting to reach a national consensus on clinical management of BRIP1, PALB2, RAD51D and RAD51C carriers in clinical practice. In this paper, we present a summary of the processes used to reach and agree on a consensus, as well as the key recommendations from the meeting.
Assuntos
Neoplasias da Mama , Proteínas de Ligação a DNA , Proteína do Grupo de Complementação N da Anemia de Fanconi , Predisposição Genética para Doença , Neoplasias Ovarianas , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Consenso , Proteínas de Ligação a DNA/genética , Proteína do Grupo de Complementação N da Anemia de Fanconi/genética , Predisposição Genética para Doença/genética , Células Germinativas/patologia , Mutação em Linhagem Germinativa/genética , Proteína 2 Homóloga a MutS/genética , Neoplasias Ovarianas/genética , Reino UnidoRESUMO
OBJECTIVE: To describe national patterns of National Health Service (NHS) analysis of mismatch repair (MMR) genes in England using individual-level data submitted to the National Disease Registration Service (NDRS) by the NHS regional molecular genetics laboratories. DESIGN: Laboratories submitted individual-level patient data to NDRS against a prescribed data model, including (1) patient identifiers, (2) test episode data, (3) per-gene results and (4) detected sequence variants. Individualised per-laboratory algorithms were designed and applied in NDRS to extract and map the data to the common data model. Laboratory-level MMR activity audit data from the Clinical Molecular Genetics Society/Association of Clinical Genomic Science were used to assess early years' missing data. RESULTS: Individual-level data from patients undergoing NHS MMR germline genetic testing were submitted from all 13 English laboratories performing MMR analyses, comprising in total 16 722 patients (9649 full-gene, 7073 targeted), with the earliest submission from 2000. The NDRS dataset is estimated to comprise >60% of NHS MMR analyses performed since inception of NHS MMR analysis, with complete national data for full-gene analyses for 2016 onwards. Out of 9649 full-gene tests, 2724 had an abnormal result, approximately 70% of which were (likely) pathogenic. Data linkage to the National Cancer Registry demonstrated colorectal cancer was the most frequent cancer type in which full-gene analysis was performed. CONCLUSION: The NDRS MMR dataset is a unique national pan-laboratory amalgamation of individual-level clinical and genomic patient data with pseudonymised identifiers enabling linkage to other national datasets. This growing resource will enable longitudinal research and can form the basis of a live national genomic disease registry.
Assuntos
Neoplasias , Medicina Estatal , Humanos , Reparo de Erro de Pareamento de DNA/genética , Laboratórios , GenômicaRESUMO
PURPOSE: Biallelic PIGN variants have been described in Fryns syndrome, multiple congenital anomalies-hypotonia-seizure syndrome (MCAHS), and neurologic phenotypes. The full spectrum of clinical manifestations in relation to the genotypes is yet to be reported. METHODS: Genotype and phenotype data were collated and analyzed for 61 biallelic PIGN cases: 21 new and 40 previously published cases. Functional analysis was performed for 2 recurrent variants (c.2679C>G p.Ser893Arg and c.932T>G p.Leu311Trp). RESULTS: Biallelic-truncating variants were detected in 16 patients-10 with Fryns syndrome, 1 with MCAHS1, 2 with Fryns syndrome/MCAHS1, and 3 with neurologic phenotype. There was an increased risk of prenatal or neonatal death within this group (6 deaths were in utero or within 2 months of life; 6 pregnancies were terminated). Incidence of polyhydramnios, congenital anomalies (eg, diaphragmatic hernia), and dysmorphism was significantly increased. Biallelic missense or mixed genotype were reported in the remaining 45 cases-32 showed a neurologic phenotype and 12 had MCAHS1. No cases of diaphragmatic hernia or abdominal wall defects were seen in this group except patient 1 in which we found the missense variant p.Ser893Arg to result in functionally null alleles, suggesting the possibility of an undescribed functionally important region in the final exon. For all genotypes, there was complete penetrance for developmental delay and near-complete penetrance for seizures and hypotonia in patients surviving the neonatal period. CONCLUSION: We have expanded the described spectrum of phenotypes and natural history associated with biallelic PIGN variants. Our study shows that biallelic-truncating variants usually result in the more severe Fryns syndrome phenotype, but neurologic problems, such as developmental delay, seizures, and hypotonia, present across all genotypes. Functional analysis should be considered when the genotypes do not correlate with the predicted phenotype because there may be other functionally important regions in PIGN that are yet to be discovered.
Assuntos
Anormalidades Múltiplas , Defeitos Congênitos da Glicosilação , Epilepsia , Hérnia Diafragmática , Gravidez , Feminino , Humanos , Hipotonia Muscular/genética , Epilepsia/genética , Anormalidades Múltiplas/genética , Hérnia Diafragmática/genética , Convulsões/genética , Fenótipo , Estudos de Associação Genética , SíndromeRESUMO
BACKGROUND: Germline genetic testing affords multiple opportunities for women with breast cancer, however, current UK NHS models for delivery of germline genetic testing are clinician-intensive and only a minority of breast cancer cases access testing. METHODS: We designed a rapid, digital pathway, supported by a genetics specialist hotline, for delivery of germline testing of BRCA1/BRCA2/PALB2 (BRCA-testing), integrated into routine UK NHS breast cancer care. We piloted the pathway, as part of the larger BRCA-DIRECT study, in 130 unselected patients with breast cancer and gathered preliminary data from a randomised comparison of delivery of pretest information digitally (fully digital pathway) or via telephone consultation with a genetics professional (partially digital pathway). RESULTS: Uptake of genetic testing was 98.4%, with good satisfaction reported for both the fully and partially digital pathways. Similar outcomes were observed in both arms regarding patient knowledge score and anxiety, with <5% of patients contacting the genetics specialist hotline. All progression criteria established for continuation of the study were met. CONCLUSION: Pilot data indicate preliminary demonstration of feasibility and acceptability of a fully digital pathway for BRCA-testing and support proceeding to a full powered study for evaluation of non-inferiority of the fully digital pathway, detailed quantitative assessment of outcomes and operational economic analyses. TRIAL REGISTRATION NUMBER: ISRCTN87845055.
Assuntos
Neoplasias da Mama , Encaminhamento e Consulta , Humanos , Feminino , Medicina Estatal , Telefone , Testes Genéticos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Reino UnidoRESUMO
PURPOSE: Conditions and thresholds applied for evidence weighting of within-codon concordance (PM5) for pathogenicity vary widely between laboratories and expert groups. Because of the sparseness of available clinical classifications, there is little evidence for variation in practice. METHODS: We used as a truthset 7541 dichotomous functional classifications of BRCA1 and MSH2, spanning 311 codons of BRCA1 and 918 codons of MSH2, generated from large-scale functional assays that have been shown to correlate excellently with clinical classifications. We assessed PM5 at 5 stringencies with incorporation of 8 in silico tools. For each analysis, we quantified a positive likelihood ratio (pLR, true positive rate/false positive rate), the predictive value of PM5-lookup in ClinVar compared with the functional truthset. RESULTS: pLR was 16.3 (10.6-24.9) for variants for which there was exactly 1 additional colocated deleterious variant on ClinVar, and the variant under examination was equally or more damaging when analyzed using BLOSUM62. pLR was 71.5 (37.8-135.3) for variants for which there were 2 or more colocated deleterious ClinVar variants, and the variant under examination was equally or more damaging than at least 1 colocated variant when analyzed using BLOSUM62. CONCLUSION: These analyses support the graded use of PM5, with potential to use it at higher evidence weighting where more stringent criteria are met.
Assuntos
Variação Genética , Mutação de Sentido Incorreto , Proteína BRCA1/genética , Códon , Predisposição Genética para Doença , Variação Genética/genética , Humanos , Proteína 2 Homóloga a MutS/genética , Mutação de Sentido Incorreto/genéticaRESUMO
PURPOSE: Variant classifications may change over time, driven by emergence of fresh or contradictory evidence or evolution in weighing or combination of evidence items. For variant classifications above the actionability threshold, which is classification of likely pathogenic or pathogenic, clinical actions may be irreversible, such as risk-reducing surgery or prenatal interventions. Variant reclassification up or down across the actionability threshold can therefore have significant clinical consequences. Laboratory approaches to variant reinterpretation and reclassification vary widely. METHODS: Cancer Variant Interpretation Group UK is a multidisciplinary network of clinical scientists and genetic clinicians from across the 24 Molecular Diagnostic Laboratories and Clinical Genetics Services of the United Kingdom (NHS) and Republic of Ireland. We undertook surveys, polls, and national meetings of Cancer Variant Interpretation Group UK to evaluate opinions about clinical and laboratory management regarding variant reclassification. RESULTS: We generated a consensus framework on variant reclassification applicable to cancer susceptibility genes and other clinical areas, which provides explicit recommendations for clinical and laboratory management of variant reclassification scenarios on the basis of the nature of the new evidence, the magnitude of evidence shift, and the final classification score. CONCLUSION: In this framework, clinical and laboratory resources are targeted for maximal clinical effect and minimal patient harm, as appropriate to all resource-constrained health care settings.
Assuntos
Testes Genéticos , Neoplasias , Predisposição Genética para Doença , Variação Genética/genética , Humanos , Laboratórios , Neoplasias/diagnóstico , Neoplasias/genéticaRESUMO
PURPOSE: Synaptotagmin-1 (SYT1) is a critical mediator of neurotransmitter release in the central nervous system. Previously reported missense SYT1 variants in the C2B domain are associated with severe intellectual disability, movement disorders, behavioral disturbances, and electroencephalogram abnormalities. In this study, we expand the genotypes and phenotypes and identify discriminating features of this disorder. METHODS: We describe 22 individuals with 15 de novo missense SYT1 variants. The evidence for pathogenicity is discussed, including the American College of Medical Genetics and Genomics/Association for Molecular Pathology criteria, known structure-function relationships, and molecular dynamics simulations. Quantitative behavioral data for 14 cases were compared with other monogenic neurodevelopmental disorders. RESULTS: Four variants were located in the C2A domain with the remainder in the C2B domain. We classified 6 variants as pathogenic, 4 as likely pathogenic, and 5 as variants of uncertain significance. Prevalent clinical phenotypes included delayed developmental milestones, abnormal eye physiology, movement disorders, and sleep disturbances. Discriminating behavioral characteristics were severity of motor and communication impairment, presence of motor stereotypies, and mood instability. CONCLUSION: Neurodevelopmental disorder-associated SYT1 variants extend beyond previously reported regions, and the phenotypic spectrum encompasses a broader range of severities than initially reported. This study guides the diagnosis and molecular understanding of this rare neurodevelopmental disorder and highlights a key role for SYT1 function in emotional regulation, motor control, and emergent cognitive function.
Assuntos
Deficiência Intelectual , Transtornos dos Movimentos , Transtornos do Neurodesenvolvimento , Sinaptotagmina I , Cálcio/metabolismo , Genótipo , Humanos , Deficiência Intelectual/genética , Transtornos dos Movimentos/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Sinaptotagmina I/genéticaRESUMO
Reversible detyrosination of tubulin, the building block of microtubules, is crucial for neuronal physiology. Enzymes responsible for detyrosination were recently identified as complexes of vasohibins (VASHs) one or two with small VASH-binding protein (SVBP). Here we report three consanguineous families, each containing multiple individuals with biallelic inactivation of SVBP caused by truncating variants (p.Q28* and p.K13Nfs*18). Affected individuals show brain abnormalities with microcephaly, intellectual disability and delayed gross motor and speech development. Immunoblot testing in cells with pathogenic SVBP variants demonstrated that the encoded proteins were unstable and non-functional, resulting in a complete loss of VASH detyrosination activity. Svbp knockout mice exhibit drastic accumulation of tyrosinated tubulin and a reduction of detyrosinated tubulin in brain tissue. Similar alterations in tubulin tyrosination levels were observed in cultured neurons and associated with defects in axonal differentiation and architecture. Morphological analysis of the Svbp knockout mouse brains by anatomical magnetic resonance imaging showed a broad impact of SVBP loss, with a 7% brain volume decrease, numerous structural defects and a 30% reduction of some white matter tracts. Svbp knockout mice display behavioural defects, including mild hyperactivity, lower anxiety and impaired social behaviour. They do not, however, show prominent memory defects. Thus, SVBP-deficient mice recapitulate several features observed in human patients. Altogether, our data demonstrate that deleterious variants in SVBP cause this neurodevelopmental pathology, by leading to a major change in brain tubulin tyrosination and alteration of microtubule dynamics and neuron physiology.
Assuntos
Encéfalo/anormalidades , Encéfalo/metabolismo , Proteínas de Ciclo Celular/metabolismo , Neurônios/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Proteínas de Transporte/metabolismo , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Feminino , Humanos , Immunoblotting , Imageamento por Ressonância Magnética , Camundongos , Microcefalia/genética , Microcefalia/metabolismo , Tirosina/metabolismoRESUMO
Pathogenic variants in HNRNPH1 were first reported in 2018. The reported individual, a 13 year old boy with a c.616C>T (p.R206W) variant in the HNRNPH1 gene, was noted to have overlapping symptoms with those observed in HNRNPH2-related X-linked intellectual disability, Bain type (MRXSB), specifically intellectual disability and dysmorphic features. While HNRNPH1 variants were initially proposed to represent an autosomal cause of MRXSB, we report an additional seven cases which identify phenotypic differences from MRXSB. Patients with HNRNPH1 pathogenic variants diagnosed via WES were identified using clinical networks and GeneMatcher. Features unique to individuals with HNRNPH1 variants include distinctive dysmorphic facial features; an increased incidence of congenital anomalies including cranial and brain abnormalities, genitourinary malformations, and palate abnormalities; increased incidence of ophthalmologic abnormalities; and a decreased incidence of epilepsy and cardiac defects compared to those with MRXSB. This suggests that pathogenic variants in HNRNPH1 result in a related, but distinct syndromic cause of intellectual disability from MRXSB, which we refer to as HNRNPH1-related syndromic intellectual disability.
Assuntos
Ribonucleoproteínas Nucleares Heterogêneas/genética , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Adolescente , Adulto , Criança , Pré-Escolar , Epilepsia/genética , Feminino , Genes Ligados ao Cromossomo X/genética , Humanos , Lactente , Recém-Nascido , Masculino , Fenótipo , Síndrome , Adulto JovemRESUMO
Background: Lynch Syndrome (LS) is a cancer predisposition syndrome caused by constitutional pathogenic variants in the mismatch repair (MMR) genes. To date, fragmentation of clinical and genomic data has restricted understanding of national LS ascertainment and outcomes, and precluded evaluation of NICE guidance on testing and management. To address this, via collaboration between researchers, the National Disease Registration Service (NDRS), NHS Genomic Medicine Service Alliances (GMSAs), and NHS Regional Clinical Genetics Services, a comprehensive registry of LS carriers in England has been established. Methods: For comprehensive ascertainment of retrospectively identified MMR pathogenic variant (PV) carriers (diagnosed prior to January 1, 2023), information was retrieved from all clinical genetics services across England, then restructured, amalgamated, and validated via a team of trained experts in NDRS. An online submission portal was established for prospective ascertainment from January 1, 2023. The resulting data, stored in a secure database in NDRS, were used to investigate the demographic and genetic characteristics of the cohort, censored at July 25, 2023. Cancer outcomes were investigated via linkage to the National Cancer Registration Dataset (NCRD). Findings: A total of 11,722 retrospective and 570 prospective data submissions were received, resulting in a comprehensive English National Lynch Syndrome Registry (ENLSR) comprising 9030 unique individuals. The most frequently identified pathogenic MMR genes were MSH2 and MLH1 at 37.2% (n = 3362) and 29.1% (n = 2624), respectively. 35.9% (n = 3239) of the ENLSR cohort received their LS diagnosis before their first cancer diagnosis (presumptive predictive germline test). Of these, 6.3% (n = 204) developed colorectal cancer, at a median age of initial diagnosis of 51 (IQR 40-62), compared to 73 years (IQR 64-80) in the general population (p < 0.0001). Interpretation: The ENLSR represents the first comprehensive national registry of PV carriers in England and one of the largest cohorts of MMR PV carriers worldwide. The establishment of a secure, centralised infrastructure and mechanism for routine registration of newly identified carriers ensures sustainability of the data resource. Funding: This work was funded by the Wellcome Trust, Cancer Research UK and Bowel Cancer UK. The funder of this study had no role in study design, data collection, data analysis, data interpretation, or writing of the report.
RESUMO
Background: Second primary cancers (SPCs) after breast cancer (BC) present an increasing public health burden, with little existing research on socio-demographic, tumour, and treatment effects. We addressed this in the largest BC survivor cohort to date, using a novel linkage of National Disease Registration Service datasets. Methods: The cohort included 581,403 female and 3562 male BC survivors diagnosed between 1995 and 2019. We estimated standardized incidence ratios (SIRs) for combined and site-specific SPCs using incidences for England, overall and by age at BC and socioeconomic status. We estimated incidences and Kaplan-Meier cumulative risks stratified by age at BC, and assessed risk variation by socio-demographic, tumour, and treatment characteristics using Cox regression. Findings: Both genders were at elevated contralateral breast (SIR: 2.02 (95% CI: 1.99-2.06) females; 55.4 (35.5-82.4) males) and non-breast (1.10 (1.09-1.11) females, 1.10 (1.00-1.20) males) SPC risks. Non-breast SPC risks were higher for females younger at BC diagnosis (SIR: 1.34 (1.31-1.38) <50 y, 1.07 (1.06-1.09) ≥50 y) and more socioeconomically deprived (SIR: 1.00 (0.98-1.02) least deprived quintile, 1.34 (1.30-1.37) most). Interpretation: Enhanced SPC surveillance may benefit BC survivors, although specific recommendations require more detailed multifactorial risk and cost-benefit analyses. The associations between deprivation and SPC risks could provide clinical management insights. Funding: CRUK Catalyst Award CanGene-CanVar (C61296/A27223). Cancer Research UK grant: PPRPGM-Nov 20∖100,002. This work was supported by core funding from the NIHR Cambridge Biomedical Research Centre (NIHR203312)]. The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care.
RESUMO
PURPOSE: Second primary cancer (SPC) risks after breast cancer (BC) in BRCA1/BRCA2 pathogenic variant (PV) carriers are uncertain. We estimated relative and absolute risks using a novel linkage of genetic testing data to population-scale National Disease Registration Service and Hospital Episode Statistics electronic health records. METHODS: We followed 25,811 females and 480 males diagnosed with BC and tested for germline BRCA1/BRCA2 PVs in NHS Clinical Genetics centers in England between 1995 and 2019 until SPC diagnosis, death, migration, contralateral breast/ovarian surgery plus 1 year, or the 31st of December 2020. We estimated standardized incidence ratios (SIRs) using English population incidences, hazard ratios (HRs) comparing carriers to noncarriers using Cox regression, and Kaplan-Meier 10-year cumulative risks. RESULTS: There were 1,840 BRCA1 and 1,750 BRCA2 female PV carriers. Compared with population incidences, BRCA1 carriers had elevated contralateral BC (CBC; SIR, 15.6 [95% CI, 11.8 to 20.2]), ovarian (SIR, 44.0 [95% CI, 31.4 to 59.9]), combined nonbreast/ovarian (SIR, 2.18 [95% CI, 1.59 to 2.92]), colorectal (SIR, 4.80 [95% CI, 2.62 to 8.05]), and endometrial (SIR, 2.92 [95% CI, 1.07 to 6.35]) SPC risks. BRCA2 carriers had elevated CBC (SIR, 7.70 [95% CI, 5.45 to 10.6]), ovarian (SIR, 16.8 [95% CI, 10.3 to 26.0]), pancreatic (SIR, 5.42 [95% CI, 2.09 to 12.5]), and combined nonbreast/ovarian (SIR, 1.68 [95% CI, 1.24 to 2.23]) SPC risks. Compared with females without BRCA1/BRCA2 PVs on testing, BRCA1 carriers had elevated CBC (HR, 3.60 [95% CI, 2.65 to 4.90]), ovarian (HR, 33.0 [95% CI, 19.1 to 57.1]), combined nonbreast/ovarian (HR, 1.45 [95% CI, 1.05 to 2.01]), and colorectal (HR, 2.93 [95% CI, 1.53 to 5.62]) SPC risks. BRCA2 carriers had elevated CBC (HR, 2.40 [95% CI, 1.70 to 3.40]), ovarian (HR, 12.0 [95% CI, 6.70 to 21.5]), and pancreatic (HR, 3.56 [95% CI, 1.34 to 9.48]) SPC risks. Ten-year cumulative CBC, ovarian, and combined nonbreast/ovarian cancer risks were 16%/6.3%/7.8% (BRCA1 carriers), 12%/3.0%/6.2% (BRCA2 carriers), and 3.6%/0.4%/4.9% (noncarriers). Male BRCA2 carriers had higher CBC (HR, 13.1 [95% CI, 1.19 to 146]) and prostate (HR, 5.61 [95% CI, 1.96 to 16.0]) SPC risks than noncarriers. CONCLUSION: Survivors of BC carrying BRCA1 and BRCA2 PVs are at high SPC risk. They may benefit from enhanced surveillance and risk-reduction measures.