Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Environ Manage ; 358: 120784, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38603847

RESUMO

Nowadays, biomarkers are recognized as valuable tools to complement chemical and ecological assessments in biomonitoring programs. They provide insights into the effects of contaminant exposures on individuals and establish connections between environmental pressure and biological response at higher levels. In the last decade, strong improvements in the design of experimental protocols and the result interpretation facilitated the use of biomarker across wide geographical areas, including aquatic continua. Notably, the statistical establishment of reference values and thresholds enabled the discrimination of contamination effects in environmental conditions, allowed interspecies comparisons, and eliminated the need of a reference site. The aim of this work was to study freshwater-estuarine-coastal water continua by applying biomarker measurements in multi-species caged organisms. During two campaigns, eight sentinel species, encompassing fish, mollusks, and crustaceans, were deployed to cover 25 sites from rivers to the sea. As much as possible, a common methodology was employed for biomarker measurements (DNA damage and phagocytosis efficiency) and data interpretation based on guidelines established using reference values and induction/inhibition thresholds (establishment of three effect levels). The methodology was successfully implemented and allowed us to assess the environmental quality. Employing multiple species per site enhances confidence in observed trends. The results highlight the feasibility of integrating biomarker-based environmental monitoring programs across a continuum scale. Biomarker results align with Water Framework Directive indicators in cases of poor site quality. Additionally, when discrepancies arise between chemical and ecological statuses, biomarker findings offer a comprehensive perspective to elucidate the disparities. Presented as a pilot project, this work contributes to gain insights into current biomonitoring needs, providing new questions and perspectives.


Assuntos
Biomarcadores , Monitoramento Ambiental , Espécies Sentinelas , Monitoramento Ambiental/métodos , Biomarcadores/análise , França , Animais , Peixes
2.
Environ Sci Technol ; 57(14): 5761-5770, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36976251

RESUMO

This work quantified the accumulation efficiencies of Hg in cuttlefish, depending on both organic (MeHg) and inorganic (Hg(II)) forms, under increased pCO2 (1600 µatm). Cuttlefish were fed with live shrimps injected with two Hg stable isotopic tracers (Me202Hg and 199Hg(II)), which allowed for the simultaneous quantification of internal Hg accumulation, Hg(II) methylation, and MeHg demethylation rates in different organs. Results showed that pCO2 had no impact on Hg bioaccumulation and organotropism, and both Hg and pCO2 did not influence the microbiota diversity of gut and digestive gland. However, the results also demonstrated that the digestive gland is a key organ for in vivo MeHg demethylation. Consequently, cuttlefish exposed to environmental levels of MeHg could exhibit in vivo MeHg demethylation. We hypothesize that in vivo MeHg demethylation could be due to biologically induced reactions or to abiotic reactions. This has important implications as to how some marine organisms may respond to future ocean change and global mercury contamination.


Assuntos
Cefalópodes , Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Mercúrio/análise , Compostos de Metilmercúrio/metabolismo , Metilação , Cefalópodes/metabolismo , Organismos Aquáticos/metabolismo , Poluentes Químicos da Água/análise
3.
J Environ Manage ; 341: 118049, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37182402

RESUMO

The Integrated Biomarker Response (IBR) is one of the most used index in biomonitoring, especially the IBRv2 integrating a reference condition. However, some limitations remain for its routine and large-scale use. The IBRv2 is proportional to the total number of biomarkers, is dependent on the nature of biomarkers and considers all biomarkers modulations, even small and biologically non-significant. In addition, IBRv2 relies on reference values but the references are often different between each study, making it difficult to compare results between studies and/or campaigns. To overcome these limitations, the present work proposed a new index called IBR-T ("Integrated Biomarker Response - Threshold") which considers the threshold values of biomarkers by limiting the calculation of the IBR value to biomarkers with significant modulations. The IBRv2 and the IBR-T were calculated and compared on four datasets from active biomonitoring campaigns using Dreissena polymorpha, a bivalve widely used in freshwater biomonitoring studies. The comparison between indices has demonstrated that the IBR-T presents a better correlation (0.907 < r2 < 0.998) with the percentage of biomarkers significantly modulated than the IBRv2 (0.002 < r2 < 0.759). The IBRv2 could not be equal to 0 (0.915 < intercept <1.694) because the value was dependent on the total number of biomarkers, whereas the IBR-T reached 0 when no biomarker was significantly modulated, which appears more biologically relevant. The final ranking of sites was different between the two index and the IBR-T ranking tends to be more ecologically relevant that the IBRv2 ranking. This IBR-T have shown an undeniable interest for biomonitoring and could be used by environmental managers to simplify the interpretation of large datasets, directly interpret the contamination status of the site, use it to decision-making, and finally to easily communicate the results of biomonitoring studies to the general public.


Assuntos
Dreissena , Poluentes Químicos da Água , Animais , Monitoramento Ambiental/métodos , Biomarcadores , Dreissena/fisiologia , Água Doce , Valores de Referência , Poluentes Químicos da Água/análise
4.
Ecotoxicol Environ Saf ; 242: 113875, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35843108

RESUMO

The R-package rbioacc allows to analyse experimental data from bioaccumulation tests where organisms are exposed to a chemical (exposure) then put into clean media (depuration). Internal concentrations are measured over time during the experiment. rbioacc provides turnkey functions to visualise and analyse such data. Under a Bayesian framework, rbioacc fits a generic one-compartment toxicokinetic model built from the data. It provides TK parameter estimates (uptake and elimination rates) and standard bioaccumulation metrics. All parameter estimates, bioaccumulation metrics and predictions of internal concentrations are delivered with their uncertainty. Bioaccumulation metrics are provided in support of environmental risk assessment, in full compliance with regulatory requirements required to approve market release of chemical substances. This paper provides worked examples of the use of rbioacc from data collected through standard bioaccumulation tests, publicly available within the scientific literature. These examples constitute step-by-step user-guides to analyse any new data set, uploaded in the right format.


Assuntos
Poluentes Químicos da Água , Teorema de Bayes , Bioacumulação , Toxicocinética
5.
Arch Environ Contam Toxicol ; 83(4): 339-348, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35904623

RESUMO

The surveillance of chemical substances in the scope of Environmental Risk Assessment (ERA) is classically performed through bio-assays from which data are collected and then analysed and/or modelled. Some analysis are based on the fitting of toxicokinetic (TK) models to assess the bioaccumulation capacity of chemical substances via the estimation of bioaccumulation metrics as required by regulatory documents. Given that bio-assays are particularly expensive and time consuming, it is of crucial importance to deeply benefit from all information contained in the data. By revisiting the calculation of bioaccumulation metrics under a Bayesian framework, this paper suggests changes in the way of characterising the bioaccumulation capacity of chemical substances. For this purpose, a meta-analysis of a data-rich TK database was performed, considering uncertainties around bioaccumulation metrics. Our results were statistically robust enough to suggest an additional criterion to the single median estimate of bioaccumulation metrics to assign a chemical substance to a given bioaccumulation capacity. Our proposal is to use the 75th percentile of the uncertainty interval of the bioaccumulation metrics, which revealed an appropriate complement for the classification of chemical substances (e.g. PBT (persistent, bioaccumulative and toxic) and vPvB (very persistent and very bioaccumulative) under the EU chemicals legislation). The 75% quantile proved its efficiency, similarly classifying 90% of the chemical substances as the conventional method.


Assuntos
Benchmarking , Bioacumulação , Toxicocinética , Teorema de Bayes , Medição de Risco/métodos
6.
Ecotoxicol Environ Saf ; 180: 33-42, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31059905

RESUMO

Toxicokinetic (TK) models are relevant and widely used to predict chemical concentrations in biological organisms. The importance of dietary uptake for aquatic invertebrates has been increasingly assessed in recent years. However, the model parameters are estimated on limited specific laboratory data sets that are bounded by several uncertainties. The aim of this study was to implement a Bayesian framework for simultaneously estimating the parameters of a generic TK model for benthic invertebrate species from all data collected. We illustrate our approach on the bioaccumulation of PCB153 by two species with different life traits and therefore exposure routes: Chironomus riparius larvae exposed to spiked sediment for 7 days and Gammarus fossarum exposed to spiked sediment and/or leaves for 7 days and then transferred to a clean media for 7 more days. The TK models assuming first-order kinetics were fitted to the data using Bayesian inference. The median model predictions and their 95% credibility intervals showed that the model fit the data well. From a methodological point of view, this paper illustrates that simultaneously estimating all model parameters from all available data by Bayesian inference, while considering the correlation between parameters and different types of data, is a real added value for TK modeling. Moreover, we demonstrated the ability of a generic TK model considering uptake and elimination routes as modules to add according to the availability of the data measured. From an ecotoxicological point of view, we show differences in PCB153 bioaccumulation between chironomids and gammarids, explained by the different life traits of these two organisms.


Assuntos
Anfípodes/efeitos dos fármacos , Chironomidae/efeitos dos fármacos , Água Doce/química , Sedimentos Geológicos/química , Bifenilos Policlorados/toxicidade , Poluentes Químicos da Água/toxicidade , Anfípodes/metabolismo , Animais , Teorema de Bayes , Chironomidae/metabolismo , Larva/efeitos dos fármacos , Larva/metabolismo , Modelos Teóricos , Bifenilos Policlorados/metabolismo , Toxicocinética , Poluentes Químicos da Água/metabolismo
7.
Ecotoxicol Environ Saf ; 128: 252-65, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26922150

RESUMO

Contaminant effects on species are generally assessed with single-species bioassays. As a consequence, interactions between species that occur in ecosystems are not taken into account. To investigate the effects of contaminants on interacting species dynamics, our study describes the functioning of a 2-L laboratory microcosm with two species, the duckweed Lemna minor and the microalgae Pseudokirchneriella subcapitata, exposed to cadmium contamination. We modelled the dynamics of both species and their interactions using a mechanistic model based on coupled ordinary differential equations. The main processes occurring in this two-species microcosm were thus formalised, including growth and settling of algae, growth of duckweeds, interspecific competition between the two species and cadmium effects. We estimated model parameters by Bayesian inference, using simultaneously all the data issued from multiple laboratory experiments specifically conducted for this study. Cadmium concentrations ranged between 0 and 50 µg·L(-1). For all parameters of our model, we obtained biologically realistic values and reasonable uncertainties. Only duckweed dynamics was affected by interspecific competition, while algal dynamics was not impaired. Growth rate of both species decreased with cadmium concentration, as well as competition intensity showing that the interspecific competition pressure on duckweed decreased with cadmium concentration. This innovative combination of mechanistic modelling and model-guided experiments was successful to understand the algae-duckweed microcosm functioning without and with contaminant. This approach appears promising to include interactions between species when studying contaminant effects on ecosystem functioning.


Assuntos
Araceae/efeitos dos fármacos , Cádmio/toxicidade , Clorófitas/efeitos dos fármacos , Microalgas/efeitos dos fármacos , Modelos Teóricos , Poluentes Químicos da Água/toxicidade , Araceae/crescimento & desenvolvimento , Teorema de Bayes , Bioensaio , Clorófitas/crescimento & desenvolvimento , Ecossistema , Microalgas/crescimento & desenvolvimento , Especificidade da Espécie
8.
Environ Sci Technol ; 48(13): 7544-51, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24892187

RESUMO

Reproduction data collected through standard bioassays are classically analyzed by regression in order to fit exposure-response curves and estimate ECx values (x% effective concentration). But regression is often misused on such data, ignoring statistical issues related to (i) the special nature of reproduction data (count data), (ii) a potential inter-replicate variability, and (iii) a possible concomitant mortality. This paper offers new insights in dealing with those issues. Concerning mortality, particular attention was paid not to waste any valuable data-by dropping all the replicates with mortality-or to bias ECx values. For that purpose we defined a new covariate summing the observation periods during which each individual contributes to the reproduction process. This covariate was then used to quantify reproduction-for each replicate at each concentration-as a number of offspring per individual-day. We formulated three exposure-response models differing by their stochastic part. Those models were fitted to four data sets and compared using a Bayesian framework. The individual-day unit proved to be a suitable approach to use all the available data and prevent bias in the estimation of ECx values. Furthermore, a nonclassical negative-binomial model was shown to correctly describe the inter-replicate variability observed in the studied data sets.


Assuntos
Daphnia/fisiologia , Estatística como Assunto , Animais , Teorema de Bayes , Intervalos de Confiança , Modelos Biológicos , Análise de Regressão , Reprodução/fisiologia
9.
Environ Pollut ; 344: 123420, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38272165

RESUMO

The detection all pathogenic enteric viruses in water is expensive, time-consuming, and limited by numerous technical difficulties. Consequently, using reliable indicators such as F-specific RNA phages (FRNAPH) can be well adapted to assess the risk of viral contamination of fecal origin in surface waters. However, the variability of results inherent to the water matrix makes it difficult to use them routinely and to interpret viral risk. Spatial and temporal variability of surface waters can lead to underestimate this risk, in particular in the case of low loading. The use of bivalve mollusks as accumulating systems appears as a promising alternative, as recently highlighted with the freshwater mussel Dreissena polymorpha, but its capacity to accumulate and depurate FRNAPH needs to be better understood and described. The purpose of this study is to characterise the kinetics of accumulation and elimination of infectious FRNAPH by D. polymorpha in laboratory conditions, formalised by a toxico-kinetic (TK) mechanistic model. Accumulation and depuration experiments were performed at a laboratory scale to determine the relationship between the concentration of infectious FRNAPH in water and the concentration accumulated by D. polymorpha. The mussels accumulated infectious FRNAPH (3-5.4 × 104 PFU/g) in a fast and concentration-dependent way in only 48 h, as already recently demonstrated. The second exposure demonstrated that the kinetics of infectious FRNAPH depuration by D. polymorpha was independent to the exposure dose, with a T90 (time required to depurate 90 % of the accumulated concentration) of approximately 6 days. These results highlight the capacities of D. polymorpha to detect and reflect the viral pollution in an integrative way and over time, which is not possible with point water sampling. Different TK models were fitted based on the concentrations measured in the digestive tissues (DT) of D. polymorpha. The model has been developed to formalise the kinetics of phage accumulation in mussels tissues through the simultaneous estimation of accumulation and depuration rates. This model showed that accumulation depended on the exposure concentration, while depuration did not. Standardized D. polymorpha could be easily transplanted to the environment to predict viral concentrations using the TK model defined in the present study to predict the level of contamination of bodies of water on the basis of the level of phages accumulated by the organisms. It will be also provide a better understanding of the dynamics of the virus in continental waters at different time and spatial scales, and thereby contribute to the protection of freshwater resources.


Assuntos
Bivalves , Dreissena , Animais , Toxicocinética , Água Doce/química , Água
10.
Environ Int ; 171: 107673, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36580734

RESUMO

Information on the relationship between the exposure concentrations of metals and their biodistribution among organs remained scarce in invertebrates. The objective of this study was to investigate the effects of Cd concentration on the organotropism, toxico-kinetic and fate of this metal in different organs of gammarids exposed to dissolved radioisotope 109Cd. Gammarids male were exposed for 7 days to three environmental Cd concentrations (i.e. 4, 52 and 350 ng.L-1) before being placed in depuration conditions (i.e. uncontaminated water). At several sampling times, Cd concentrations were determined by 109Cd γ-counting in water, caeca, cephalon, gills, intestine and remaining tissues. Bioconcentration Factors (BCF) and Cd relative proportions in organs were calculated to assess the exposure concentration effect on the bioaccumulation capacities. The dependance of the organ-specific kinetic parameters to Cd water concentrations were estimated by fitting nested one-compartment toxico-kinetic (TK) models to both the accumulation and depuration data, by Bayesian inference. Then, for each Cd concentrations, the metal exchanges among organs over time were formalized by a multi-compartments TK model fitted to all organ data simultaneously. Our results highlighted that, at the end of the exposure phase, BCF and Cd relative proportions, in each organ, were not significantly modulated by water concentrations. Kinetically, Cd accumulation rates in all organs (except intestines) were depended on the exposure concentration, but not the elimination rates. The in vivo management of Cd (i.e. metal exchanges among organs) remained qualitatively unchanged according to exposure concentration. All these results also highlighted key role of that organs in the management of Cd: bioconcentration by caeca, storage by gills and main entry pathway by intestine. This study shows the interest of implementing TK approaches to test the effect of environmental factors on bioaccumulation, inter-organ exchanges and fate of contaminants in invertebrate body to enhance the understanding of the toxicity risk.


Assuntos
Anfípodes , Poluentes Químicos da Água , Animais , Masculino , Cádmio/análise , Toxicocinética , Teorema de Bayes , Distribuição Tecidual , Metais/metabolismo , Anfípodes/metabolismo , Água , Poluentes Químicos da Água/análise
11.
Curr Opin Environ Sci Health ; 31: 1-8, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36741274

RESUMO

New Approach Methodologies (NAMs) provide tools for supporting both human and environmental risk assessment (HRA and ERA). This short review provides recent insights regarding the use of NAMs in ERA of food and feed chemicals. We highlight the usefulness of tiered methods supporting weight-of-evidence approaches in relation to problem formulation (i.e., data availability, time, and resource availability). In silico models, including quantitative structure activity relationship models, support filling data gaps when no chemical property or ecotoxicological data are available, and biologically-based models (e.g., toxicokinetic-toxicodynamic models, dynamic energy models, physiologically-based models and species sensitivity distributions) are applicable in more data rich situations, including landscape-based modelling approaches. Particular attention is given to provide practical examples to apply the approaches described in real-world settings. We conclude with future perspectives, with regards to the need for addressing complex challenges such as chemical mixtures and multiple stressors in a wide range of organisms and ecosystems.

12.
Environ Pollut ; 308: 119625, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35714792

RESUMO

One of the best approaches for improving the assessment of metal toxicity in aquatic organisms is to study their organotropism (i.e., the distribution of metals among organs) through a dynamical approach (i.e., via kinetic experiments of metal bioaccumulation), to identify the tissues/organs that play a key role in metal regulation (e.g., storage or excretion). This study aims at comparing the organ-specific metal accumulation of a non-essential (Cd) and an essential metal (Zn), at their environmentally relevant exposure concentrations, in the gammarid Gammarus fossarum. Gammarids were exposed for 7 days to 109Cd- or 65Zn-radiolabeled water at a concentration of 52.1 and 416 ng.L-1 (stable equivalent), respectively, and then placed in clean water for 21 days. At different time intervals, the target organs (i.e., caeca, cephalons, intestines, gills, and remaining tissues) were collected and 109Cd or 65Zn contents were quantified by gamma-spectrometry. A one-compartment toxicokinetic (TK) model was fitted by Bayesian inference to each organ/metal dataset in order to establish TK parameters. Our results indicate: i) a contrasting distribution pattern of concentrations at the end of the accumulation phase (7th day): gills > caeca ≈ intestines > cephalons > remaining tissues for Cd and intestines > caeca > gills > cephalons > remaining tissues for Zn; ii) a slower elimination of Cd than of Zn by all organs, especially in the gills in which the Cd concentration remained constant during the 21-day depuration phase, whereas Zn concentrations decreased sharply in all organs after 24 h in the depuration phase; iii) a major role of intestines in the uptake of waterborne Cd and Zn at environmentally relevant concentrations.


Assuntos
Anfípodes , Poluentes Químicos da Água , Animais , Teorema de Bayes , Cádmio/análise , Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Zinco/análise
13.
Integr Environ Assess Manag ; 18(1): 10-18, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33982382

RESUMO

Today, only few ready-to-use and convenient decision-making tools are available in ecotoxicology concerning accumulation and effects of chemical substances on organisms, accounting for exposure situations that are known to be complex (routes of exposure, metabolism, mixtures, etc.). This paper presents new perspectives on the generic calculation of bioaccumulation metrics via the innovative web tool MOSAICbioacc (http://mosaic.univ-lyon1.fr/bioacc). MOSAICbioacc provides all kinds of bioaccumulation metrics associated with their uncertainty whatever the species-compound combination. MOSAICbioacc expects accumulation-depuration data as inputs, even with complex exposure and clearance patterns, to quickly perform their relevant analysis. MOSAICbioacc intends to facilitate the daily work of regulators, or any ecotoxicologist, who will freely benefit from a user-friendly online interface that automatically fits toxicokinetic models without need for users to invest in the technical aspects to get bioaccumulation metrics estimates. MOSAICbioacc also provides all results in a fully transparent way to ensure reproducibility. Integr Environ Assess Manag 2022;18:10-18. © 2021 SETAC.


Assuntos
Bioacumulação , Ecotoxicologia , Monitoramento Ambiental , Reprodutibilidade dos Testes , Medição de Risco
14.
Environ Sci Pollut Res Int ; 29(20): 29244-29257, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34255258

RESUMO

In the European Union, more than 100,000 man-made chemical substances are awaiting an environmental risk assessment (ERA). Simultaneously, ERA of these chemicals has now entered a new era requiring determination of risks for physiologically diverse species exposed to several chemicals, often in mixtures. Additionally, recent recommendations from regulatory bodies underline a crucial need for the use of mechanistic effect models, allowing assessments that are not only ecologically relevant, but also more integrative, consistent and efficient. At the individual level, toxicokinetic-toxicodynamic (TKTD) models are particularly encouraged for the regulatory assessment of pesticide-related risks on aquatic organisms. In this paper, we first briefly present a classical dose-response model to showcase the on-line MOSAIC tool, which offers all necessary services in a turnkey web platform, whatever the type of data analyzed. Secondly, we focus on the necessity to account for the time-dimension of the exposure by illustrating how MOSAIC can support a robust calculation of bioaccumulation metrics. Finally, we show how MOSAIC can be of valuable help to fully complete the EFSA workflow regarding the use of TKTD models, especially with GUTS models, providing a user-friendly interface for calibrating, validating and predicting survival over time under any time-variable exposure scenario of interest. Our conclusion proposes a few lines of thought for an easier use of modelling in ERA.


Assuntos
Praguicidas , Xenobióticos , Bioacumulação , Humanos , Medição de Risco , Toxicocinética
15.
Methods Mol Biol ; 2425: 589-636, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35188648

RESUMO

This chapter aims to introduce the reader to the basic principles of environmental risk assessment of chemicals and highlights the usefulness of tiered approaches within weight of evidence approaches in relation to problem formulation i.e., data availability, time and resource availability. In silico models are then introduced and include quantitative structure-activity relationship (QSAR) models, which support filling data gaps when no chemical property or ecotoxicological data are available. In addition, biologically-based models can be applied in more data rich situations and these include generic or species-specific models such as toxicokinetic-toxicodynamic models, dynamic energy budget models, physiologically based models, and models for ecosystem hazard assessment i.e. species sensitivity distributions and ultimately for landscape assessment i.e. landscape-based modeling approaches. Throughout this chapter, particular attention is given to provide practical examples supporting the application of such in silico models in real-world settings. Future perspectives are discussed to address environmental risk assessment in a more holistic manner particularly for relevant complex questions, such as the risk assessment of multiple stressors and the development of harmonized approaches to ultimately quantify the relative contribution and impact of single chemicals, multiple chemicals and multiple stressors on living organisms.


Assuntos
Ecossistema , Ecotoxicologia , Simulação por Computador , Relação Quantitativa Estrutura-Atividade , Medição de Risco
16.
Sci Total Environ ; 808: 152148, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-34864038

RESUMO

A biomonitoring approach based on a single model species cannot be representative of the contaminations impacts on the ecosystem overall. As part of the Interreg DIADeM program ("Development of an integrated approach for the diagnosis of the water quality of the River Meuse"), a study was conducted to establish the proof of concept that the use of a multispecies active biomonitoring approach improves diagnostic of aquatic systems. The complementarity of the biomarker responses was tested in four model species belonging to various ecological compartments: the bryophyte Fontinalis antipyretica, the bivalve Dreissena polymorpha, the amphipod Gammarus fossarum and the fish Gasterosteus aculeatus. The species have been caged upstream and downstream from five wastewater treatment plants (WWTPs) in the Meuse watershed. After the exposure, a battery of biomarkers was measured and results were compiled in an Integrated Biomarker Response (IBR) for each species. A multispecies IBR value was then proposed to assess the quality of the receiving environment upstream the WWTPs. The effluent toxicity was variable according to the caged species and the WWTP. However, the calculated IBR were high for all species and upstream sites, suggesting that the water quality was already downgraded upstream the WWTP. This contamination of the receiving environment was confirmed by the multispecies IBR which has allowed to rank the rivers from the less to the most contaminated. This study has demonstrated the interest of the IBR in the assessment of biological impacts of a point-source contamination (WWTP effluent) but also of the receiving environment, thanks to the use of independent references. Moreover, this study has highlighted the complementarity between the different species and has emphasized the interest of this multispecies approach to consider the variability of the species exposition pathway and sensibility as well as the mechanism of contaminants toxicity in the final diagnosis.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Animais , Monitoramento Biológico , Ecossistema , Rios , Águas Residuárias , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
17.
Aquat Toxicol ; 234: 105811, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33812312

RESUMO

Toxicokinetic (TK) models refer to the process of contaminant bioaccumulation as a balance between rate of uptake from different sources (e.g., water or food), and rate of elimination via different processes such as excretion, growth and/or biotransformation. Biotransformation can considerably modify the fate of chemicals in an organism, especially their bioavailability, residence time, and toxicity. Invertebrate models generally neglect this process as they assume a low metabolic activity. However, some species such as Gammarus sp. amphipods are able to metabolize a vast range of organic compounds. Some recent TK models include biotransformation, but they prove limited for estimating related parameters by giving negative values and/or large uncertainties for biotransformation rate(s). Here we propose a generic TK model accounting for biotransformation using a Bayesian framework for simultaneously estimating the parameters. We illustrated the added value of our method by fitting this generic TK model to 22 published datasets of several benthic invertebrate species exposed to different chemicals. All parameters are estimated simultaneously for all datasets and showed narrow estimates. Furthermore, the median model predictions and their 95% credibility intervals showed that the model confidently fitted the data. In most cases the uncertainties around biotransformation rate(s) were reduced in comparison to the original studies. From a methodology standpoint, this paper reflects that Bayesian inference has real added value for simultaneously estimating all TK parameters for parent chemicals and their metabolite(s) based on all available data, while accounting for different types of data and the correlation between parameters. Bayesian inference was able to overcome the limits of previous methods, since no parameters were fixed and no irrelevant negative values were obtained. Moreover, the 95% credibility intervals around model predictions, which are core uncertainties for Environmental Risk Assessment, were easily acquired.


Assuntos
Invertebrados/metabolismo , Compostos Orgânicos/metabolismo , Poluentes Químicos da Água/metabolismo , Anfípodes/metabolismo , Animais , Teorema de Bayes , Biotransformação , Modelos Teóricos
18.
Environ Int ; 156: 106625, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34010754

RESUMO

The use of freshwater invertebrates for biomonitoring has been increasing for several decades, but little is known about relations between external exposure concentration of metals and their biodistribution among different tissues. One and multi-compartments toxicokinetic (TK) models are powerful tools to formalize and predict how a contaminant is bioaccumulated. The aim of this study is to develop modeling approaches to improve knowledge on dynamic of accumulation and fate of Cd and Hg in gammarid's organs. Gammarids were exposed to dissolved metals (11.1 ± 1.2 µg.L-1 of Cd or 0.27 ± 0.13 µg.L-1 of Hg) before a depuration phase. At each sampling days, their organs (caeca, cephalon, intestine and remaining tissues) were separated by dissection before analyses. Results allowed us to determine that i) G.fossarum takes up Cd as efficiently as the mussel M.galloprovincialis, but eliminates it more rapidly, ii) organs which accumulate and depurate the most, in terms of concentrations, are caeca and intestine for both metals; iii) the one-compartment TK models is the most relevant for Hg, while the multi-compartments TK model allows a better fit to Cd data, demonstrating dynamic transfer of Cd among organs.


Assuntos
Anfípodes , Poluentes Químicos da Água , Animais , Cádmio/toxicidade , Água Doce , Metais/toxicidade , Distribuição Tecidual , Poluentes Químicos da Água/toxicidade
19.
Ecotoxicology ; 19(7): 1312-21, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20623335

RESUMO

Long-term effects of endocrine disruptors (EDs) on aquatic invertebrates remain difficult to assess, mainly due to the lack of appropriate sensitive toxicity test methods and relevant data analysis procedures. This study aimed at identifying windows of sensitivity to EDs along the life-cycle of the freshwater snail Lymnaea stagnalis, a candidate species for the development of forthcoming test guidelines. Juveniles, sub-adults, young adults and adults were exposed for 21 days to the fungicide vinclozolin (VZ). Survival, growth, onset of reproduction, fertility and fecundity were monitored weekly. Data were analyzed using standard statistical analysis procedures and mixed-effect models. No deleterious effect on survival and growth occurred in snails exposed to VZ at environmentally relevant concentrations. A significant impairment of the male function occurred in young adults, leading to infertility at concentrations exceeding 0.025 µg/L. Furthermore, fecundity was impaired in adults exposed to concentrations exceeding 25 µg/L. Biological responses depended on VZ concentration, exposure duration and on their interaction, leading to complex response patterns. The use of a standard statistical approach to analyze those data led to underestimation of VZ effects on reproduction, whereas effects could reliably be analyzed by mixed-effect models. L. stagnalis may be among the most sensitive invertebrate species to VZ, a 21-day reproduction test allowing the detection of deleterious effects at environmentally relevant concentrations of the fungicide. These results thus reinforce the relevance of L. stagnalis as a good candidate species for the development of guidelines devoted to the risk assessment of EDs.


Assuntos
Antagonistas de Androgênios/toxicidade , Fungicidas Industriais/toxicidade , Lymnaea/efeitos dos fármacos , Oxazóis/toxicidade , Animais , Ecotoxicologia , Feminino , Água Doce , Estágios do Ciclo de Vida , Lymnaea/crescimento & desenvolvimento , Masculino , Reprodução , Medição de Risco , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade
20.
Environ Toxicol Chem ; 39(3): 667-677, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31877584

RESUMO

Monitoring the adverse effects of environmental contaminants on the reproduction of invertebrate species in the field remains a challenge in aquatic ecotoxicology. To meet the need for reliable tools for in situ toxicity assessment, we present the first part of a methodological study of the in situ implementation of a reproductive bioassay in Gammarus previously developed for screening the toxicity of chemical compounds during laboratory exposure. To ensure the correct interpretation of the modulation of reproductive markers (molting, fecundity, follicle growth, and embryonic development) in uncontrolled environmental conditions, we experimentally assessed and statistically modeled the variability in the female reproductive cycle during laboratory exposure under several temperature and water hardness conditions. Whereas water hardness did not influence the reproductive cycle, the significant accelerating effect of temperature on the dynamics of molting and marsupial development was finely modeled, by detailing the influence of temperature on the probability of transition between all molt and embryonic stages along the female cycle. In addition, no effect of temperature or water hardness was detected on the number of oocytes and embryos carried by females. Furthermore, the finding that the relative durations of the first 4 molt and embryonic stages are constant whatever the temperature makes it possible to predict the molting dynamics in fluctuating temperature conditions. Because this could allow us to take into account the confounding influence of temperature on the measurement of reproductive markers, the implications of these findings for an optimal in situ implementation of the reproductive bioassay with G. fossarum are discussed. The relevance of this modeling approach during in situ implementation is tested in a companion study. Environ Toxicol Chem 2020;39:667-677. © 2019 SETAC.


Assuntos
Anfípodes/efeitos dos fármacos , Bioensaio/métodos , Temperatura , Água/química , Anfípodes/embriologia , Anfípodes/crescimento & desenvolvimento , Animais , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Fertilidade/efeitos dos fármacos , Muda/efeitos dos fármacos , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/crescimento & desenvolvimento , Reprodução/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA