Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 9(2): e1003228, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23459311

RESUMO

The alveolar compartment, the fundamental gas exchange unit in the lung, is critical for tissue oxygenation and viability. We explored hepatocyte growth factor (HGF), a pleiotrophic cytokine that promotes epithelial proliferation, morphogenesis, migration, and resistance to apoptosis, as a candidate mediator of alveolar formation and regeneration. Mice deficient in the expression of the HGF receptor Met in lung epithelial cells demonstrated impaired airspace formation marked by a reduction in alveolar epithelial cell abundance and survival, truncation of the pulmonary vascular bed, and enhanced oxidative stress. Administration of recombinant HGF to tight-skin mice, an established genetic emphysema model, attenuated airspace enlargement and reduced oxidative stress. Repair in the TSK/+ mouse was punctuated by enhanced akt and stat3 activation. HGF treatment of an alveolar epithelial cell line not only induced proliferation and scattering of the cells but also conferred protection against staurosporine-induced apoptosis, properties critical for alveolar septation. HGF promoted cell survival was attenuated by akt inhibition. Primary alveolar epithelial cells treated with HGF showed improved survival and enhanced antioxidant production. In conclusion, using both loss-of-function and gain-of-function maneuvers, we show that HGF signaling is necessary for alveolar homeostasis in the developing lung and that augmentation of HGF signaling can improve airspace morphology in murine emphysema. Our studies converge on prosurvival signaling and antioxidant protection as critical pathways in HGF-mediated airspace maintenance or repair. These findings support the exploration of HGF signaling enhancement for diseases of the airspace.


Assuntos
Fator de Crescimento de Hepatócito , Homeostase , Proteínas Proto-Oncogênicas c-met , Alvéolos Pulmonares , Animais , Movimento Celular/genética , Proliferação de Células , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Fator de Crescimento de Hepatócito/administração & dosagem , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Camundongos , Morfogênese/genética , Morfogênese/fisiologia , Proteínas Proto-Oncogênicas c-met/deficiência , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/fisiologia , Enfisema Pulmonar/genética , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/fisiopatologia , Transdução de Sinais , Sobrevivência de Tecidos/genética
2.
J Clin Invest ; 122(1): 229-40, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22182843

RESUMO

Chronic obstructive pulmonary disease (COPD) is a prevalent smoking-related disease for which no disease-altering therapies currently exist. As dysregulated TGF-ß signaling associates with lung pathology in patients with COPD and in animal models of lung injury induced by chronic exposure to cigarette smoke (CS), we postulated that inhibiting TGF-ß signaling would protect against CS-induced lung injury. We first confirmed that TGF-ß signaling was induced in the lungs of mice chronically exposed to CS as well as in COPD patient samples. Importantly, key pathological features of smoking-associated lung disease in patients, e.g., alveolar injury with overt emphysema and airway epithelial hyperplasia with fibrosis, accompanied CS-induced alveolar cell apoptosis caused by enhanced TGF-ß signaling in CS-exposed mice. Systemic administration of a TGF-ß-specific neutralizing antibody normalized TGF-ß signaling and alveolar cell death, conferring improved lung architecture and lung mechanics in CS-exposed mice. Use of losartan, an angiotensin receptor type 1 blocker used widely in the clinic and known to antagonize TGF-ß signaling, also improved oxidative stress, inflammation, metalloprotease activation and elastin remodeling. These data support our hypothesis that inhibition of TGF-ß signaling through angiotensin receptor blockade can attenuate CS-induced lung injury in an established murine model. More importantly, our findings provide a preclinical platform for the development of other TGF-ß-targeted therapies for patients with COPD.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Doença Pulmonar Obstrutiva Crônica/prevenção & controle , Fumar/efeitos adversos , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Losartan/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos AKR , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Receptor Tipo 1 de Angiotensina/metabolismo , Mecânica Respiratória/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/metabolismo
3.
PLoS One ; 6(6): e20712, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21713037

RESUMO

BACKGROUND: Respiratory dysfunction is a major contributor to morbidity and mortality in aged populations. The susceptibility to pulmonary insults is attributed to "low pulmonary reserve", ostensibly reflecting a combination of age-related musculoskeletal, immunologic and intrinsic pulmonary dysfunction. METHODS/PRINCIPAL FINDINGS: Using a murine model of the aging lung, senescent DBA/2 mice, we correlated a longitudinal survey of airspace size and injury measures with a transcriptome from the aging lung at 2, 4, 8, 12, 16 and 20 months of age. Morphometric analysis demonstrated a nonlinear pattern of airspace caliber enlargement with a critical transition occurring between 8 and 12 months of age marked by an initial increase in oxidative stress, cell death and elastase activation which is soon followed by inflammatory cell infiltration, immune complex deposition and the onset of airspace enlargement. The temporally correlative transcriptome showed exuberant induction of immunoglobulin genes coincident with airspace enlargement. Immunohistochemistry, ELISA analysis and flow cytometry demonstrated increased immunoglobulin deposition in the lung associated with a contemporaneous increase in activated B-cells expressing high levels of TLR4 (toll receptor 4) and CD86 and macrophages during midlife. These midlife changes culminate in progressive airspace enlargement during late life stages. CONCLUSION/SIGNIFICANCE: Our findings establish that a tissue-specific aging program is evident during a presenescent interval which involves early oxidative stress, cell death and elastase activation, followed by B lymphocyte and macrophage expansion/activation. This sequence heralds the progression to overt airspace enlargement in the aged lung. These signature events, during middle age, indicate that early stages of the aging immune system may have important correlates in the maintenance of tissue morphology. We further show that time-course analyses of aging models, when informed by structural surveys, can reveal nonintuitive signatures of organ-specific aging pathology.


Assuntos
Envelhecimento/patologia , Homeostase , Pulmão/patologia , Pulmão/fisiopatologia , Animais , Linfócitos B/imunologia , Morte Celular , Imunoglobulinas/metabolismo , Pulmão/imunologia , Masculino , Camundongos , Camundongos Endogâmicos DBA , Monócitos/imunologia , Estresse Oxidativo , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA