Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 186(14): 3079-3094.e17, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37321218

RESUMO

Ants communicate via large arrays of pheromones and possess expanded, highly complex olfactory systems, with antennal lobes in the brain comprising up to ∼500 glomeruli. This expansion implies that odors could activate hundreds of glomeruli, which would pose challenges for higher-order processing. To study this problem, we generated transgenic ants expressing the genetically encoded calcium indicator GCaMP in olfactory sensory neurons. Using two-photon imaging, we mapped complete glomerular responses to four ant alarm pheromones. Alarm pheromones robustly activated ≤6 glomeruli, and activity maps for the three pheromones inducing panic alarm in our study species converged on a single glomerulus. These results demonstrate that, rather than using broadly tuned combinatorial encoding, ants employ precise, narrowly tuned, and stereotyped representations of alarm pheromones. The identification of a central sensory hub glomerulus for alarm behavior suggests that a simple neural architecture is sufficient to translate pheromone perception into behavioral outputs.


Assuntos
Formigas , Animais , Formigas/genética , Encéfalo/fisiologia , Odorantes , Feromônios , Olfato/fisiologia , Comportamento Animal
3.
PLoS Biol ; 18(4): e3000220, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32315298

RESUMO

Many lines of evidence point to links between sleep regulation and energy homeostasis, but mechanisms underlying these connections are unknown. During Caenorhabditis elegans sleep, energetic stores are allocated to nonneural tasks with a resultant drop in the overall fat stores and energy charge. Mutants lacking KIN-29, the C. elegans homolog of a mammalian Salt-Inducible Kinase (SIK) that signals sleep pressure, have low ATP levels despite high-fat stores, indicating a defective response to cellular energy deficits. Liberating energy stores corrects adiposity and sleep defects of kin-29 mutants. kin-29 sleep and energy homeostasis roles map to a set of sensory neurons that act upstream of fat regulation as well as of central sleep-controlling neurons, suggesting hierarchical somatic/neural interactions regulating sleep and energy homeostasis. Genetic interaction between kin-29 and the histone deacetylase hda-4 coupled with subcellular localization studies indicate that KIN-29 acts in the nucleus to regulate sleep. We propose that KIN-29/SIK acts in nuclei of sensory neuroendocrine cells to transduce low cellular energy charge into the mobilization of energy stores, which in turn promotes sleep.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Sono/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/metabolismo , Metabolismo Energético/genética , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Mutação , Células Neuroendócrinas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Células Receptoras Sensoriais/metabolismo
4.
J Chem Ecol ; 49(1-2): 1-10, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36759430

RESUMO

Ants communicate via an arsenal of different pheromones produced in a variety of exocrine glands. For example, ants release alarm pheromones in response to danger to alert their nestmates and to trigger behavioral alarm responses. Here we characterize the alarm pheromone and the alarm response of the clonal raider ant Ooceraea biroi, a species that is amenable to laboratory studies but for which no pheromones have been identified. During an alarm response, ants quickly become unsettled, leave their nest pile, and are sometimes initially attracted to the source of alarm, but ultimately move away from it. We find that the alarm pheromone is released from the head of the ant and identify the putative alarm pheromone as a blend of two compounds found in the head, 4-methyl-3-heptanone and 4-methyl-3-heptanol. These compounds are sufficient to induce alarm behavior alone and in combination. They elicit similar, though slightly different behavioral features of the alarm response, with 4-methyl-3-heptanone being immediately repulsive and 4-methyl-3-heptanol being initially attractive before causing ants to move away. The behavioral response to these compounds in combination is dose-dependent, with ants becoming unsettled and attracted to the source of alarm pheromone at low concentrations and repulsed at high concentrations. While 4-methyl-3-heptanone and 4-methyl-3-heptanol are known alarm pheromones in other more distantly related ant species, this is the first report of the chemical identity of a pheromone in O. biroi, and the first alarm pheromone identified in the genus Ooceraea. Identification of a pheromone that triggers a robust, consistent, and conserved behavior, like the alarm pheromone, provides an avenue to dissect the behavioral and neuronal mechanisms underpinning chemical communication.


Assuntos
Formigas , Feromônios , Animais , Feromônios/química , Formigas/fisiologia , Heptanol , Cetonas
5.
PLoS Biol ; 16(11): e3000061, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30500814

RESUMO

Scientific outreach efforts traditionally involve formally trained scientists teaching the general public about the methods, significance, and excitement of science. We recently experimented with an alternative "symbiotic outreach" model that prioritizes building a reciprocal relationship between formally trained and "outsider" scientists to facilitate active two-way communication. Herein, we present the results of our outreach effort involving college students and adults with intellectual and developmental disabilities working together to make biological and multimedia art. By discussing the steps others can take to cultivate reciprocal outreach within their local communities, we hope to lower the barrier for widespread adoption of similar approaches and ultimately to decrease the gap between formally trained scientists and the general public.


Assuntos
Educação de Pessoa com Deficiência Intelectual/métodos , Ciência/educação , Adulto , Arte , Comunicação , Relações Comunidade-Instituição/tendências , Humanos , Deficiência Intelectual , Estudantes , Universidades , Adulto Jovem
6.
bioRxiv ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38405746

RESUMO

While the neural basis of age-related decline has been extensively studied (1-3), less is known about changes in neural function during the pre-senescent stages of adulthood. Adult neural plasticity is likely a key factor in social insect age polyethism, where individuals perform different tasks as they age and divide labor in an age-dependent manner (4-9). Primarily, workers transition from nursing to foraging tasks (5, 10), become more aggressive, and more readily display alarm behavior (11-16) as they get older. While it is unknown how these behavioral dynamics are neurally regulated, they could partially be generated by altered salience of behaviorally relevant stimuli (4, 6, 7). Here, we investigated how odor coding in the antennal lobe (AL) changes with age in the context of alarm pheromone communication in the clonal raider ant (Ooceraea biroi) (17). Similar to other social insects (11, 12, 16), older ants responded more rapidly to alarm pheromones, the chemical signals for danger. Using whole-AL calcium imaging (18), we then mapped odor representations for five general odorants and two alarm pheromones in young and old ants. Alarm pheromones were represented sparsely at all ages. However, alarm pheromone responses within individual glomeruli changed with age, either increasing or decreasing. Only two glomeruli became sensitized to alarm pheromones with age, while at the same time becoming desensitized to general odorants. Our results suggest that the heightened response to alarm pheromones in older ants occurs via increased sensitivity in these two core glomeruli, illustrating the importance of sensory modulation in social insect division of labor and age-associated behavioral plasticity.

7.
Curr Biol ; 34(14): 3233-3240.e4, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38876103

RESUMO

While the neural basis of age-related decline has been extensively studied,1,2,3 less is known about changes in neural function during the pre-senescent stages of adulthood. Adult neural plasticity is likely a key factor in social insect age polyethism, where individuals perform different tasks as they age and divide labor in an age-dependent manner.4,5,6,7,8,9 Primarily, workers transition from nursing to foraging tasks,5,10 become more aggressive, and more readily display alarm behavior11,12,13,14,15,16 as they get older. While it is unknown how these behavioral dynamics are neurally regulated, they could partially be generated by altered salience of behaviorally relevant stimuli.4,6,7 Here, we investigated how odor coding in the antennal lobe (AL) changes with age in the context of alarm pheromone communication in the clonal raider ant (Ooceraea biroi).17 Similar to other social insects,11,12,16 older ants responded more rapidly to alarm pheromones, the chemical signals for danger. Using whole-AL calcium imaging,18 we then mapped odor representations for five general odorants and two alarm pheromones in young and old ants. Alarm pheromones were represented sparsely at all ages. However, alarm pheromone responses within individual glomeruli changed with age, either increasing or decreasing. Only two glomeruli became sensitized to alarm pheromones with age, while at the same time becoming desensitized to general odorants. Our results suggest that the heightened response to alarm pheromones in older ants occurs via increased sensitivity in these two core glomeruli, illustrating the importance of sensory modulation in social insect division of labor and age-associated behavioral plasticity.


Assuntos
Formigas , Antenas de Artrópodes , Feromônios , Animais , Formigas/fisiologia , Feromônios/metabolismo , Antenas de Artrópodes/fisiologia , Envelhecimento/fisiologia , Odorantes , Fatores Etários
8.
Genetics ; 207(2): 571-582, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28754659

RESUMO

Stress-induced sleep (SIS) in Caenorhabditis elegans is important for restoration of cellular homeostasis and is a useful model to study the function and regulation of sleep. SIS is triggered when epidermal growth factor (EGF) activates the ALA neuron, which then releases neuropeptides to promote sleep. To further understand this behavior, we established a new model of SIS using irradiation by ultraviolet C (UVC) light. While UVC irradiation requires ALA signaling and leads to a sleep state similar to that induced by heat and other stressors, it does not induce the proteostatic stress seen with heat exposure. Based on the known genotoxic effects of UVC irradiation, we tested two genes, atl-1 and cep-1, which encode proteins that act in the DNA damage response pathway. Loss-of-function mutants of atl-1 had no defect in UVC-induced SIS but a partial loss-of-function mutant of cep-1, gk138, had decreased movement quiescence following UVC irradiation. Germline ablation experiments and tissue-specific RNA interference experiments showed that cep-1 is required somatically in neurons for its effect on SIS. The cep-1(gk138) mutant suppressed body movement quiescence controlled by EGF, indicating that CEP-1 acts downstream or in parallel to ALA activation to promote quiescence in response to ultraviolet light.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Sono , Estresse Fisiológico , Proteína Supressora de Tumor p53/metabolismo , Raios Ultravioleta , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/efeitos da radiação , Proteínas de Caenorhabditis elegans/genética , Mutação com Perda de Função , Movimento , Neurônios/metabolismo , Proteína Supressora de Tumor p53/genética
9.
Elife ; 62017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28094002

RESUMO

In response to environments that cause cellular stress, animals engage in sleep behavior that facilitates recovery from the stress. In Caenorhabditis elegans, stress-induced sleep(SIS) is regulated by cytokine activation of the ALA neuron, which releases FLP-13 neuropeptides characterized by an amidated arginine-phenylalanine (RFamide) C-terminus motif. By performing an unbiased genetic screen for mutants that impair the somnogenic effects of FLP-13 neuropeptides, we identified the gene dmsr-1, which encodes a G-protein coupled receptor similar to an insect RFamide receptor. DMSR-1 is activated by FLP-13 peptides in cell culture, is required for SIS in vivo, is expressed non-synaptically in several wake-promoting neurons, and likely couples to a Gi/o heterotrimeric G-protein. Our data expand our understanding of how a single neuroendocrine cell coordinates an organism-wide behavioral response, and suggest that similar signaling principles may function in other organisms to regulate sleep during sickness.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Regulação da Expressão Gênica , Neuropeptídeos/metabolismo , Receptores de Peptídeos/metabolismo , Sono , Estresse Fisiológico , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA