Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Phytopathology ; 114(3): 590-602, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38079394

RESUMO

Growers often use alternations or mixtures of fungicides to slow down the development of resistance to fungicides. However, within a landscape, some growers will implement such resistance management methods, whereas others do not, and may even apply solo components of the resistance management program. We investigated whether growers using solo components of resistant management programs affect the durability of disease control in fields of those who implement fungicide resistance management. We developed a spatially implicit semidiscrete epidemiological model for the development of fungicide resistance. The model simulates the development of epidemics of spot-form net blotch disease, caused by the pathogen Pyrenophora teres f. maculata. The landscape comprises three types of fields, grouped according to their treatment program, with spore dispersal between fields early in the cropping season. In one field type, a fungicide resistance management method is implemented, whereas in the two others, it is not, with one of these field types using a component of the fungicide resistance management program. The output of the model suggests that the use of component fungicides does affect the durability of disease control for growers using resistance management programs. The magnitude of the effect depends on the characteristics of the pathosystem, the degree of inoculum mixing between fields, and the resistance management program being used. Additionally, although increasing the amount of the solo component in the landscape generally decreases the lifespan within which the resistance management program provides effective control, situations exist where the lifespan may be minimized at intermediate levels of the solo component fungicide. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Ascomicetos , Fungicidas Industriais , Hordeum , Fungicidas Industriais/farmacologia , Austrália Ocidental , Doenças das Plantas/prevenção & controle
2.
Phytopathology ; 114(1): 269-281, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37505095

RESUMO

Fungicide resistance in foliar fungal pathogens is an increasing challenge to crop production. Yield impacts due to loss of fungicide efficacy may be reduced through effective surveillance and appropriate management intervention. For stubble-borne pathogens, off-season crop residues may be used to monitor fungicide resistance to inform pre-planting decisions; however, appropriate sampling strategies and support sizes for crop residues have not previously been considered. Here, we used Pyrenophora teres f. teres (Ptt) with resistance to demethylase inhibitor fungicides as a model system to assess spatial dependency and to compare the effects of different sampling strategies and support sizes on pathogen density (Ptt DNA concentration) and the frequency of fungicide resistance mutation. The results showed that sampling strategies (hand-picked versus raked) did not affect estimates of pathogen density or fungicide resistance frequency; however, sample variances were lower from raked samples. The effects of differing sample support size, as the size of the collection area (1.2, 8.6, or 60 m2), on fungicide resistance frequency were not evident (P > 0.05). However, measures of pathogen density increased with area size (P < 0.05); the 60 m2 area yielded the highest Ptt DNA concentration and produced the lowest number of pathogen-absent samples. Sample variances for pathogen density and fungicide resistance frequency were generally homogeneous between area sizes. The pattern of pathogen density was spatially independent; however, spatial dependency was identified for fungicide resistance frequency, with a range of 110 m, in one of the two fields surveyed. Collectively, the results inform designs for monitoring of fungicide resistance in stubble-borne pathogens.


Assuntos
Ascomicetos , Fungicidas Industriais , Hordeum , Fungicidas Industriais/farmacologia , Hordeum/microbiologia , Doenças das Plantas/microbiologia , DNA , Análise Espacial
3.
Phytopathology ; 113(2): 321-333, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36075052

RESUMO

Globally, yield losses associated with failed crop protection due to fungicide-resistant pathogens present an increasing problem. For stubble-borne pathogens, assessment of crop residues during the off-season could provide early fungicide resistance quantification for informed management decisions to mitigate yield losses. However, stubble assessment is hampered by assay inhibitors that are derived from decaying organic matter. To overcome assay inhibition from weathered stubble samples, we used a systems approach to quantify the frequency of resistance to demethylase inhibitor fungicides of the barley pathogen Pyrenophora teres f. teres. The system canvassed (i) 10 ball-milling conditions; (ii) four DNA extraction methodologies; and (iii) three column purification techniques for the provision of sufficient yield, quality, and purity of fungal DNA for a PCR-based fungicide resistance assay. Results show that DNA quantity and purity differed within each of the above three categories, with the optimized pipeline being (i) ball-milling samples in a 50-ml stainless steel canister for 5 min using a 20-mm ball at 30 revolutions s-1; (ii) a modified Brandfass method (extracted 64% more DNA than other methods assessed); and (iii) use of silica resin columns for the highest DNA concentration with optimal DNA purity. The chip-digital PCR assay, which quantified fungicide resistance from field samples, was unaffected by the DNA extraction method or purification technique, provided that thresholds of template quantity and purity were satisfied. In summary, this study has developed molecular pipeline options for pathogen fungicide resistance quantification from cereal stubbles, which can guide management for improved crop protection outcomes.


Assuntos
Fungicidas Industriais , Fungicidas Industriais/farmacologia , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase , Grão Comestível/genética , Manejo de Espécimes , Farmacorresistência Fúngica/genética
4.
Mol Plant Microbe Interact ; 34(3): 319-324, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33141618

RESUMO

Podosphaera xanthii is the main causal agent of powdery mildew in cucurbits and, arguably, the most important fungal pathogen of cucurbit crops. Here, we present the first reference genome assembly for P. xanthii. We performed a hybrid genome assembly, using reads from Illumina NextSeq550 and PacBio Sequel S3. The short and long reads were assembled into 1,727 scaffolds with an N50 size of 163,173 bp, resulting in a 142-Mb genome size. The combination of homology-based and ab initio predictions allowed the prediction of 14,911 complete genes. Repetitive sequences comprised 76.2% of the genome. Our P. xanthii genome assembly improves considerably the molecular resources for research on P. xanthii-cucurbit interactions and provides new opportunities for further genomics, transcriptomics, and evolutionary studies in powdery mildew fungi.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Ascomicetos , Biologia Computacional , Cucurbita , Genoma de Planta , Ascomicetos/genética , Cucurbita/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
5.
Fungal Genet Biol ; 145: 103475, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33035658

RESUMO

The fungal pathogen Pyrenophora teres f. sp. maculata (Ptm), responsible for spot-form of net blotch (SFNB), is currently the most significant disease of barley in Australia and a major disease worldwide. Management of SFNB relies heavily on fungicides and in Australia the demethylase inhibitors (DMIs) predominate. There have been sporadic reports of resistance to DMIs in Ptm but the mechanisms remain obscure. Ptm isolates collected from 1996 to 2019 in Western Australia were tested for fungicide sensitivity levels. Decreased sensitivity to DMIs was observed in isolates collected after 2015. Resistance factors to tebuconazole fell into two classes; moderate resistance (MR; RF 6-11) and high resistance (HR; RFs 30-65). Mutations linked to resistance were detected in the promoter region and coding sequence of the DMI target gene Cyp51A. Solo-LTR insertion elements were found at 5 different locations in the promoter region. Three different non-synonymous mutations encoded an altered protein with a phenylalanine to leucine substitution at position 489, F489L (F495I in the archetype CYP51A of Aspergillus fumigatus). F489L mutations have also been found in DMI-resistant strains of P. teres f. sp. teres. Ptm isolates carrying either a LTR insertion element or a F489L allele displayed the MR1 or MR2 phenotypes, respectively. Isolates carrying both an insertion element and a F489L mutation displayed the HR phenotype. Multiple mechanisms acting both alone and in concert were found to contribute to DMI resistance in Ptm. Moreover, these mutations have emerged repeatedly in Western Australian Ptm populations by a process of parallel evolution.


Assuntos
Ascomicetos/genética , Inibidores Enzimáticos/farmacologia , Fungicidas Industriais/farmacologia , Doenças das Plantas/microbiologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/patogenicidade , Mapeamento Cromossômico , Inibidores Enzimáticos/efeitos adversos , Fungicidas Industriais/efeitos adversos , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Hordeum/microbiologia , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
6.
BMC Genomics ; 20(1): 385, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101009

RESUMO

BACKGROUND: Narrow-leafed lupin is an emerging crop of significance in agriculture, livestock feed and human health food. However, its susceptibility to various diseases is a major obstacle towards increased adoption. Sclerotinia sclerotiorum and Botrytis cinerea - both necrotrophs with broad host-ranges - are reported among the top 10 lupin pathogens. Whole-genome sequencing and comparative genomics are useful tools to discover genes responsible for interactions between pathogens and their hosts. RESULTS: Genomes were assembled for one isolate of B. cinerea and two isolates of S. sclerotiorum, which were isolated from either narrow-leafed or pearl lupin species. Comparative genomics analysis between lupin-derived isolates and others isolated from alternate hosts was used to predict between 94 to 98 effector gene candidates from among their respective non-conserved gene contents. CONCLUSIONS: Detection of minor differences between relatively recently-diverged isolates, originating from distinct regions and with hosts, may highlight novel or recent gene mutations and losses resulting from host adaptation in broad host-range fungal pathogens.


Assuntos
Adaptação Fisiológica , Ascomicetos/genética , Botrytis/genética , Proteínas Fúngicas/genética , Genoma Fúngico , Lupinus/microbiologia , Doenças das Plantas/microbiologia , Ascomicetos/patogenicidade , Botrytis/patogenicidade , Especificidade de Hospedeiro , Virulência , Sequenciamento Completo do Genoma
7.
J Theor Biol ; 461: 8-16, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30342894

RESUMO

Monitoring for disease requires subsets of the host population to be sampled and tested for the pathogen. If all the samples return healthy, what are the chances the disease was present but missed? In this paper, we developed a statistical approach to solve this problem considering the fundamental property of infectious diseases: their growing incidence in the host population. The model gives an estimate of the incidence probability density as a function of the sampling effort, and can be reversed to derive adequate monitoring patterns ensuring a given maximum incidence in the population. We then present an approximation of this model, providing a simple rule of thumb for practitioners. The approximation is shown to be accurate for a sample size larger than 20, and we demonstrate its use by applying it to three plant pathogens: citrus canker, bacterial blight and grey mould.


Assuntos
Doenças Transmissíveis/epidemiologia , Epidemias/estatística & dados numéricos , Monitoramento Epidemiológico , Incidência , Modelos Estatísticos , Animais , Humanos , Doenças das Plantas/microbiologia , Probabilidade , Tamanho da Amostra
8.
J Antimicrob Chemother ; 73(9): 2347-2351, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29846581

RESUMO

Background: The prevalence of azole resistance in Aspergillus fumigatus is uncertain in Australia. Azole exposure may select for resistance. We investigated the frequency of azole resistance in a large number of clinical and environmental isolates. Methods: A. fumigatus isolates [148 human, 21 animal and 185 environmental strains from air (n = 6) and azole-exposed (n = 64) or azole-naive (n = 115) environments] were screened for azole resistance using the VIPcheck™ system. MICs were determined using the Sensititre™ YeastOne YO10 assay. Sequencing of the Aspergillus cyp51A gene and promoter region was performed for azole-resistant isolates, and cyp51A homology protein modelling undertaken. Results: Non-WT MICs/MICs at the epidemiological cut-off value of one or more azoles were observed for 3/148 (2%) human isolates but not amongst animal, or environmental, isolates. All three isolates grew on at least one azole-supplemented well based on VIPcheck™ screening. For isolates 9 and 32, the itraconazole and posaconazole MICs were 1 mg/L (voriconazole MICs 0.12 mg/L); isolate 129 had itraconazole, posaconazole and voriconazole MICs of >16, 1 and 8 mg/L, respectively. Soil isolates from azole-exposed and azole-naive environments had similar geometric mean MICs of itraconazole, posaconazole and voriconazole (P > 0.05). A G54R mutation was identified in the isolates exhibiting itraconazole and posaconazole resistance, and the TR34/L98H mutation in the pan-azole-resistant isolate. cyp51A modelling predicted that the G54R mutation would prevent binding of itraconazole and posaconazole to the haem complex. Conclusions: Azole resistance is uncommon in Australian clinical and environmental A. fumigatus isolates; further surveillance is indicated.


Assuntos
Antifúngicos/farmacologia , Aspergilose/microbiologia , Aspergillus fumigatus/efeitos dos fármacos , Azóis/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Farmacorresistência Fúngica , Microbiologia Ambiental , Proteínas Fúngicas/genética , Aspergilose/epidemiologia , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/isolamento & purificação , Austrália/epidemiologia , Monitoramento Epidemiológico , Humanos , Testes de Sensibilidade Microbiana , Prevalência , Análise de Sequência de DNA
9.
Phytopathology ; 108(7): 803-817, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29377769

RESUMO

Whether fungicide resistance management is optimized by spraying chemicals with different modes of action as a mixture (i.e., simultaneously) or in alternation (i.e., sequentially) has been studied by experimenters and modelers for decades. However, results have been inconclusive. We use previously parameterized and validated mathematical models of wheat Septoria leaf blotch and grapevine powdery mildew to test which tactic provides better resistance management, using the total yield before resistance causes disease control to become economically ineffective ("lifetime yield") to measure effectiveness. We focus on tactics involving the combination of a low-risk and a high-risk fungicide, and the case in which resistance to the high-risk chemical is complete (i.e., in which there is no partial resistance). Lifetime yield is then optimized by spraying as much low-risk fungicide as is permitted, combined with slightly more high-risk fungicide than needed for acceptable initial disease control, applying these fungicides as a mixture. That mixture rather than alternation gives better performance is invariant to model parameterization and structure, as well as the pathosystem in question. However, if comparison focuses on other metrics, e.g., lifetime yield at full label dose, either mixture or alternation can be optimal. Our work shows how epidemiological principles can explain the evolution of fungicide resistance, and also highlights a theoretical framework to address the question of whether mixture or alternation provides better resistance management. It also demonstrates that precisely how spray tactics are compared must be given careful consideration. [Formula: see text] Copyright © 2018 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .


Assuntos
Ascomicetos/efeitos dos fármacos , Fungicidas Industriais/administração & dosagem , Fungicidas Industriais/farmacologia , Doenças das Plantas/microbiologia , Relação Dose-Resposta a Droga , Farmacorresistência Fúngica , Modelos Biológicos , Triticum/microbiologia
10.
Microbiology (Reading) ; 162(6): 1023-1036, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26978567

RESUMO

The HOG1 mitogen-activated protein kinase (MAPK) pathway is activated through two-component histidine kinase (HK) signalling. This pathway was first characterized in the budding yeast Saccharomyces cerevisiae as a regulator of osmotolerance. The fungus Parastagonospora nodorum is the causal agent of septoria nodorum blotch of wheat. This pathogen uses host-specific effectors in tandem with general pathogenicity mechanisms to carry out its infection process. Genes showing strong sequence homology to S. cerevisiae HOG1 signalling pathway genes have been identified in the genome of P. nodorum. In this study, we examined the role of the pathway in the virulence of P. nodorum on wheat by disrupting putative pathway component genes: HOG1 (SNOG_13296) MAPK and NIK1 (SNOG_11631) hybrid HK. Mutants deleted in NIK1 and HOG1 were insensitive to dicarboximide and phenylpyrrole fungicides, but not a fungicide that targets ergosterol biosynthesis. Furthermore, both Δnik1 and Δhog1 mutants showed increased sensitivity to hyperosmotic stress. However, HOG1, but not NIK1, is required for tolerance to elevated temperatures. HOG1 deletion conferred increased tolerance to 6-methoxy-2-benzoxazolinone, a cereal phytoalexin. This suggests that the HOG1 signalling pathway is not exclusively associated with NIK1. Both Δnik1 and Δhog1 mutants retained the ability to infect and cause necrotic lesions on wheat. However, we observed that the Δhog1 mutation resulted in reduced production of pycnidia, asexual fruiting bodies that facilitate spore dispersal during late infection. Our study demonstrated the overlapping and distinct roles of a HOG1 MAPK and two-component HK signalling in P. nodorum growth and pathogenicity.


Assuntos
Ascomicetos/genética , Ascomicetos/patogenicidade , Farmacorresistência Fúngica/genética , Resposta ao Choque Térmico/genética , Histidina Quinase/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Triticum/microbiologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/metabolismo , Benzidinas/farmacologia , Benzoxazóis/farmacologia , Fungicidas Industriais/farmacologia , Deleção de Genes , Histidina Quinase/metabolismo , Temperatura Alta , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Doenças das Plantas/microbiologia , Proteínas Serina-Treonina Quinases/genética , Pirróis/farmacologia , Sesquiterpenos/farmacologia , Transdução de Sinais/genética , Fitoalexinas
11.
Sci Rep ; 14(1): 6285, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491078

RESUMO

Resistance to fungicides is a global challenge as target proteins under selection can evolve rapidly, reducing fungicide efficacy. To manage resistance, detection technologies must be fast and flexible enough to cope with a rapidly increasing number of mutations. The most important agricultural fungicides are azoles that target the ergosterol biosynthetic enzyme sterol 14α-demethylase (CYP51). Mutations associated with azole resistance in the Cyp51 promoter and coding sequence can co-occur in the same allele at different positions and codons, increasing the complexity of resistance detection. Resistance mutations arise rapidly and cannot be detected using traditional amplification-based methods if they are not known. To capture the complexity of azole resistance in two net blotch pathogens of barley we used the Oxford Nanopore MinION to sequence the promoter and coding sequence of Cyp51A. This approach detected all currently known mutations from biologically complex samples increasing the simplicity of resistance detection as multiple alleles can be profiled in a single assay. With the mobility and decreasing cost of long read sequencing, we demonstrate this approach is broadly applicable for characterizing resistance within known agrochemical target sites.


Assuntos
Ascomicetos , Fungicidas Industriais , Fungicidas Industriais/farmacologia , Azóis , Ascomicetos/metabolismo , Mutação , Farmacorresistência Fúngica/genética , Antifúngicos/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
12.
Pest Manag Sci ; 80(4): 2131-2140, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38145910

RESUMO

BACKGROUND: Fungicide resistance in Pyrenophora teres f. maculata and P. teres f. teres has become an important disease management issue. Control of the associated barley foliar diseases, spot form and net form net blotch, respectively, relies on three major groups of fungicides, demethylation inhibitors (DMIs), succinate dehydrogenase inhibitors (SDHIs) and quinone outside inhibitors (QoIs). However, resistance has been reported for the DMI and SDHI fungicides in Australia. To enhance detection of different resistance levels, phenotyping and genotyping workflows were designed. RESULTS: The phenotyping workflow generated cultures directly from lesions and compared growth on discriminatory doses of tebuconazole (DMI) and fluxapyroxad (SDHI). Genotyping real-time polymerase chain reaction (PCR) assays were based on alleles associated with sensitivity or resistance to the DMI and SDHI fungicides. These workflows were applied to spot form and net form net blotch collections from 2019 consisting predominantly of P. teres f. teres from South Australia and P. teres f. maculata from Western Australia. For South Australia the Cyp51A L489-3 and SdhC-R134 alleles, associated with resistance to tebuconazole and fluxapyroxad, respectively, were the most prevalent. These alleles were frequently found in single isolates with dual resistance. This study also reports the first detection of a 134 base pair insertion located at position-66 (PtTi-6) in the Cyp51A promoter of P. teres f. maculata from South Australia. For Western Australia, the PtTi-1 insertion was the most common allele associated with resistance to tebuconazole. CONCLUSION: The workflow and PCR assays designed in this study have been demonstrated to efficiently screen P. teres collections for both phenotypic and genetic resistance to DMI and SDHI fungicides. The distribution of reduced sensitivity and resistance to DMI and SDHI fungicides varied between regions in south-western Australia, suggesting the emergence of resistance was impacted by both local pathogen populations and disease management programmes. The knowledge of fungicide resistance in regional P. teres collections will be important for informing appropriate management strategies. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Amidas , Ascomicetos , Fungicidas Industriais , Fungicidas Industriais/farmacologia , Fluxo de Trabalho , Ascomicetos/genética , Doenças das Plantas/prevenção & controle
13.
J Proteomics ; 301: 105181, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38670258

RESUMO

Phytopathogenic oomycetes constitute some of the most devastating plant pathogens and cause significant crop and horticultural yield and economic losses. The phytopathogen Phytophthora cinnamomi causes dieback disease in native vegetation and several crops. The most commonly used chemical to control P. cinnamomi is the oomyceticide phosphite. Despite its widespread use, the mode of action of phosphite is not well understood and it is unclear whether it targets the pathogen, the host, or both. Resistance to phosphite is emerging in P. cinnamomi isolates and other oomycete phytopathogens. The mode of action of phosphite on phosphite-sensitive and resistant isolates of the pathogen and through a model host was investigated using label-free quantitative proteomics. In vitro treatment of sensitive P. cinnamomi isolates with phosphite hinders growth by interfering with metabolism, signalling and gene expression; traits that are not observed in the resistant isolate. When the model host Lupinus angustifolius was treated with phosphite, proteins associated with photosynthesis, carbon fixation and lipid metabolism in the host were enriched. Increased production of defence-related proteins was also observed in the plant. We hypothesise the multi-modal action of phosphite and present two models constructed using comparative proteomics that demonstrate mechanisms of pathogen and host responses to phosphite. SIGNIFICANCE: Phytophthora cinnamomi is a significant phytopathogenic oomycete that causes root rot (dieback) in a number of horticultural crops and a vast range of native vegetation. Historically, areas infected with phosphite have been treated with the oomyceticide phosphite despite its unknown mode of action. Additionally, overuse of phosphite has driven the emergence of phosphite-resistant isolates of the pathogen. We conducted a comparative proteomic study of a sensitive and resistant isolate of P. cinnamomi in response to treatment with phosphite, and the response of a model host, Lupinus angustifolius, to phosphite and its implications on infection. The present study has allowed for a deeper understanding of the bimodal action of phosphite, suggested potential biochemical factors contributing to chemical resistance in P. cinnamomi, and unveiled possible drivers of phosphite-induced host plant immunity to the pathogen.


Assuntos
Fosfitos , Phytophthora , Doenças das Plantas , Proteômica , Fosfitos/farmacologia , Fosfitos/metabolismo , Proteômica/métodos , Doenças das Plantas/microbiologia , Oomicetos/metabolismo
14.
Pest Manag Sci ; 78(4): 1326-1340, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34854539

RESUMO

BACKGROUND: Botrytis bunch rot, caused by Botrytis cinerea, is an economically important disease of grapes in Australia and across grape-growing regions worldwide. Control of this disease relies on canopy management and the application of fungicides. Fungicide application can lead to the selection of resistant B. cinerea populations, which has an adverse effect on the management of the disease. Characterizing the distribution and severity of resistant B. cinerea populations is needed to inform resistance management strategies. RESULTS: In this study, 724 isolates were sampled from 76 Australian vineyards during 2013-2016 and were screened against seven fungicides with different modes of action (MOAs). The resistance frequencies for azoxystrobin, boscalid, fenhexamid, fludioxonil, iprodione, pyrimethanil and tebuconazole were 5%, 2.8%, 2.1%, 6.2%, 11.6%, 7.7% and 2.9%, respectively. Nearly half of the resistant isolates (43.8%) were resistant to more than one of the fungicides tested. The frequency of vineyards with at least one isolate simultaneously resistant to one, two, three, four or five fungicides was 19.7%, 7.9%, 6.6%, 10.5% and 2.6%. Resistance was associated with previously published genotypes in CytB (G143A), SdhB (H272R/Y), Erg27 (F412S), Mrr1 (D354Y), Bos1 (I365S, N373S + Q369P, I365S + D757N) and Pos5 (V273I, P319A, L412F/V). Novel genotypes were also described in Mrr1 (S611N, D616G), Pos5 (V273L) and Cyp51 (P347S). Expression analysis was used to characterize fludioxonil-resistant isolates exhibiting overexpression (6.3-9.6-fold) of the ABC transporter gene AtrB (MDR1 phenotype). CONCLUSION: Resistance frequencies were lower when compared to most previously published surveys of B. cinerea resistance in grape and other crops. Nevertheless, continued monitoring of critical MOAs used in Australian vineyards is recommended. © 2021 Society of Chemical Industry.


Assuntos
Botrytis , Fungicidas Industriais , Austrália , Botrytis/genética , Farmacorresistência Fúngica/genética , Fazendas , Fungicidas Industriais/farmacologia , Doenças das Plantas
15.
Pest Manag Sci ; 78(4): 1367-1376, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34889505

RESUMO

BACKGROUND: Ramularia leaf spot (RLS), caused by Ramularia collo-cygni, is an emerging threat to barley (Hordeum vulgare L.) production. RLS has been reported in Australia, however only minimal information is available regarding its detection and distribution. Due to initial asymptomatic growth in planta, slow growth in vitro and symptomatic similarities to net blotch and physiological leaf spots, detection of this pathogen can be challenging. Quantitative polymerase chain reaction (PCR)-based methods for R. collo-cygni-specific identification and detection have been described, however these assays have been demonstrated to lack specificity. False-positive detections may have serious implications, thus we aimed to design a robust R. collo-cygni-specific PCR method. RESULTS: Using the phylogenetically informative RNA polymerase II second largest subunit (rpb2) and translation elongation factor 1-alpha (tef1-α) genes, along with the tef1-α gene of H. vulgare, a triplex assay was developed for both quantitative and droplet digital PCR. The triplex assay detected R. collo-cygni DNA in barley leaves from New South Wales, South Australia, Tasmania, Victoria and Western Australia. No R. collo-cygni DNA was detected in barley seed grown in Western Australia. CONCLUSION: The presence of R. collo-cygni DNA has been confirmed in Australian barley crops, suggesting a distribution ranging across the southern barley growing regions of Australia. The R. collo-cygni-specific assay will be a valuable tool to assist with monitoring the distribution and impact of R. collo-cygni in Australia and other regions. © 2021 Society of Chemical Industry.


Assuntos
Hordeum , Ascomicetos , Hordeum/genética , Doenças das Plantas , Reação em Cadeia da Polimerase/métodos , Vitória
16.
Genome Biol Evol ; 13(8)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34289036

RESUMO

Tests based on the dN/dS statistic are used to identify positive selection of nonsynonymous polymorphisms. Using these tests on alignments of all orthologs from related species can provide insights into which gene categories have been most frequently positively selected. However, longer alignments have more power to detect positive selection, creating a detection bias that could create misleading results from functional enrichment tests. Most studies of positive selection in plant pathogens focus on genes with specific virulence functions, with little emphasis on broader molecular processes. Furthermore, no studies in plant pathogens have accounted for detection bias due to alignment length when performing functional enrichment tests. To address these research gaps, we analyze 12 genomes of the phytopathogenic fungal genus Botrytis, including two sequenced in this study. To establish a temporal context, we estimated fossil-calibrated divergence times for the genus. We find that Botrytis likely originated 16-18 Ma in the Miocene and underwent continuous radiation ending in the Pliocene. An untargeted scan of Botrytis single-copy orthologs for positive selection with three different statistical tests uncovered evidence for positive selection among proteases, signaling proteins, CAZymes, and secreted proteins. There was also a strong overrepresentation of transcription factors among positively selected genes. This overrepresentation was still apparent after two complementary controls for detection bias due to sequence length. Positively selected sites were depleted within DNA-binding domains, suggesting changes in transcriptional responses to internal and external cues or protein-protein interactions have undergone positive selection more frequently than changes in promoter fidelity.


Assuntos
Evolução Molecular , Seleção Genética , Botrytis/genética , Filogenia , Fatores de Transcrição/genética
17.
Pest Manag Sci ; 77(7): 3049-3056, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33821561

RESUMO

Herbicides are the largest category of pesticides used in global agriculture, which is reflected in the rate of increase in the number of unique cases of herbicide-resistant weed biotypes since the late 1950s. Recommended herbicide resistance management strategies and tactics have evolved over the past 50 years through cumulative research and experience and have been regularly reviewed. Nevertheless, new perspectives may be gained by viewing current recommended strategies through the lens of insecticide, fungicide, and antibiotic resistance management. What commonalities exist and what is the basis for disparate strategies? Although pesticide and antibiotic mixtures (or combinations) are generally more effective than rotations (or alternations) in mitigating or managing resistance, the latter strategy is often employed because of greater ease of implementation and other reasons. We conclude that there are more common than different strategies for mitigating or managing pesticide and antibiotic resistance. Overall, a reduction in selection pressure for resistance evolution through diverse multi-tactic management programmes, and disruption or mitigation of the dispersal or transmission of problematic genotypes are needed to sustain the longevity of current and future mode-of-action products for crop and human health protection. © 2021 Society of Chemical Industry. © 2021 Society of Chemical Industry.


Assuntos
Fungicidas Industriais , Herbicidas , Inseticidas , Antibacterianos/farmacologia , Fungicidas Industriais/farmacologia , Resistência a Herbicidas , Herbicidas/farmacologia , Humanos , Plantas Daninhas , Controle de Plantas Daninhas
18.
Sci Rep ; 11(1): 4526, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33633193

RESUMO

As the incidence of fungicide resistance in plant pathogens continues to increase, control of diseases and the management of resistance would be greatly aided by rapid diagnostic methods. Quantitative allele-specific PCR (ASqPCR) is an ideal technique for the in-field analysis of fungicide resistance as it can quantify the frequency of mutations in fungicide targets. We have applied this technique to the fungal pathogen Blumeria graminis f. sp. tritici (Bgt), the causal agent of wheat powdery mildew. In Australia, strobilurin-resistant Bgt was first discovered in 2016. Molecular analysis revealed a nucleotide transversion in the cytochrome b (cytb) gene in the cytochrome bc1 enzyme complex, resulting in a substitution of alanine for glycine at position 143 (G143A). We have developed an in-field ASqPCR assay that can quantify both the resistant (A143) and sensitive (G143) cytb alleles down to 1.67% in host and Bgt DNA mixtures, within 90 min of sample collection. The in situ analysis of samples collected during a survey in Tasmania revealed A143 frequencies ranging between 9-100%. Validation of the analysis with a newly developed laboratory based digital PCR assay found no significant differences between the two methods. We have successfully developed an in-field quantification method, for a strobilurin-resistant allele, by pairing the ASqPCR assay on a lightweight qPCR instrument with a quick DNA extraction method. The deployment of these type of methodologies in the field can contribute to the effective in-season management of fungicide resistance.


Assuntos
Ascomicetos/efeitos dos fármacos , Ascomicetos/genética , Farmacorresistência Fúngica , Fungicidas Industriais/farmacologia , Mutação , Estrobilurinas/farmacologia , Alelos , Citocromos b/genética , Farmacorresistência Fúngica/genética , Frequência do Gene , Genótipo , Doenças das Plantas/microbiologia , Análise de Sequência de DNA , Triticum/microbiologia
19.
Pest Manag Sci ; 76(4): 1265-1272, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31595590

RESUMO

BACKGROUND: Powdery mildew caused by Blumeria graminis f. sp. hordei (Bgh) is a constant threat to barley production but is generally well controlled through combinations of host genetics and fungicides. An epidemic of barley powdery mildew was observed from 2007 to 2013 in the West Australian grain belt. RESULTS: We collected isolates across Australia, examined their sensitivity to demethylation inhibitor (DMI) fungicides and sequenced the Cyp51B target gene. Five amino acid substitutions were found, of which four were novel. The most resistant haplotypes increased in prevalence from 0% in 2009 to 16% in 2010 and 90% in 2011. Yeast strains expressing the Bgh Cyp51 haplotypes replicated the altered sensitivity to various DMIs and these results were complemented by in silico protein docking studies. CONCLUSIONS: The planting of very susceptible cultivars and the use of a single fungicide mode of action was followed by the emergence of a major epidemic of barley powdery mildew. Widespread use of DMI fungicides led to the selection of Bgh isolates carrying both the Y137F and S524T mutations, which, as in Zymoseptoria tritici, account for resistance factors varying from 3.4 for propiconazole to 18 for tebuconazole, the major azoles used at that time in WA. © 2019 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Ascomicetos , Austrália , Desmetilação , Fungicidas Industriais , Hordeum , Mutação , Doenças das Plantas
20.
Front Plant Sci ; 10: 1785, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32082346

RESUMO

INTRODUCTION: Septoria nodorum blotch (SNB) is a complex fungal disease of wheat caused by the Dothideomycete fungal pathogen Parastagonospora nodorum. The fungus infects through the use of necrotrophic effectors (NEs) that cause necrosis on hosts carrying matching dominant susceptibility genes. The Western Australia (WA) wheatbelt is a SNB "hot spot" and experiences significant under favorable conditions. Consequently, SNB has been a major target for breeders in WA for many years. MATERIALS AND METHODS: In this study, we assembled a panel of 155 WA P. nodorum isolates collected over a 44-year period and compared them to 23 isolates from France and the USA using 28 SSR loci. RESULTS: The WA P. nodorum population was clustered into five groups with contrasting properties. 80% of the studied isolates were assigned to two core groups found throughout the collection location and time. The other three non-core groups that encompassed transient and emergent populations were found in restricted locations and time. Changes in group genotypes occurred during periods that coincided with the mass adoption of a single or a small group of widely planted wheat cultivars. When introduced, these cultivars had high scores for SNB resistance. However, the field resistance of these new cultivars often declined over subsequent seasons prompting their replacement with new, more resistant varieties. Pathogenicity assays showed that newly emerged isolates non-core are more pathogenic than old isolates. It is likely that the non-core groups were repeatedly selected for increased virulence on the contemporary popular cultivars. DISCUSSION: The low level of genetic diversity within the non-core groups, difference in virulence, low abundance, and restriction to limited locations suggest that these populations more vulnerable to a population crash when the cultivar was replaced by one that was genetically different and more resistant. We characterize the observed pattern as a low-amplitude boom-and-bust cycle in contrast with the classical high amplitude boom-and-bust cycles seen for biotrophic pathogens where the contrast between resistance and susceptibility is typically much greater. Implications of the results are discussed relating to breeding strategies for more sustainable SNB resistance and more generally for pathogens with NEs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA