Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 317
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(6): 1530-1544, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33675692

RESUMO

The prevalence of type 2 diabetes and obesity has risen dramatically for decades and is expected to rise further, secondary to the growing aging, sedentary population. The strain on global health care is projected to be colossal. This review explores the latest work and emerging ideas related to genetic and environmental factors influencing metabolism. Translational research and clinical applications, including the impact of the COVID-19 pandemic, are highlighted. Looking forward, strategies to personalize all aspects of prevention, management and care are necessary to improve health outcomes and reduce the impact of these metabolic diseases.


Assuntos
COVID-19/epidemiologia , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/terapia , Obesidade/epidemiologia , Obesidade/terapia , Pandemias , Medicina de Precisão/métodos , SARS-CoV-2 , COVID-19/virologia , Ritmo Circadiano , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Epigênese Genética , Predisposição Genética para Doença , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Obesidade/genética , Obesidade/metabolismo , Prevalência , Fatores de Risco , Termotolerância
2.
Cell ; 184(8): 2068-2083.e11, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33861964

RESUMO

Understanding population health disparities is an essential component of equitable precision health efforts. Epidemiology research often relies on definitions of race and ethnicity, but these population labels may not adequately capture disease burdens and environmental factors impacting specific sub-populations. Here, we propose a framework for repurposing data from electronic health records (EHRs) in concert with genomic data to explore the demographic ties that can impact disease burdens. Using data from a diverse biobank in New York City, we identified 17 communities sharing recent genetic ancestry. We observed 1,177 health outcomes that were statistically associated with a specific group and demonstrated significant differences in the segregation of genetic variants contributing to Mendelian diseases. We also demonstrated that fine-scale population structure can impact the prediction of complex disease risk within groups. This work reinforces the utility of linking genomic data to EHRs and provides a framework toward fine-scale monitoring of population health.


Assuntos
Etnicidade/genética , Saúde da População , Bases de Dados Genéticas , Registros Eletrônicos de Saúde , Genômica , Humanos , Autorrelato
3.
Nature ; 616(7958): 755-763, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37046083

RESUMO

Mutations in a diverse set of driver genes increase the fitness of haematopoietic stem cells (HSCs), leading to clonal haematopoiesis1. These lesions are precursors for blood cancers2-6, but the basis of their fitness advantage remains largely unknown, partly owing to a paucity of large cohorts in which the clonal expansion rate has been assessed by longitudinal sampling. Here, to circumvent this limitation, we developed a method to infer the expansion rate from data from a single time point. We applied this method to 5,071 people with clonal haematopoiesis. A genome-wide association study revealed that a common inherited polymorphism in the TCL1A promoter was associated with a slower expansion rate in clonal haematopoiesis overall, but the effect varied by driver gene. Those carrying this protective allele exhibited markedly reduced growth rates or prevalence of clones with driver mutations in TET2, ASXL1, SF3B1 and SRSF2, but this effect was not seen in clones with driver mutations in DNMT3A. TCL1A was not expressed in normal or DNMT3A-mutated HSCs, but the introduction of mutations in TET2 or ASXL1 led to the expression of TCL1A protein and the expansion of HSCs in vitro. The protective allele restricted TCL1A expression and expansion of mutant HSCs, as did experimental knockdown of TCL1A expression. Forced expression of TCL1A promoted the expansion of human HSCs in vitro and mouse HSCs in vivo. Our results indicate that the fitness advantage of several commonly mutated driver genes in clonal haematopoiesis may be mediated by TCL1A activation.


Assuntos
Hematopoiese Clonal , Células-Tronco Hematopoéticas , Animais , Humanos , Camundongos , Alelos , Hematopoiese Clonal/genética , Estudo de Associação Genômica Ampla , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Mutação , Regiões Promotoras Genéticas
4.
Nat Rev Genet ; 23(2): 120-133, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34556834

RESUMO

The prevalence of obesity has tripled over the past four decades, imposing an enormous burden on people's health. Polygenic (or common) obesity and rare, severe, early-onset monogenic obesity are often polarized as distinct diseases. However, gene discovery studies for both forms of obesity show that they have shared genetic and biological underpinnings, pointing to a key role for the brain in the control of body weight. Genome-wide association studies (GWAS) with increasing sample sizes and advances in sequencing technology are the main drivers behind a recent flurry of new discoveries. However, it is the post-GWAS, cross-disciplinary collaborations, which combine new omics technologies and analytical approaches, that have started to facilitate translation of genetic loci into meaningful biology and new avenues for treatment.


Assuntos
Predisposição Genética para Doença/genética , Variação Genética , Genoma Humano/genética , Estudo de Associação Genômica Ampla/métodos , Obesidade/genética , Sequenciamento Completo do Genoma/métodos , Animais , Ingestão de Alimentos/genética , Interação Gene-Ambiente , Humanos , Herança Multifatorial/genética , Sobrepeso/genética
5.
Am J Hum Genet ; 111(6): 1035-1046, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38754426

RESUMO

Obesity is a major risk factor for a myriad of diseases, affecting >600 million people worldwide. Genome-wide association studies (GWASs) have identified hundreds of genetic variants that influence body mass index (BMI), a commonly used metric to assess obesity risk. Most variants are non-coding and likely act through regulating genes nearby. Here, we apply multiple computational methods to prioritize the likely causal gene(s) within each of the 536 previously reported GWAS-identified BMI-associated loci. We performed summary-data-based Mendelian randomization (SMR), FINEMAP, DEPICT, MAGMA, transcriptome-wide association studies (TWASs), mutation significance cutoff (MSC), polygenic priority score (PoPS), and the nearest gene strategy. Results of each method were weighted based on their success in identifying genes known to be implicated in obesity, ranking all prioritized genes according to a confidence score (minimum: 0; max: 28). We identified 292 high-scoring genes (≥11) in 264 loci, including genes known to play a role in body weight regulation (e.g., DGKI, ANKRD26, MC4R, LEPR, BDNF, GIPR, AKT3, KAT8, MTOR) and genes related to comorbidities (e.g., FGFR1, ISL1, TFAP2B, PARK2, TCF7L2, GSK3B). For most of the high-scoring genes, however, we found limited or no evidence for a role in obesity, including the top-scoring gene BPTF. Many of the top-scoring genes seem to act through a neuronal regulation of body weight, whereas others affect peripheral pathways, including circadian rhythm, insulin secretion, and glucose and carbohydrate homeostasis. The characterization of these likely causal genes can increase our understanding of the underlying biology and offer avenues to develop therapeutics for weight loss.


Assuntos
Índice de Massa Corporal , Estudo de Associação Genômica Ampla , Obesidade , Humanos , Obesidade/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Herança Multifatorial/genética , Loci Gênicos , Análise da Randomização Mendeliana
6.
Am J Hum Genet ; 111(5): 990-995, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38636510

RESUMO

Since genotype imputation was introduced, researchers have been relying on the estimated imputation quality from imputation software to perform post-imputation quality control (QC). However, this quality estimate (denoted as Rsq) performs less well for lower-frequency variants. We recently published MagicalRsq, a machine-learning-based imputation quality calibration, which leverages additional typed markers from the same cohort and outperforms Rsq as a QC metric. In this work, we extended the original MagicalRsq to allow cross-cohort model training and named the new model MagicalRsq-X. We removed the cohort-specific estimated minor allele frequency and included linkage disequilibrium scores and recombination rates as additional features. Leveraging whole-genome sequencing data from TOPMed, specifically participants in the BioMe, JHS, WHI, and MESA studies, we performed comprehensive cross-cohort evaluations for predominantly European and African ancestral individuals based on their inferred global ancestry with the 1000 Genomes and Human Genome Diversity Project data as reference. Our results suggest MagicalRsq-X outperforms Rsq in almost every setting, with 7.3%-14.4% improvement in squared Pearson correlation with true R2, corresponding to 85-218 K variant gains. We further developed a metric to quantify the genetic distances of a target cohort relative to a reference cohort and showed that such metric largely explained the performance of MagicalRsq-X models. Finally, we found MagicalRsq-X saved up to 53 known genome-wide significant variants in one of the largest blood cell trait GWASs that would be missed using the original Rsq for QC. In conclusion, MagicalRsq-X shows superiority for post-imputation QC and benefits genetic studies by distinguishing well and poorly imputed lower-frequency variants.


Assuntos
Frequência do Gene , Genótipo , Polimorfismo de Nucleotídeo Único , Software , Humanos , Estudos de Coortes , Desequilíbrio de Ligação , Estudo de Associação Genômica Ampla/métodos , Genoma Humano , Controle de Qualidade , Aprendizado de Máquina , Sequenciamento Completo do Genoma/normas , Sequenciamento Completo do Genoma/métodos
7.
Am J Hum Genet ; 109(7): 1242-1254, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35705101

RESUMO

Growth deviating from the norm during childhood has been associated with anorexia nervosa (AN) and obesity later in life. In this study, we examined whether polygenic scores (PGSs) for AN and BMI are associated with growth trajectories spanning the first two decades of life. AN PGSs and BMI PGSs were calculated for participants of the Avon Longitudinal Study of Parents and Children (ALSPAC; n = 8,654). Using generalized (mixed) linear models, we associated PGSs with trajectories of weight, height, body mass index (BMI), fat mass index (FMI), lean mass index (LMI), and bone mineral density (BMD). Female participants with AN PGSs one standard deviation (SD) higher had, on average, 0.004% slower growth in BMI between the ages 6.5 and 24 years and a 0.4% slower gain in BMD between the ages 10 and 24 years. Higher BMI PGSs were associated with faster growth for BMI, FMI, LMI, BMD, and weight trajectories in both sexes throughout childhood. Female participants with both a high AN PGS and a low BMI PGS showed slower growth compared to those with both a low AN PGS and a low BMI PGS. We conclude that AN PGSs and BMI PGSs have detectable sex-specific effects on growth trajectories. Female participants with a high AN PGS and low BMI PGS likely constitute a high-risk group for AN, as their growth was slower compared to their peers with high PGSs on both traits. Further research is needed to better understand how the AN PGS and the BMI PGS co-influence growth during childhood and whether a high BMI PGS can mitigate the effects of a high AN PGS.


Assuntos
Anorexia Nervosa , Adolescente , Adulto , Anorexia Nervosa/genética , Índice de Massa Corporal , Criança , Feminino , Humanos , Estudos Longitudinais , Masculino , Herança Multifatorial/genética , Obesidade , Adulto Jovem
8.
Am J Hum Genet ; 109(6): 1175-1181, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35504290

RESUMO

Current publicly available tools that allow rapid exploration of linkage disequilibrium (LD) between markers (e.g., HaploReg and LDlink) are based on whole-genome sequence (WGS) data from 2,504 individuals in the 1000 Genomes Project. Here, we present TOP-LD, an online tool to explore LD inferred with high-coverage (∼30×) WGS data from 15,578 individuals in the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. TOP-LD provides a significant upgrade compared to current LD tools, as the TOPMed WGS data provide a more comprehensive representation of genetic variation than the 1000 Genomes data, particularly for rare variants and in the specific populations that we analyzed. For example, TOP-LD encompasses LD information for 150.3, 62.2, and 36.7 million variants for European, African, and East Asian ancestral samples, respectively, offering 2.6- to 9.1-fold increase in variant coverage compared to HaploReg 4.0 or LDlink. In addition, TOP-LD includes tens of thousands of structural variants (SVs). We demonstrate the value of TOP-LD in fine-mapping at the GGT1 locus associated with gamma glutamyltransferase in the African ancestry participants in UK Biobank. Beyond fine-mapping, TOP-LD can facilitate a wide range of applications that are based on summary statistics and estimates of LD. TOP-LD is freely available online.


Assuntos
Estudo de Associação Genômica Ampla , Medicina de Precisão , Povo Asiático , Humanos , Desequilíbrio de Ligação/genética , Polimorfismo de Nucleotídeo Único/genética , Sequenciamento Completo do Genoma
9.
Diabetologia ; 67(5): 864-873, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38085289

RESUMO

AIMS/HYPOTHESIS: Childhood overweight increases the risk of type 2 diabetes and cardiovascular disease in adulthood. However, the impact of childhood leanness on adult obesity and disease risk has been overlooked. We examined the independent and combined influences of child and adult body size on the risk of type 2 diabetes and cardiovascular disease. METHODS: Data from the UK Biobank on 364,695 individuals of European ancestry and free of type 2 diabetes and cardiovascular disease were divided into nine categories based on their self-reported body size at age 10 and measured BMI in adulthood. After a median follow-up of 12.8 years, 33,460 individuals had developed type 2 diabetes and/or cardiovascular disease. We used Cox regression models to assess the associations of body size categories with disease incidence. RESULTS: Individuals with low body size in childhood and high body size in adulthood had the highest risk of type 2 diabetes (HR 4.73; 95% CI 4.50, 4.99), compared to those with average body size in both childhood and adulthood. This was significantly higher than the risk in those with high body size in both childhood and adulthood (HR 4.05; 95% CI 3.84, 4.26). By contrast, cardiovascular disease risk was determined by adult body size, irrespective of childhood body size. CONCLUSIONS/INTERPRETATION: Low body size in childhood exacerbates the risk of type 2 diabetes associated with adult obesity but not the risk of cardiovascular disease. Thus, promoting healthy weight management from childhood to adulthood, among lean children, is crucial.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Obesidade Infantil , Adulto , Humanos , Criança , Adolescente , Adulto Jovem , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/complicações , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Índice de Massa Corporal , Fatores de Risco , Obesidade Infantil/complicações , Tamanho Corporal
10.
Hum Mol Genet ; 31(3): 347-361, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34553764

RESUMO

Platelets play a key role in thrombosis and hemostasis. Platelet count (PLT) and mean platelet volume (MPV) are highly heritable quantitative traits, with hundreds of genetic signals previously identified, mostly in European ancestry populations. We here utilize whole genome sequencing (WGS) from NHLBI's Trans-Omics for Precision Medicine initiative (TOPMed) in a large multi-ethnic sample to further explore common and rare variation contributing to PLT (n = 61 200) and MPV (n = 23 485). We identified and replicated secondary signals at MPL (rs532784633) and PECAM1 (rs73345162), both more common in African ancestry populations. We also observed rare variation in Mendelian platelet-related disorder genes influencing variation in platelet traits in TOPMed cohorts (not enriched for blood disorders). For example, association of GP9 with lower PLT and higher MPV was partly driven by a pathogenic Bernard-Soulier syndrome variant (rs5030764, p.Asn61Ser), and the signals at TUBB1 and CD36 were partly driven by loss of function variants not annotated as pathogenic in ClinVar (rs199948010 and rs571975065). However, residual signal remained for these gene-based signals after adjusting for lead variants, suggesting that additional variants in Mendelian genes with impacts in general population cohorts remain to be identified. Gene-based signals were also identified at several genome-wide association study identified loci for genes not annotated for Mendelian platelet disorders (PTPRH, TET2, CHEK2), with somatic variation driving the result at TET2. These results highlight the value of WGS in populations of diverse genetic ancestry to identify novel regulatory and coding signals, even for well-studied traits like platelet traits.


Assuntos
Estudo de Associação Genômica Ampla , Medicina de Precisão , Plaquetas , Humanos , National Heart, Lung, and Blood Institute (U.S.) , Fenótipo , Polimorfismo de Nucleotídeo Único , Medicina de Precisão/métodos , Estados Unidos
11.
Am J Hum Genet ; 108(1): 194-201, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33357513

RESUMO

Given the coronavirus disease 2019 (COVID-19) pandemic, investigations into host susceptibility to infectious diseases and downstream sequelae have never been more relevant. Pneumonia is a lung disease that can cause respiratory failure and hypoxia and is a common complication of infectious diseases, including COVID-19. Few genome-wide association studies (GWASs) of host susceptibility and severity of pneumonia have been conducted. We performed GWASs of pneumonia susceptibility and severity in the Vanderbilt University biobank (BioVU) with linked electronic health records (EHRs), including Illumina Expanded Multi-Ethnic Global Array (MEGAEX)-genotyped European ancestry (EA, n= 69,819) and African ancestry (AA, n = 15,603) individuals. Two regions of large effect were identified: the CFTR locus in EA (rs113827944; OR = 1.84, p value = 1.2 × 10-36) and HBB in AA (rs334 [p.Glu7Val]; OR = 1.63, p value = 3.5 × 10-13). Mutations in these genes cause cystic fibrosis (CF) and sickle cell disease (SCD), respectively. After removing individuals diagnosed with CF and SCD, we assessed heterozygosity effects at our lead variants. Further GWASs after removing individuals with CF uncovered an additional association in R3HCC1L (rs10786398; OR = 1.22, p value = 3.5 × 10-8), which was replicated in two independent datasets: UK Biobank (n = 459,741) and 7,985 non-overlapping BioVU subjects, who are genotyped on arrays other than MEGAEX. This variant was also validated in GWASs of COVID-19 hospitalization and lung function. Our results highlight the importance of the host genome in infectious disease susceptibility and severity and offer crucial insight into genetic effects that could potentially influence severity of COVID-19 sequelae.


Assuntos
COVID-19/complicações , COVID-19/genética , Interações Hospedeiro-Patógeno/genética , Pneumonia Viral/complicações , Pneumonia Viral/genética , Bronquite/genética , COVID-19/patologia , COVID-19/fisiopatologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Bases de Dados Genéticas , Registros Eletrônicos de Saúde , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Hemoglobinas/genética , Humanos , Pacientes Internados , Desequilíbrio de Ligação , Masculino , Pacientes Ambulatoriais , Pneumonia Viral/patologia , Pneumonia Viral/fisiopatologia , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal , Doença Pulmonar Obstrutiva Crônica/genética , Reprodutibilidade dos Testes , Reino Unido
12.
Int J Obes (Lond) ; 48(1): 71-77, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37736781

RESUMO

BACKGROUND/OBJECTIVES: Obesity polygenic risk scores (PRS) explain substantial variation in body mass index (BMI), yet associations between PRSs and appetitive traits in children remain unclear. To better understand pathways leading to pediatric obesity, this study aimed to assess the association of obesity PRSs and appetitive traits. SUBJECTS/METHODS: This study included 248 unrelated children aged 9-12 years. DNA from the children was genotyped (236 met quality control thresholds) and four weighted polygenic risk scores from previous studies were computed and standardized: a 97 SNP PRS, 266 SNP pediatric-specific PRS, 466 SNP adult-specific PRS, and ~2 million SNP PRS. Appetitive traits were assessed using a parent-completed Child Eating Behavior Questionnaire, which evaluated food approach/avoidance traits and a composite obesogenic appetite score. BMI was directly measured and standardized by age and sex. Three associations were evaluated with linear regression: (1) appetitive traits and BMI, (2) PRSs and BMI, and (3) PRSs and appetitive traits, the primary association of interest. RESULTS: Expected positive associations were observed between obesogenic appetitive traits and BMI and all four PRSs and BMI. Examining the association between PRSs and appetitive traits, all PRSs except for the 466 SNP adult PRS were significantly associated with the obesogenic appetite score. Each standard deviation increase in the 266 SNP pediatric PRS was associated with an adjusted 2.1% increase in obesogenic appetite score (95% CI: 0.6%, 3.7%, p = 0.006). Significant partial mediation of the PRS-BMI association by obesogenic appetite score was found for these PRSs; for example, 21.3% of the association between the 266 SNP pediatric PRS and BMI was explained by the obesogenic appetite score. CONCLUSIONS: Genetic obesity risk significantly predicted appetitive traits, which partially mediated the association between genetic obesity risk and BMI in children. These findings build a clearer picture of pathways leading to pediatric obesity.


Assuntos
Obesidade Infantil , Adulto , Humanos , Criança , Obesidade Infantil/epidemiologia , Obesidade Infantil/genética , Estratificação de Risco Genético , Índice de Massa Corporal , Apetite/genética , Comportamento Alimentar , Fatores de Risco
13.
J Am Soc Nephrol ; 34(4): 607-618, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36302597

RESUMO

SIGNIFICANCE STATEMENT: Pathogenic structural genetic variants, also known as genomic disorders, have been associated with pediatric CKD. This study extends those results across the lifespan, with genomic disorders enriched in both pediatric and adult patients compared with controls. In the Chronic Renal Insufficiency Cohort study, genomic disorders were also associated with lower serum Mg, lower educational performance, and a higher risk of death. A phenome-wide association study confirmed the link between kidney disease and genomic disorders in an unbiased way. Systematic detection of genomic disorders can provide a molecular diagnosis and refine prediction of risk and prognosis. BACKGROUND: Genomic disorders (GDs) are associated with many comorbid outcomes, including CKD. Identification of GDs has diagnostic utility. METHODS: We examined the prevalence of GDs among participants in the Chronic Kidney Disease in Children (CKiD) cohort II ( n =248), Chronic Renal Insufficiency Cohort (CRIC) study ( n =3375), Columbia University CKD Biobank (CU-CKD; n =1986), and the Family Investigation of Nephropathy and Diabetes (FIND; n =1318) compared with 30,746 controls. We also performed a phenome-wide association analysis (PheWAS) of GDs in the electronic MEdical Records and GEnomics (eMERGE; n =11,146) cohort. RESULTS: We found nine out of 248 (3.6%) CKiD II participants carried a GD, replicating prior findings in pediatric CKD. We also identified GDs in 72 out of 6679 (1.1%) adult patients with CKD in the CRIC, CU-CKD, and FIND cohorts, compared with 199 out of 30,746 (0.65%) GDs in controls (OR, 1.7; 95% CI, 1.3 to 2.2). Among adults with CKD, we found recurrent GDs at the 1q21.1, 16p11.2, 17q12, and 22q11.2 loci. The 17q12 GD (diagnostic of renal cyst and diabetes syndrome) was most frequent, present in 1:252 patients with CKD and diabetes. In the PheWAS, dialysis and neuropsychiatric phenotypes were the top associations with GDs. In CRIC participants, GDs were associated with lower serum magnesium, lower educational achievement, and higher mortality risk. CONCLUSION: Undiagnosed GDs are detected both in children and adults with CKD. Identification of GDs in these patients can enable a precise genetic diagnosis, inform prognosis, and help stratify risk in clinical studies. GDs could also provide a molecular explanation for nephropathy and comorbidities, such as poorer neurocognition for a subset of patients.


Assuntos
Longevidade , Insuficiência Renal Crônica , Humanos , Estudos de Coortes , Estudos Prospectivos , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/complicações , Genômica , Progressão da Doença , Fatores de Risco
14.
Diabetologia ; 66(1): 116-126, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36216889

RESUMO

AIMS/HYPOTHESIS: We examined the contribution of rare HNF1A variants to type 2 diabetes risk and age of diagnosis, and the extent to which their impact is affected by overall genetic susceptibility, across three ancestry groups. METHODS: Using exome sequencing data of 160,615 individuals of the UK Biobank and 18,797 individuals of the BioMe Biobank, we identified 746 carriers of rare functional HNF1A variants (minor allele frequency ≤1%), of which 507 carry variants in the functional domains. We calculated polygenic risk scores (PRSs) based on genome-wide association study summary statistics for type 2 diabetes, and examined the association of HNF1A variants and PRS with risk of type 2 diabetes and age of diagnosis. We also tested whether the PRS affects the association between HNF1A variants and type 2 diabetes risk by including an interaction term. RESULTS: Rare HNF1A variants that are predicted to impair protein function are associated with increased risk of type 2 diabetes in individuals of European ancestry (OR 1.46, p=0.049), particularly when the variants are located in the functional domains (OR 1.89, p=0.002). No association was observed for individuals of African ancestry (OR 1.10, p=0.60) or Hispanic-Latino ancestry (OR 1.00, p=1.00). Rare functional HNF1A variants were associated with an earlier age at diagnosis in the Hispanic-Latino population (ß=-5.0 years, p=0.03), and this association was marginally more pronounced for variants in the functional domains (ß=-5.59 years, p=0.03). No associations were observed for other ancestries (African ancestry ß=-2.7 years, p=0.13; European ancestry ß=-3.5 years, p=0.20). A higher PRS was associated with increased odds of type 2 diabetes in all ancestries (OR 1.61-2.11, p<10-5) and an earlier age at diagnosis in individuals of African ancestry (ß=-1.4 years, p=3.7 × 10-6) and Hispanic-Latino ancestry (ß=-2.4 years, p<2 × 10-16). Furthermore, a higher PRS exacerbated the effect of the functional HNF1A variants on type 2 diabetes in the European ancestry population (pinteraction=0.037). CONCLUSIONS/INTERPRETATION: We show that rare functional HNF1A variants, in particular those located in the functional domains, increase the risk of type 2 diabetes, at least among individuals of European ancestry. Their effect is even more pronounced in individuals with a high polygenic susceptibility. Our analyses highlight the importance of the location of functional variants within a gene and an individual's overall polygenic susceptibility, and emphasise the need for more genetic data in non-European populations.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Estudo de Associação Genômica Ampla , Fator 1-alfa Nuclear de Hepatócito/genética
15.
Diabetologia ; 66(7): 1273-1288, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37148359

RESUMO

AIMS/HYPOTHESIS: The Latino population has been systematically underrepresented in large-scale genetic analyses, and previous studies have relied on the imputation of ungenotyped variants based on the 1000 Genomes (1000G) imputation panel, which results in suboptimal capture of low-frequency or Latino-enriched variants. The National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) released the largest multi-ancestry genotype reference panel representing a unique opportunity to analyse rare genetic variations in the Latino population. We hypothesise that a more comprehensive analysis of low/rare variation using the TOPMed panel would improve our knowledge of the genetics of type 2 diabetes in the Latino population. METHODS: We evaluated the TOPMed imputation performance using genotyping array and whole-exome sequence data in six Latino cohorts. To evaluate the ability of TOPMed imputation to increase the number of identified loci, we performed a Latino type 2 diabetes genome-wide association study (GWAS) meta-analysis in 8150 individuals with type 2 diabetes and 10,735 control individuals and replicated the results in six additional cohorts including whole-genome sequence data from the All of Us cohort. RESULTS: Compared with imputation with 1000G, the TOPMed panel improved the identification of rare and low-frequency variants. We identified 26 genome-wide significant signals including a novel variant (minor allele frequency 1.7%; OR 1.37, p=3.4 × 10-9). A Latino-tailored polygenic score constructed from our data and GWAS data from East Asian and European populations improved the prediction accuracy in a Latino target dataset, explaining up to 7.6% of the type 2 diabetes risk variance. CONCLUSIONS/INTERPRETATION: Our results demonstrate the utility of TOPMed imputation for identifying low-frequency variants in understudied populations, leading to the discovery of novel disease associations and the improvement of polygenic scores. DATA AVAILABILITY: Full summary statistics are available through the Common Metabolic Diseases Knowledge Portal ( https://t2d.hugeamp.org/downloads.html ) and through the GWAS catalog ( https://www.ebi.ac.uk/gwas/ , accession ID: GCST90255648). Polygenic score (PS) weights for each ancestry are available via the PGS catalog ( https://www.pgscatalog.org , publication ID: PGP000445, scores IDs: PGS003443, PGS003444 and PGS003445).


Assuntos
Diabetes Mellitus Tipo 2 , Saúde da População , Humanos , Estudo de Associação Genômica Ampla , Diabetes Mellitus Tipo 2/genética , Medicina de Precisão , Genótipo , Hispânico ou Latino/genética , Polimorfismo de Nucleotídeo Único/genética
16.
Genet Epidemiol ; 46(1): 3-16, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34779012

RESUMO

Hematological measures are important intermediate clinical phenotypes for many acute and chronic diseases and are highly heritable. Although genome-wide association studies (GWAS) have identified thousands of loci containing trait-associated variants, the causal genes underlying these associations are often uncertain. To better understand the underlying genetic regulatory mechanisms, we performed a transcriptome-wide association study (TWAS) to systematically investigate the association between genetically predicted gene expression and hematological measures in 54,542 Europeans from the Genetic Epidemiology Research on Aging cohort. We found 239 significant gene-trait associations with hematological measures; we replicated 71 associations at p < 0.05 in a TWAS meta-analysis consisting of up to 35,900 Europeans from the Women's Health Initiative, Atherosclerosis Risk in Communities Study, and BioMe Biobank. Additionally, we attempted to refine this list of candidate genes by performing conditional analyses, adjusting for individual variants previously associated with hematological measures, and performed further fine-mapping of TWAS loci. To facilitate interpretation of our findings, we designed an R Shiny application to interactively visualize our TWAS results by integrating them with additional genetic data sources (GWAS, TWAS from multiple reference panels, conditional analyses, known GWAS variants, etc.). Our results and application highlight frequently overlooked TWAS challenges and illustrate the complexity of TWAS fine-mapping.


Assuntos
Estudo de Associação Genômica Ampla , Transcriptoma , Células Sanguíneas , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
17.
Hum Mol Genet ; 30(10): 952-960, 2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-33704450

RESUMO

Diabetic retinopathy (DR) is a common consequence in type 2 diabetes (T2D) and a leading cause of blindness in working-age adults. Yet, its genetic predisposition is largely unknown. Here, we examined the polygenic architecture underlying DR by deriving and assessing a genome-wide polygenic risk score (PRS) for DR. We evaluated the PRS in 6079 individuals with T2D of European, Hispanic, African and other ancestries from a large-scale multi-ethnic biobank. Main outcomes were PRS association with DR diagnosis, symptoms and complications, and time to diagnosis, and transferability to non-European ancestries. We observed that PRS was significantly associated with DR. A standard deviation increase in PRS was accompanied by an adjusted odds ratio (OR) of 1.12 [95% confidence interval (CI) 1.04-1.20; P = 0.001] for DR diagnosis. When stratified by ancestry, PRS was associated with the highest OR in European ancestry (OR = 1.22, 95% CI 1.02-1.41; P = 0.049), followed by African (OR = 1.15, 95% CI 1.03-1.28; P = 0.028) and Hispanic ancestries (OR = 1.10, 95% CI 1.00-1.10; P = 0.050). Individuals in the top PRS decile had a 1.8-fold elevated risk for DR versus the bottom decile (P = 0.002). Among individuals without DR diagnosis, the top PRS decile had more DR symptoms than the bottom decile (P = 0.008). The PRS was associated with retinal hemorrhage (OR = 1.44, 95% CI 1.03-2.02; P = 0.03) and earlier DR presentation (10% probability of DR by 4 years in the top PRS decile versus 8 years in the bottom decile). These results establish the significant polygenic underpinnings of DR and indicate the need for more diverse ancestries in biobanks to develop multi-ancestral PRS.


Assuntos
Diabetes Mellitus Tipo 2/epidemiologia , Retinopatia Diabética/epidemiologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Adulto , Idoso , População Negra/genética , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Retinopatia Diabética/complicações , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Hispânico ou Latino/genética , Humanos , Pessoa de Meia-Idade , Herança Multifatorial/genética , Medição de Risco , Fatores de Risco , População Branca/genética
18.
Hum Genet ; 142(10): 1477-1489, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37658231

RESUMO

Inadequate representation of non-European ancestry populations in genome-wide association studies (GWAS) has limited opportunities to isolate functional variants. Fine-mapping in multi-ancestry populations should improve the efficiency of prioritizing variants for functional interrogation. To evaluate this hypothesis, we leveraged ancestry architecture to perform comparative GWAS and fine-mapping of obesity-related phenotypes in European ancestry populations from the UK Biobank (UKBB) and multi-ancestry samples from the Population Architecture for Genetic Epidemiology (PAGE) consortium with comparable sample sizes. In the investigated regions with genome-wide significant associations for obesity-related traits, fine-mapping in our ancestrally diverse sample led to 95% and 99% credible sets (CS) with fewer variants than in the European ancestry sample. Lead fine-mapped variants in PAGE regions had higher average coding scores, and higher average posterior probabilities for causality compared to UKBB. Importantly, 99% CS in PAGE loci contained strong expression quantitative trait loci (eQTLs) in adipose tissues or harbored more variants in tighter linkage disequilibrium (LD) with eQTLs. Leveraging ancestrally diverse populations with heterogeneous ancestry architectures, coupled with functional annotation, increased fine-mapping efficiency and performance, and reduced the set of candidate variants for consideration for future functional studies. Significant overlap in genetic causal variants across populations suggests generalizability of genetic mechanisms underpinning obesity-related traits across populations.


Assuntos
Estudo de Associação Genômica Ampla , Obesidade , Humanos , Epidemiologia Molecular , Desequilíbrio de Ligação , Obesidade/genética , Locos de Características Quantitativas/genética
19.
J Intern Med ; 294(4): 378-396, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37093654

RESUMO

Complex diseases are caused by a combination of genetic, lifestyle, and environmental factors and comprise common noncommunicable diseases, including allergies, cardiovascular disease, and psychiatric and metabolic disorders. More than 25% of Europeans suffer from a complex disease, and together these diseases account for 70% of all deaths. The use of genomic, molecular, or imaging data to develop accurate diagnostic tools for treatment recommendations and preventive strategies, and for disease prognosis and prediction, is an important step toward precision medicine. However, for complex diseases, precision medicine is associated with several challenges. There is a significant heterogeneity between patients of a specific disease-both with regards to symptoms and underlying causal mechanisms-and the number of underlying genetic and nongenetic risk factors is often high. Here, we summarize precision medicine approaches for complex diseases and highlight the current breakthroughs as well as the challenges. We conclude that genomic-based precision medicine has been used mainly for patients with highly penetrant monogenic disease forms, such as cardiomyopathies. However, for most complex diseases-including psychiatric disorders and allergies-available polygenic risk scores are more probabilistic than deterministic and have not yet been validated for clinical utility. However, subclassifying patients of a specific disease into discrete homogenous subtypes based on molecular or phenotypic data is a promising strategy for improving diagnosis, prediction, treatment, prevention, and prognosis. The availability of high-throughput molecular technologies, together with large collections of health data and novel data-driven approaches, offers promise toward improved individual health through precision medicine.


Assuntos
Transtornos Mentais , Medicina de Precisão , Humanos , Medicina de Precisão/métodos , Genômica/métodos , Fatores de Risco
20.
Nutr Metab Cardiovasc Dis ; 33(11): 2189-2198, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37567789

RESUMO

BACKGROUND AND AIMS: Ectopic lipid storage is implicated in type 2 diabetes pathogenesis; hence, exercise to deplete stores (i.e., at the intensity that allows for maximal rate of lipid oxidation; MLO) might be optimal for restoring metabolic health. This intensity ("Fatmax") is estimated during incremental exercise ("Fatmax test"). However, in "the field" general recommendations exist regarding a range of percentages of maximal heart rate (HR) to elicit MLO. The degree to which this range is aligned with measured Fatmax has not been investigated. We compared measured HR at Fatmax, with maximal HR percentages within the typically recommended range in a sample of 26 individuals (Female: n = 11, European ancestry: n = 17). METHODS AND RESULTS: Subjects completed a modified Fatmax test with a 5-min warmup, followed by incremental stages starting at 15 W with work rate increased by 15 W every 5 min until termination criteria were reached. Pulmonary gas exchange was recorded and average values for V˙ o2 and V˙ co2 for the final minute of each stage were used to estimate substrate-oxidation rates. We modeled lipid-oxidation kinetics using a sinusoidal model and expressed MLO relative to peak V˙ o2 and HR. Bland-Altman analysis demonstrated lack of concordance between HR at Fatmax and at 50%, 70%, and 80% of age-predicted maximum with a mean difference of 23 b·min-1. CONCLUSION: Our results indicate that estimated "fat-burning" heart rate zones are inappropriate for prescribing exercise to elicit MLO and we recommend direct individual exercise lipid oxidation measurements to elicit these values.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA