Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Immunobiology ; 227(6): 152288, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36209721

RESUMO

The clinical presentation of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), ranges between mild respiratory symptoms and a severe disease that shares many of the features of sepsis. Sepsis is a deregulated response to infection that causes life-threatening organ failure. During sepsis, the intestinal epithelial cells are affected, causing an increase in intestinal permeability and allowing microbial translocation from the intestine to the circulation, which exacerbates the inflammatory response. Here we studied patients with moderate, severe and critical COVID-19 by measuring a panel of molecules representative of the innate and adaptive immune responses to SARS-CoV-2, which also reflect the presence of systemic inflammation and the state of the intestinal barrier. We found that non-surviving COVID-19 patients had higher levels of low-affinity anti-RBD IgA antibodies than surviving patients, which may be a response to increased microbial translocation. We identified sFas and granulysin, in addition to IL-6 and IL-10, as possible early biomarkers with high sensitivity (>73 %) and specificity (>51 %) to discriminate between surviving and non-surviving COVID-19 patients. Finally, we found that the microbial metabolite d-lactate and the tight junction regulator zonulin were increased in the serum of patients with severe COVID-19 and in COVID-19 patients with secondary infections, suggesting that increased intestinal permeability may be a source of secondary infections in these patients. COVID-19 patients with secondary infections had higher disease severity and mortality than patients without these infections, indicating that intestinal permeability markers could provide complementary information to the serum cytokines for the early identification of COVID-19 patients with a high risk of a fatal outcome.


Assuntos
COVID-19 , Coinfecção , Sepse , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Interleucina-6 , Interleucina-10 , Permeabilidade , Biomarcadores , Intestinos
2.
Liver Res ; 5(1): 21-27, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33520337

RESUMO

BACKGROUND AND AIM: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the current pandemic, can have multi-organ impact. Recent studies show that liver injury could be a manifestation of the disease, and that liver disease could also be related to a worse prognosis. Our aim was to compare the characteristics of patients with severe coronavirus disease 2019 (COVID-19) due to SARS-CoV-2 who required intubation versus stable hospitalized patients to identify the early biochemical predictive factors of a severe course of COVID-19 and subsequent requirement for intubation, specifically in Mexican. METHODS: This was an observational case-control study nested in a cohort study. Complete medical records of patients admitted for confirmed COVID-19 at a tertiary level center in Mexico City were reviewed. Clinical and biochemical data were collected, and the characteristics of patients who required invasive mechanical ventilation (IMV) (cases) were compared with stable hospitalized patients without ventilation (controls). RESULTS: We evaluated 166 patients with COVID-19 due to SARS-CoV-2 infection; 114 (68.7%) were men, the mean age was 50.6 ± 13.3 years, and 27 (16.3%) required IMV. The comparative analysis between cases and controls showed (respectively) significantly lower blood oxygen saturation (SpO2) (73.5 ± 12.0% vs. 83.0 ± 6.8%, P < 0.0001) and elevated alanine aminotransferase (ALT) (128 (14-1123) IU/L vs. 33 (8-453) IU/L, P = 0.003), aspartate aminotransferase (AST) (214 (17-1247) vs. 44 (12-498) IU/L, P = 0.001), lactic dehydrogenase (LDH) (764.6 ± 401.9 IU/L vs. 461.0 ± 185.6 IU/L, P = 0.001), and D-dimer (3463 (524-34,227) ng/mL vs. 829 (152-41,923) ng/mL, P = 0.003) concentrations. Patients in the cases group were older (58.6 ± 12.7 years vs. 49.1 ± 12.8 years, P=0.001). Multivariate analysis showed that important factors at admission predicting the requirement for IMV during hospitalization for COVID-19 were AST ≥250 IU/L (odds ratio (OR) = 64.8, 95% confidence interval (CI) 7.5-560.3, P < 0.0001) and D-dimer ≥ 3500 ng/mL (OR = 4.1, 95% CI 1.2-13.7, P=0.02). CONCLUSIONS: Our study confirms the importance of monitoring liver enzymes in hospitalized patients with COVID-19; seriously ill patients have significantly elevated AST and D-dimer concentrations, which have prognostic implications in the SARS-CoV-2 disease course.

3.
Dis Markers ; 2021: 6658270, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33791045

RESUMO

AIM: Coronavirus disease (COVID-19) ranges from mild clinical phenotypes to life-threatening conditions like severe acute respiratory syndrome (SARS). It has been suggested that early liver injury in these patients could be a risk factor for poor outcome. We aimed to identify early biochemical predictive factors related to severe disease development with intensive care requirements in patients with COVID-19. METHODS: Data from COVID-19 patients were collected at admission time to our hospital. Differential biochemical factors were identified between seriously ill patients requiring intensive care unit (ICU) admission (ICU patients) versus stable patients without the need for ICU admission (non-ICU patients). Multiple linear regression was applied, then a predictive model of severity called Age-AST-D dimer (AAD) was constructed (n = 166) and validated (n = 170). RESULTS: Derivation cohort: from 166 patients included, there were 27 (16.3%) ICU patients that showed higher levels of liver injury markers (P < 0.01) compared with non-ICU patients: alanine aminotrasnferase (ALT) 225.4 ± 341.2 vs. 41.3 ± 41.1, aspartate aminotransferase (AST) 325.3 ± 382.4 vs. 52.8 ± 47.1, lactic dehydrogenase (LDH) 764.6 ± 401.9 vs. 461.0 ± 185.6, D-dimer (DD) 7765 ± 9109 vs. 1871 ± 4146, and age 58.6 ± 12.7 vs. 49.1 ± 12.8. With these finding, a model called Age-AST-DD (AAD), with a cut-point of <2.75 (sensitivity = 0.797 and specificity = 0.391, c - statistic = 0.74; 95%IC: 0.62-0.86, P < 0.001), to predict the risk of need admission to ICU (OR = 5.8; 95% CI: 2.2-15.4, P = 0.001), was constructed. Validation cohort: in 170 different patients, the AAD model < 2.75 (c - statistic = 0.80 (95% CI: 0.70-0.91, P < 0.001) adequately predicted the risk (OR = 8.8, 95% CI: 3.4-22.6, P < 0.001) to be admitted in the ICU (27 patients, 15.95%). CONCLUSIONS: The elevation of AST (a possible marker of early liver injury) along with DD and age efficiently predict early (at admission time) probability of ICU admission during the clinical course of COVID-19. The AAD model can improve the comprehensive management of COVID-19 patients, and it could be useful as a triage tool to early classify patients with a high risk of developing a severe clinical course of the disease.


Assuntos
Aspartato Aminotransferases/química , COVID-19/patologia , Adulto , COVID-19/terapia , COVID-19/virologia , Estudos de Coortes , Dimerização , Feminino , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/isolamento & purificação , Índice de Gravidade de Doença
4.
PLoS One ; 10(5): e0125412, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25938461

RESUMO

Cutaneous squamous cell carcinoma (cSCC) is the second most common skin malignancy and it presents a therapeutic challenge in organ transplant recipient patients. Despite the need, there are only a few targeted drug treatment options. Recent studies have revealed a pivotal role played by microRNAs (miRNAs) in multiple cancers, but only a few studies tested their function in cSCC. Here, we analyzed differential expression of 88 cancer related miRNAs in 43 study participants with cSCC; 32 immunocompetent, 11 OTR patients, and 15 non-lesional skin samples by microarray analysis. Of the examined miRNAs, miR-135b was the most upregulated (13.3-fold, 21.5-fold; p=0.0001) in both patient groups. Similarly, the miR-135b expression was also upregulated in three cSCC cell lines when evaluated by quantitative real-time PCR. In functional studies, inhibition of miR-135b by specific anti-miR oligonucleotides resulted in upregulation of its target gene LZTS1 mRNA and protein levels and led to decreased cell motility and invasion of both primary and metastatic cSCC cell lines. In contrast, miR-135b overexpression by synthetic miR-135b mimic induced further down-regulation of LZTS1 mRNA in vitro and increased cancer cell motility and invasiveness. Immunohistochemical evaluation of 67 cSCC tumor tissues demonstrated that miR-135b expression inversely correlated with LZTS1 staining intensity and the tumor grade. These results indicate that miR-135b functions as an oncogene in cSCC and provide new understanding into its pathological role in cSCC progression and invasiveness.


Assuntos
Carcinoma de Células Escamosas/genética , Proteínas de Ligação a DNA/metabolismo , MicroRNAs/metabolismo , Neoplasias Cutâneas/genética , Proteínas Supressoras de Tumor/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Proteínas de Ligação a DNA/genética , Regulação para Baixo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , MicroRNAs/genética , Invasividade Neoplásica , Neoplasias Cutâneas/patologia , Transfecção , Proteínas Supressoras de Tumor/genética
5.
J Invest Dermatol ; 133(4): 1088-96, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23190879

RESUMO

In the event of a radionuclear attack or nuclear accident, the skin would be the first barrier exposed to radiation, though skin injury can progress over days to years following exposure. Chronic oxidative stress has been implicated as being a potential contributor to the progression of delayed radiation-induced injury to skin and other organs. To examine the causative role of oxidative stress in delayed radiation-induced skin injury, including impaired wound healing, we tested a synthetic superoxide dismutase (SOD)/catalase mimetic, EUK-207, in a rat model of combined skin irradiation and wound injury. Administered systemically, beginning 48 hours after irradiation, EUK-207 mitigated radiation dermatitis, suppressed indicators of tissue oxidative stress, and enhanced wound healing. Evaluation of gene expression in irradiated skin at 30 days after exposure revealed a significant upregulation of several key genes involved in detoxication of reactive oxygen and nitrogen species. This gene expression pattern was primarily reversed by EUK-207 therapy. These results demonstrate that oxidative stress has a critical role in the progression of radiation-induced skin injury, and that the injury can be mitigated by appropriate antioxidant compounds administered 48 hours after exposure.


Assuntos
Compostos Organometálicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Lesões Experimentais por Radiação/tratamento farmacológico , Radiodermite/tratamento farmacológico , Cicatrização/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Catalase/metabolismo , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/fisiologia , Masculino , Mimetismo Molecular/fisiologia , Estresse Oxidativo/genética , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/patologia , Radiodermite/metabolismo , Radiodermite/patologia , Ratos , Ratos Endogâmicos , Pele/irrigação sanguínea , Pele/patologia , Pele/efeitos da radiação , Superóxido Dismutase/metabolismo , Cicatrização/fisiologia
6.
Mem. Inst. Invest. Cienc. Salud (Impr.) ; 10(1): 89-99, jun. 2012. tab
Artigo em Espanhol | LILACS, BDNPAR | ID: lil-663628

RESUMO

Los efectos inducidos por exposición de manera accidental o terapéutica a dosis de radiaciones ionizantes inducen varios eventos celulares que afectan el proceso de cicatrización de la piel, y tiene gran impacto en la prognosis y supervivencia de individuos afectados. La información existente sobre los efectos nocivos por altas exposiciones a radiaciones proviene a partir de los accidentes ocurridos por las bombas atómicas en Hiroshima y Nagasaki produciendo problemas de salud por leucemias y linfomas en los sobrevivientes. El síndrome de radiación aguda (SRA) generalmente inicia durante las dos horas inmediatas posteriores a la exposición, y la severidad de las lesiones depende de la dosis y del tiempo de exposición. El desarrollo de las lesiones por el daño como efectos tardíos a exposiciones por radiaciones es más complejo y determina no únicamente el daño al parénquima celular sino también se presentan daños en el tejido vascular y en otros tejidos de soporte. Al menos parcialmente estos eventos se presentan a consecuencia del estrés oxidativo generado por el excesivo incremento de especies reactivas del oxígeno (EROs). Se han estado estudiando componentes comerciales como blancos potenciales para la prevención de los daños causados por radiaciones en piel que tienen una amplia actividad contra múltiples citocinas involucradas en los procesos de la lesión cutánea y por otro lado se están estudiando fármacos que reaccionan con los radicales libres o indirectamente inhiben la expresión de las enzimas que generan la producción de EROs o bien aumentan la expresión de enzimas antioxidantes intracelulares


Assuntos
Espécies Reativas de Oxigênio , Exposição à Radiação , Pele
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA