Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomedicines ; 11(2)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36830922

RESUMO

Mutations in the Crumbs homolog 1 (CRB1) gene lead to severe inherited retinal dystrophies (IRDs), accounting for nearly 80,000 cases worldwide. To date, there is no therapeutic option for patients suffering from CRB1-IRDs. Therefore, it is of great interest to evaluate gene editing strategies capable of correcting CRB1 mutations. A retrospective chart review was conducted on ten patients demonstrating one or two of the top ten most prevalent CRB1 mutations and receiving care at Columbia University Irving Medical Center, New York, NY, USA. Patient phenotypes were consistent with previously published data for individual CRB1 mutations. To identify the optimal gene editing strategy for these ten mutations, base and prime editing designs were evaluated. For base editing, we adopted the use of a near-PAMless Cas9 (SpRY Cas9), whereas for prime editing, we evaluated the canonical NGG and NGA prime editors. We demonstrate that for the correction of c.2843G>A, p.(Cys948Tyr), the most prevalent CRB1 mutation, base editing has the potential to generate harmful bystanders. Prime editing, however, avoids these bystanders, highlighting its future potential to halt CRB1-mediated disease progression. Additional studies investigating prime editing for CRB1-IRDs are needed, as well as a thorough analysis of prime editing's application, efficiency, and safety in the retina.

2.
Antioxidants (Basel) ; 12(2)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36829938

RESUMO

Age-related macular degeneration (AMD) is the leading cause of severe vision loss and blindness in elderly people worldwide. The damage to the retinal pigment epithelium (RPE) triggered by oxidative stress plays a central role in the onset and progression of AMD and results from the excessive accumulation of reactive oxygen species (ROS) produced mainly by mitochondria. Tumor necrosis factor receptor-associated protein 1 (TRAP1) is a mitochondrial molecular chaperone that contributes to the maintenance of mitochondrial integrity by decreasing the production and accumulation of ROS. The present study aimed to evaluate the presence and the role of TRAP1 in the RPE. Here, we report that TRAP1 is expressed in human adult retinal pigment epithelial cells and is located mainly in the mitochondria. Exposure of RPE cells to hydrogen peroxide decreases the levels of TRAP1. Furthermore, TRAP1 silencing increases intracellular ROS production and decreases mitochondrial respiratory capacity without affecting cell proliferation. Together, these findings offer novel insights into TRAP1 functions in RPE cells, opening possibilities to develop new treatment options for AMD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA