RESUMO
The microalgae Chlorella vulgaris and Tetraselmis chui are valued for their nutrient-rich content, including lipids and polyunsaturated fatty acids (PUFA). However, little is known about how storage and processing affect their lipid quality. This study aimed to assess the impact of domestic storage and cooking practices in dried biomass of C. vulgaris and T. chui. Four conditions were tested: control (newly opened package), light (storage at room temperature and daily light regimen for three weeks), frozen (storage in the freezer at -20 °C for three weeks), and heated (three cycles of 90 min at 100 °C). Lipid extracts were analyzed by GC-MS and LC-MS, and antioxidant activity through DPPH and ABTS radical scavenging assays. Tested storage conditions promoted a decrease in fatty acid content and in diacyl/lyso lipid species ratios of phospholipid (PC/LPC, PE/LPE) and betaine lipids (DGTS/MGTS). Lipid extracts from light treatment showed the lowest antioxidant activity in C. vulgaris (ABTS, IC40: 104.9; DPPH, IC20: 187.9 ± 15.0), while heat affected the antioxidant activity of T. chui (ABTS, IC40: 88.5 ± 2.8; DPPH, IC20 209.4 ± 10.9). These findings underscore the impact of managing storage and processing conditions to optimize the nutritional and functional benefits of C. vulgaris and T. chui in food and feed applications.
Assuntos
Antioxidantes , Chlorella vulgaris , Microalgas , Antioxidantes/farmacologia , Chlorella vulgaris/química , Microalgas/química , Lipídeos , Armazenamento de Alimentos , Ácidos Graxos/análise , CulináriaRESUMO
Elysia crispata (Sacoglossa, Gastropoda) is a tropical sea slug known for its ability to incorporate functional chloroplasts from a variety of green macroalgae, a phenomenon termed kleptoplasty. This sea slug, amenable to laboratory cultivation, produces mucus, a viscous secretion that serves diverse purposes including protection, locomotion, and reproduction. In this study, we profiled the antimicrobial, antioxidant, and anti-inflammatory activities of the mucus of this sea slug. Results revealed inhibitory activity against several bacterial strains, more pronounced for Gram-negative bacteria. Particularly interesting was the strong inhibitory effect against Pseudomonas aeruginosa, a bacterial species classified by the WHO as a high-priority pathogen and associated with high-risk infections due to its frequent multidrug-resistant profile. Similar inhibitory effects were observed for the mucus native protein extracts, indicating that proteins present in the mucus contributed significantly to the antimicrobial activity. The mucus also showed both antioxidant and anti-inflammatory activities. The latter activities were associated with the low molecular weight (<10 kDa) fraction of the mucus rather than the native protein extracts. This study opens the way to further research on the biotechnological applications of the mucus secreted by this unique marine organism, particularly as an antimicrobial agent.
Assuntos
Anti-Infecciosos , Anti-Inflamatórios , Antioxidantes , Gastrópodes , Muco , Animais , Muco/metabolismo , Antioxidantes/farmacologia , Antioxidantes/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Gastrópodes/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/químicaRESUMO
Microalgae are recognized as a relevant source of bioactive compounds. Among these bioactive products, lipids, mainly glycolipids, have been shown to present immunomodulatory properties with the potential to mitigate chronic inflammation. This study aimed to evaluate the anti-inflammatory effect of polar lipids isolated from Nannochloropsis oceanica and Chlorococcum amblystomatis. Three fractions enriched in (1) digalactosyldiacylglycerol (DGDG) and sulfoquinovosyldiacylglycerol (SQDG), (2) monogalactosyldiacylglycerol (MGDG), and (3) diacylglyceryl-trimethylhomoserine (DGTS) and phospholipids (PL) were obtained from the total lipid extracts (TE) of N. oceanica and C. amblystomatis, and their anti-inflammatory effect was assessed by analyzing their capacity to counteract nitric oxide (NO) production and transcription of pro-inflammatory genes Nos2, Ptgs2, Tnfa, and Il1b in lipopolysaccharide (LPS)-activated macrophages. For both microalgae, TE and Fractions 1 and 3 strongly inhibited NO production, although to different extents. A strong reduction in the LPS-induced transcription of Nos2, Ptgs2, Tnfa, and Il1b was observed for N. oceanica and C. amblystomatis lipids. The most active fractions were the DGTS-and-PL-enriched fraction from N. oceanica and the DGDG-and-SQDG-enriched fraction from C. amblystomatis. Our results reveal that microalgae lipids have strong anti-inflammatory capacity and may be explored as functional ingredients or nutraceuticals, offering a natural solution to tackle chronic inflammation-associated diseases.
Assuntos
Microalgas , Estramenópilas , Humanos , Lipopolissacarídeos/farmacologia , Ciclo-Oxigenase 2 , Macrófagos , Anti-Inflamatórios/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológicoRESUMO
Chitosan particles loaded with dibasic calcium phosphate anhydrous (DCPA) is a promising strategy for combining antimicrobial and osteoconduction properties in regenerative medicine. However, mostly micrometer-sized particles have been reported in the literature, limiting their use and reducing their effect in the biomedical field. We have recently overcome this limitation by developing submicrometer-sized particles with electrospray technique. The objective of this study was to understand how the process parameters control the size and properties of submicrometer chitosan particles loaded with DCPA. Solutions of 10 mg/mL chitosan and 2.5 mg/mL DCPA in a 90% acetic acid were electrosprayed under three distinct flow rate conditions: 0.2, 0.5, and 1.0 mL/h. The particles were crosslinked in a glutaraldehyde atmosphere and characterized in terms of their morphology, inorganic content, zeta potential, and minimum inhibitory concentration (MIC) against S. mutans. All conditions showed particles with two similar morphologies: one small-sized with a spherical shape and another larger-sized with a bi-concave shape. All generated a broad particle size distribution, with a similar mean size of ~ 235 nm. The addition of DCPA decreased the zeta potential for all the samples, but it was above 30 mV, indicating a low aggregation potential. The lower flow rate showed the worst efficacy for DCPA incorporation. Antimicrobial activity was greater in chitosan/DCPA particles with flow rate of 0.5 mL/h. It can be concluded that the flow rate of 0.5 mL/h presents the best compromise solution in terms of morphology, zeta potential, MIC, and inorganic content.
Assuntos
Anti-Infecciosos , Quitosana , Tamanho da Partícula , Fosfatos de Cálcio , Anti-Infecciosos/farmacologiaRESUMO
In recent years, several studies have demonstrated that polyunsaturated fatty acids have strong immunomodulatory properties, altering several functions of macrophages. In the present work, we sought to provide a multi-omic approach combining the analysis of the lipidome, the proteome, and the metabolome of RAW 264.7 macrophages supplemented with phospholipids containing omega-3 (PC 18:0/22:6; ω3-PC) or omega-6 (PC 18:0/20:4; ω6-PC) fatty acids, alone and in the presence of lipopolysaccharide (LPS). Supplementation of macrophages with ω3 and ω6 phospholipids plus LPS produced a significant reprogramming of the proteome of macrophages and amplified the immune response; it also promoted the expression of anti-inflammatory proteins (e.g., pleckstrin). Supplementation with the ω3-PC and ω6-PC induced significant changes in the lipidome, with a marked increase in lipid species linked to the inflammatory response, attributed to several pro-inflammatory signalling pathways (e.g., LPCs) but also to the pro-resolving effect of inflammation (e.g., PIs). Finally, the metabolomic analysis demonstrated that supplementation with ω3-PC and ω6-PC induced the expression of several metabolites with a pronounced inflammatory and anti-inflammatory effect (e.g., succinate). Overall, our data show that supplementation of macrophages with ω3-PC and ω6-PC effectively modulates the lipidome, proteome, and metabolome of these immune cells, affecting several metabolic pathways involved in the immune response that are triggered by inflammation.
Assuntos
Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Fatores Imunológicos/metabolismo , Lipídeos/fisiologia , Macrófagos/metabolismo , Fosfolipídeos/metabolismo , Proteínas/metabolismo , Animais , Imunidade/fisiologia , Inflamação/metabolismo , Lipidômica/métodos , Metaboloma/fisiologia , Camundongos , Proteoma/metabolismo , Células RAW 264.7 , Transdução de Sinais/fisiologiaRESUMO
Some sea slugs are able to steal functional chloroplasts (kleptoplasts) from their algal food sources, but the role and relevance of photosynthesis to the animal host remain controversial. While some researchers claim that kleptoplasts are slowly digestible 'snacks', others advocate that they enhance the overall fitness of sea slugs much more profoundly. Our analysis shows light-dependent incorporation of 13C and 15N in the albumen gland and gonadal follicles of the sea slug Elysia timida, representing translocation of photosynthates to kleptoplast-free reproductive organs. Long-chain polyunsaturated fatty acids with reported roles in reproduction were produced in the sea slug cells using labelled precursors translocated from the kleptoplasts. Finally, we report reduced fecundity of E. timida by limiting kleptoplast photosynthesis. The present study indicates that photosynthesis enhances the reproductive fitness of kleptoplast-bearing sea slugs, confirming the biological relevance of this remarkable association between a metazoan and an algal-derived organelle.
Assuntos
Gastrópodes , Aptidão Genética , Animais , Cloroplastos/metabolismo , FotossínteseRESUMO
While complex lipids of seaweeds are known to display important phytochemical properties, their full potential is yet to be explored. This review summarizes the findings of a systematic survey of scientific publications spanning over the years 2000 to January 2021 retrieved from Web of Science (WoS) and Scopus databases to map the state of the art and identify knowledge gaps on the relationship between the complex lipids of seaweeds and their reported bioactivities. Eligible publications (270 in total) were classified in five categories according to the type of studies using seaweeds as raw biomass (category 1); studies using organic extracts (category 2); studies using organic extracts with identified complex lipids (category 3); studies of extracts enriched in isolated groups or classes of complex lipids (category 4); and studies of isolated complex lipids molecular species (category 5), organized by seaweed phyla and reported bioactivities. Studies that identified the molecular composition of these bioactive compounds in detail (29 in total) were selected and described according to their bioactivities (antitumor, anti-inflammatory, antimicrobial, and others). Overall, to date, the value for seaweeds in terms of health and wellness effects were found to be mostly based on empirical knowledge. Although lipids from seaweeds are little explored, the published work showed the potential of lipid extracts, fractions, and complex lipids from seaweeds as functional ingredients for the food and feed, cosmeceutical, and pharmaceutical industries. This knowledge will boost the use of the chemical diversity of seaweeds for innovative value-added products and new biotechnological applications.
Assuntos
Anti-Inflamatórios/farmacologia , Lipídeos/farmacologia , Alga Marinha/química , Animais , Anti-Inflamatórios/química , Organismos Aquáticos , Lipídeos/química , Relação Estrutura-AtividadeRESUMO
Seaweeds are considered healthy and sustainable food. Although their consumption is modest in Western countries, the demand for seaweed in food markets is increasing in Europe. Each seaweed species has unique nutritional and functional features. The preparation of blends, obtained by mixing several seaweeds species, allows the obtaining of maximum benefits and ingredients with single characteristics. In this work, five seaweed blends, commercially available and produced under organic conditions in Europe, were characterized. The proximal composition included contents of ash (20.28-28.68% DW), proteins (17.79-26.61% DW), lipids (0.55-1.50% DW), and total carbohydrates (39.47-47.37% DW). Fatty acid profiles were determined by gas chromatography-mass spectrometry (GC-MS), allowing quantification of healthy fatty acids, namely n-3 and n-6 polyunsaturated fatty acids (PUFA), and calculation of lipid quality indices. Each blend showed a characteristic PUFA content in the lipid pool (35.77-49.43% of total fatty acids) and the content in essential and healthy n-3 PUFA is highlighted. The atherogenicity (0.54-0.72) and thrombogenicity (0.23-0.45) indices evidenced a good nutritional value of lipid fractions. As nutritional and environmentally attractive products, the consumption of the studied seaweed blends can contribute to a healthy lifestyle.
Assuntos
Ácidos Graxos Insaturados/análise , Alga Marinha , Animais , Organismos Aquáticos , Europa (Continente) , Alimento Funcional , Valor NutritivoRESUMO
Marine edible macroalgae have functional proprieties that might improve human health and wellbeing. Lipids represent a minor fraction of macroalgae, yet with major interest as main carriers of omega 3 polyunsaturated fatty acids and intrinsic bioactive properties. In this study, we used lipid extracts from the green macroalgae Ulva rigida and Codium tomentosum; the red Gracilaria gracilis,Palmaria palmata and Porphyra dioica; and the brown Fucus vesiculosus, produced in a land-based integrated multitrophic aquaculture (IMTA) system. We determined the lipid quality indices based on their fatty acid profiles and their bioactivities as putative antioxidant, anti-inflammatory and antiproliferative agents. The results reveal to be species-specific, namely U. rigida displayed the lowest atherogenicity and thrombogenicity indices. Palmaria palmata and F. vesiculosus lipid extracts displayed the lowest inhibitory concentration in the free radical scavenging antioxidant assays. Ulva rigida, C. tomentosum, P. palmata and P. dioica inhibited COX-2 activity by up to 80%, while P. dioica and P. palmata extracts showed the highest cytotoxic potential in the MDA-MB-231 breast cancer cells. This work enhances the valorization of macroalgae as functional foods and promising ingredients for sustainable and healthy diets and fosters new applications of high-valued algal biomass, in a species-specific context.
Assuntos
Neoplasias da Mama/tratamento farmacológico , Citotoxinas , Fucus/química , Gracilaria/química , Lipídeos , Porphyra/química , Ulva/química , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Citotoxinas/química , Citotoxinas/farmacologia , Feminino , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Humanos , Lipídeos/química , Lipídeos/farmacologiaRESUMO
Palmaria palmata is an edible red macroalga widely used for human consumption and valued for its high protein value. Despite its low total lipid content, it is rich in eicosapentaenoic acid (EPA). This seaweed has been scarcely explored with regard to its lipid composition. The polar lipids of seaweeds are nowadays recognized as important phytochemicals contributing to their add value valorization and providing support for claims of potential health benefits. The present study aimed to disclose the polar lipid profile of P. palmata, farmed in an integrated multi-trophic aquaculture (IMTA) through modern lipidomic approaches using high-resolution LC-MS and MS/MS and to screen for the antioxidant properties of this red macroalga. A total of 143 molecular species of lipids were identified, belonging to several classes of polar lipids, such as glycolipids, phospholipids, and betaine lipids. It is noteworthy that the most abundant lipid species in each class were esterified with eicosapentaenoic acid (EPA), accounting for more than 50% of the lipid content. The polar lipid extract rich in EPA showed antioxidant activity with an inhibition concentration (IC) of IC30 = 171 ± 19.8 µg/mL for α,α-diphenyl-ß-picrylhydrazyl radical (DPPHâ) and IC50 = 26.2 ± 0.1 µg/mL for 2,20-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radical cation (ABTSâ+). Overall, this study highlights that P. palmata farmed in an IMTA framework can be a sustainable source of beneficial lipids with antioxidant activity. Moreover, this red macroalga can be exploited for future applications as a source of lipids rich in EPA for food and feed, nutraceuticals, and cosmetics.
Assuntos
Ácido Eicosapentaenoico/análise , Sequestradores de Radicais Livres/farmacocinética , Extratos Vegetais/farmacologia , Rodófitas/química , Alga Marinha/química , Aquicultura , Cromatografia Líquida de Alta Pressão , Cosméticos , Suplementos Nutricionais , Sequestradores de Radicais Livres/análise , Sequestradores de Radicais Livres/química , Alimento Funcional , Concentração Inibidora 50 , Lipidômica , Extratos Vegetais/análise , Extratos Vegetais/química , Espectrometria de Massas em TandemRESUMO
The aims of the this prospective study were to analyse physical activity (PA) engagement during the first and second trimesters, considering the different guidelines published on PA, to document the individual characteristics associated with the accomplishment of these guidelines and to examine pregnant women's perceived barriers to leisure PA, using a socioecological framework. A sample of 133 pregnant women in two stages--at 10-12 weeks' gestation (T1) and 20-22 weeks' gestation (T2)--were evaluated. PA was assessed by accelerometry during the T1 and T2 evaluation stages. Socio-demographic characteristics, lifestyle factors and barriers to leisure PA were assessed via questionnaire. A large proportion of women (ranging from 32% to 96%) did not reach the levels of PA recommended by the guidelines. There were no significant differences between T1 and T2 with regard to compliance with PA recommendations. A decrease in PA levels from T1 to T2 was noted for all recommendations. No associations were found between participants' characteristics and adherence to the recommendations in T1 and T2. No significant differences were found in barriers to leisure PA between T1 and T2. The most commonly reported barriers to leisure PA were intrapersonal, not health related. Our results indicate that there were no differences between trimesters regarding compliance of PA recommendations, and perceived barriers were similar in both trimesters.
Assuntos
Exercício Físico , Guias como Assunto , Comportamentos Relacionados com a Saúde , Atividades de Lazer , Estilo de Vida , Cooperação do Paciente , Feminino , Humanos , Atividade Motora , Percepção , Gravidez , Trimestres da Gravidez , Estudos Prospectivos , Inquéritos e QuestionáriosRESUMO
Elysia crispata is a tropical sea slug that can retain intracellular functional chloroplasts from its algae prey, a mechanism termed kleptoplasty. This sea slug, like other gastropods, secretes mucus, a viscous secretion with multiple functions, including lubrication, protection, and locomotion. This study presents the first comprehensive analysis of the mucus proteome of the sea slug E. crispata using gel electrophoresis and HPLC-MS/MS. We identified 306 proteins in the mucus secretions of this animal, despite the limited entries for E. crispata in the Uniprot database. The functional annotation of the mucus proteome using Gene Ontology identified proteins involved in different functions such as hydrolase activity (molecular function), carbohydrate-derived metabolic processes (biological processes) and cytoskeletal organization (cell component). Moreover, a high proportion of proteins with enzymatic activity in the mucus of E. crispata suggests potential biotechnological applications including antimicrobial and antitumor activities. Putative antimicrobial properties are reinforced by the high abundance of hydrolases. This study also identified proteins common in mucus samples from various species, supporting a common mechanism of mucus in protecting cells and tissues while facilitating animal movement. SIGNIFICANCE: Marine species are increasingly drawing the interest of researchers for their role in discovering new bioactive compounds. The study "Proteomic Analysis of the Mucus of the Photosynthetic Sea Slug Elysia crispata" is a pioneering effort that uncovers the complex protein content in this fascinating sea slug's mucus. This detailed proteomic study has revealed proteins with potential use in biotechnology, particularly for antimicrobial and antitumor purposes. This research is a first step in exploring the possibilities within the mucus of Elysia crispata, suggesting the potential for new drug discoveries. These findings could be crucial in developing treatments for severe diseases, especially those caused by multidrug-resistant bacteria, and may lead to significant advances in medical research.
Assuntos
Anti-Infecciosos , Gastrópodes , Animais , Proteômica , Espectrometria de Massas em Tandem , Proteoma , MucoRESUMO
This study explores the efficacy of texture analysis by using preoperative multi-slice spiral computed tomography (MSCT) to non-invasively determine the grade of cellular differentiation in head and neck squamous cell carcinoma (HNSCC). In a retrospective study, MSCT scans of patients with HNSCC were analyzed and classified based on its histological grade as moderately differentiated, well-differentiated, or poorly differentiated. The location of the tumor was categorized as either in the bone or in soft tissues. Segmentation of the lesion areas was conducted, followed by texture analysis. Eleven GLCM parameters across five different distances were calculated. Median values and correlations of texture parameters were examined in relation to tumor differentiation grade by using Spearman's correlation coefficient and Kruskal-Wallis and Dunn tests. Forty-six patients were included, predominantly female (87%), with a mean age of 66.7 years. Texture analysis revealed significant parameter correlations with histopathological grades of tumor differentiation. The study identified no significant age correlation with tumor differentiation, which underscores the potential of texture analysis as an age-independent biomarker. The strong correlations between texture parameters and histopathological grades support the integration of this technique into the clinical decision-making process.
RESUMO
Knowledge of the molecular effects of UV radiation (UVR) on bacteria can contribute to a better understanding of the environmental consequences of enhanced UV levels associated with global climate changes and will help to optimize UV-based disinfection strategies. In the present work, the effects of exposure to UVR in different spectral regions (UVC, 100-280 nm; UVB, 280-320 nm; and UVA, 320-400 nm) on the lipids and proteins of two bacterial strains ( Acinetobacter sp. strain PT5I1.2G and Pseudomonas sp. strain NT5I1.2B) with distinct UV sensitivities were studied by mid-infrared spectroscopy. Exposure to UVR caused an increase in methyl groups associated with lipids, lipid oxidation, and also led to alterations in lipid composition, which were confirmed by gas chromatography. Additionally, mid-infrared spectroscopy revealed the effects of UVR on protein conformation and protein composition, which were confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), oxidative damage to amino acids, and changes in the propionylation, glycosylation and/or phosphorylation status of cell proteins. Differences in the targets of UVR in the two strains tested were identified and may explain their discrepant UV sensitivities. The significance of the results is discussed from an ecological standpoint and with respect to potential improvements in UV-based disinfection technologies.
Assuntos
Lipídeos/química , Proteínas/química , Raios Ultravioleta , Acinetobacter/metabolismo , Eletroforese em Gel de Poliacrilamida , Pseudomonas/metabolismo , Espectrofotometria InfravermelhoRESUMO
The main objective of this paper is to assess pro-environmental behavior, climate change anxiety, perception, hope, and despair in different political orientations. Our specific aims included to assess the validity of all the instruments used; to assess whether the factor structure of the scales were valid across political orientations; to evaluate their reliability; to assess differences concerning age, gender, and political orientation; to learn the variables that explain pro-environmental behavior; and to evaluate the moderating role of climate change perception, despair, and hope in the relationship between climate change anxiety and pro-environmental behavior. Confirmatory factor analyses (CFAs), multi-group CFAs (to calculate measurement invariance), multiple linear regressions, and moderations were performed. Results showed that pro-environmental behavior and climate change hope achieved the four assessed levels of invariance across different political orientations; climate change anxiety achieved the first three levels of invariance; and climate change perception and climate change despair achieved configural invariance. Climate change anxiety, personal experience with climate change, and climate change perception (total, reality, and consequences) presented higher values for the left political orientation than for the right or the center. Climate change anxiety variables contributed most to explaining pro-environmental behaviors. Hope, despair, and climate change perception (consequences) moderated the relationship between climate change anxiety and pro-environmental behavior. These results open up new avenues for investigation, specifically to understand why high levels of anxiety lead to more pro-environmental behaviors.
RESUMO
Macro- and microalgae are currently recognized sources of lipids with great nutritional quality and attractive bioactivities for human health promotion and disease prevention. Due to the lipidomic diversity observed among algae species, giving rise to different nutritional and functional characteristics, the mixture of macro- and microalgae has the potential to present important synergistic effects resulting from the complementarity among algae. The aim of this work was to characterize for the first time the lipidome of a blend of macro- and microalgae and evaluate the antioxidant capacity of its lipid fraction. Fatty acids were profiled by GC-MS, the polar lipidome was identified by high resolution LC-MS, and ABTS+⢠and DPPH⢠assays were used to assess the antioxidant potential. The most abundant fatty acids were oleic (18:1 n-9), α-linolenic (18:3 n-3), and linoleic (18:2 n-6) acids. The lipid extract presented a beneficial n-6/n-3 ratio (0.98) and low values of atherogenic (0.41) and thrombogenic indices (0.27). The polar lipidome revealed 462 lipid species distributed by glycolipids, phospholipids, and betaine lipids, including some species bearing PUFA and a few with reported bioactivities. The lipid extract also showed antioxidant activity. Overall, the results are promising for the valorization of this blend for food, nutraceutical, and biotechnological applications.
RESUMO
A solvate cocrystal of the antimicrobial norfloxacin (NFX) was formed by using isonicotinamide (INA) as a coformer with the solvent evaporation technique. The cocrystal formation was confirmed by performing solid-state characterization techniques. We evaluated the dissolution under supersaturated conditions and also the solubility at the vertex of triphasic domain of cocrystal and NFX in both water and Fasted-State Simulated Intestinal Fluid (FaSSIF). The antimicrobial activity was evaluated using the microdilution technique. The cocrystal showed 1.8 times higher dissolution than NFX in water at 60 min and 1.3 times higher in FaSSIF at 180 min in the kinetic study. The cocrystal also had an increase in solubility of 8.38 times in water and 6.41 times in FaSSIF. The biopharmaceutical properties of NFX with cocrystallization improved antimicrobial action, as shown in the results of minimum inhibitory concentration (MIC) and inhibitory concentrations of 50% (IC50%) and 90% (IC90%). This paper presents, for the first time, a more in-depth analysis of the cocrystal of NFX-INA concerning its dissolution, solubility, and antimicrobial activity. In all these criteria, the cocrystal obtained better results compared to the pure drug.
RESUMO
The microalga Chlorella vulgaris is a popular food ingredient widely used in the industry, with an increasing market size and value. Currently, several edible strains of C. vulgaris with different organoleptic characteristics are commercialized to meet consumer needs. This study aimed to compare the fatty acid (FA) and lipid profile of four commercialized strains of C. vulgaris (C-Auto, C-Hetero, C-Honey, and C-White) using gas- and liquid-chromatography coupled to mass-spectrometry approaches, and to evaluate their antioxidant and anti-inflammatory properties. Results showed that C-Auto had a higher lipid content compared to the other strains and higher levels of omega-3 polyunsaturated FAs (PUFAs). However, the C-Hetero, C-Honey, and C-White strains had higher levels of omega-6 PUFAs. The lipidome signature was also different between strains, as C-Auto had a higher content of polar lipids esterified to omega-3 PUFAs, while C-White had a higher content of phospholipids with omega-6 PUFAs. C-Hetero and C-Honey showed a higher content of triacylglycerols. All extracts showed antioxidant and anti-inflammatory activity, highlighting C-Auto with greater potential. Overall, the four strains of C. vulgaris can be selectively chosen as a source of added-value lipids to be used as ingredients in food and nutraceutical applications for different market needs and nutritional requirements.
RESUMO
Elysia crispata is a sacoglossan sea slug that retains intracellular, functional chloroplasts stolen from their macroalgal food sources. Elysia crispata juveniles start feeding on the algae following metamorphosis, engulfing chloroplasts and turning green. In laboratory-reared animals, we report one juvenile "albino" specimen unable to retain chloroplasts. Within 6 weeks post-metamorphosis, the aposymbiotic sea slug was significantly smaller than its chloroplast-bearing siblings. This evidence highlights that chloroplast acquisition is required for the normal development of E. crispata.
RESUMO
A handful of sea slugs of the order Sacoglossa are able to steal chloroplasts-kleptoplasts-from their algal food sources and maintain them functionally for periods ranging from several weeks to a few months. In this study, we investigated the role of kleptoplast photosynthesis on mucus production by the tropical sea slug Elysia crispata. Animals reared for 5 weeks in quasi dark (5 µmol photons m-2 s-1) showed similar growth to those under regular light (60-90 µmol photons m-2 s-1), showing that kleptoplast photosynthesis was not relevant for growth when sea slugs were fed ad libitum. However, when subjected to short-term desiccation stress, animals reared under regular light produced significantly more mucus. Furthermore, the carbohydrate content of secreted mucus was significantly lower in slugs limited in the photosynthetic activity of their kleptoplasts by quasi-dark conditions. This study indicates that photosynthesis supports the synthesis of protective mucus in kleptoplast-bearing sea slugs.