Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(19)2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39408394

RESUMO

Additive manufacturing processes allow for precise and efficient production, but it is estimated that one-third of the materials used results in waste. Further improvement in a sustainable perspective could come from the ability to manage these scraps and from the exploration of different routes for recovery and reuse. The Selective Laser Sintering process is particularly sensitive to this issue due to the waste ratio which can reach a very high quantity of not-sintered virgin powders. In this research study, recovered PA12 powders, preliminarily characterized through thermal and mechanical analysis, were mixed with 15% basalt powder to improve their aspect and thermomechanical resistance. The influence of basalt powder (BP) on mechanical properties as well as on the thermal stability of polyamide12 (PA12) powder composites was investigated. A study conducted on mechanical properties showed that polymeric composites' stiffness and hardness were influenced by adding filler, thus improving mechanical parameters. On the other hand, the application of thermogravimetric analysis allowed us to determine the composite's thermal stability. The objective is to obtain a recovered fully biobased material that could be used to substitute the petroleum-derived polymeric ones currently employed in the production of interiors and shells in the automotive sector.

2.
Polymers (Basel) ; 16(19)2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39408549

RESUMO

Currently, sustainability plays a central role in the response to global challenges, strongly influencing decisions in various sectors. From this perspective, global efforts to explore inventive and eco-friendly solutions to address the demands of industrialization and large-scale production are being made. Bio-based composites needed for lightweight applications benefit from the integration of natural fibers, due to their lower specific weight compared to synthetic fibers, contributing to the overall reduction in the weight of such structures without compromising the mechanical performance. Nevertheless, challenges arise when using natural fibers in composite laminates and hybridization seems to be a solution. However, there is still a lack of knowledge in the literature regarding the strategies and possibilities for reducing laminate thickness, without sacrificing the mechanical performance. This work aims to fill this knowledge gap by investigating the possibility of reducing the laminate thickness in hybrid flax/basalt composites made of plies, organized in the same stacking sequence, through only varying their number. Tensile, Charpy, flexural, and drop-weight tests were carried out for the mechanical characterization of the composites. The results obtained confirm the feasibility of achieving thinner hybrid composites, thus contributing to sustainability, while still having acceptable mechanical properties for structural applications.

3.
Polymers (Basel) ; 13(8)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33921019

RESUMO

Hydrophobic surfaces are highly desired for several applications due to their exceptional properties such as self-cleaning, anti-icing, anti-friction and others. Such surfaces can be prepared via numerous methods including plasma technology, a dry technique with low environmental impact. In this paper, the effect of a one-step sulfur hexafluoride (SF6) plasma treatment upon the low velocity impact behavior of basalt/epoxy composites has been investigated by using several characterization techniques. A capacitive coupled radiofrequency plasma system was used for the plasma surface treatment of basalt/epoxy composites, and suitable surface treatment conditions were experimentally investigated with respect to gas flow rate, chamber pressure, power intensity, and surface treatment time by measuring the water droplet contact angle of treated specimens. The contact angle measurements showed that treating with SF6 plasma would increase the hydrophobicity of basalt/epoxy composites; moreover, the impact results obtained on reinforced epoxy basalt fiber showed damage in a confined area and higher impact resistance for plasma-treated basalt systems.

4.
Polymers (Basel) ; 13(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34372127

RESUMO

Among the several additive manufacturing techniques, fused filament fabrication (FFF) is a 3D printing technique that is fast, handy, and low cost, used to produce complex-shaped parts easily and quickly. FFF adds material layer by layer, saving energy, costs, raw material costs, and waste. Nevertheless, the mechanical properties of the thermoplastic materials involved are low compared to traditional engineering materials. This paper deals with the manufacturing of composite material laminates obtained by the Markforged continuous filament fabrication (CFF) technique, using an innovative matrix infilled by carbon nanofibre (Onyx), a high-strength thermoplastic material with an excellent surface finish and high resistance to chemical agents. Three macro-categories of samples were manufactured using Onyx and continuous carbon fibre to evaluate the effect of the fibre on mechanical features of the novel composites and their influence on surface finishes. SEM (Scanning Electron Microscopy) analysis and acquisition of roughness profile by a confocal lens were conducted. Tensile and compression tests, thermogravimetric analysis and calorimetric analysis using a DSC (differential scanning calorimeter) were carried out on all specimen types to evaluate the influence of the process parameters and layup configurations on the quality and mechanical behaviour of the 3D-printed samples.

5.
Polymers (Basel) ; 13(7)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801735

RESUMO

Environmentally friendly composite plates intended for load-bearing applications were prepared and systematically characterized in terms of mechanical performances and morphological features. Sample plates combining two extrusion grades of bio-polyamide 11, one of which is plasticized, and two basalt fiber fabrics (plain weave and twill architectures) were obtained by film stacking and hot pressing, and their mechanical properties were investigated by quasi-static flexural and low-velocity impact tests. The comparative analysis of the results, also interpreted by the bending damage analysis, through optical microscope observations, and impact damage analysis through visual inspection and indentation measurements demonstrate that, besides interfacial adhesion issues, the mechanical performance of the laminates need to be optimized through a careful selection of the constituents in the light of the final application. In particular, if the goal is a gain in impact strength, the use of the plasticized matrix is beneficial, but it brings about a loss in stiffness and strength that can be partially compensated by properly selecting a more performing fiber fabric architecture. The latter must also be easily permeated by the matrix to enhance the efficiency of stress transfer from the matrix. Overall, our results can be exploited for the development of bio-composites for particularly demanding applications.

6.
Polymers (Basel) ; 12(5)2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32397249

RESUMO

Recently, the growing interests into the environmental matter are driving the research interest to the development of new eco-sustainable composite materials toward the replacement of synthetic reinforcing fibers with natural ones and exploiting the intrinsic recyclability of thermoplastic resins even for uses in which thermosetting matrices are well consolidated (e.g., naval and aeronautical fields). In this work, polypropylene/basalt fabric composite samples were prepared by film stacking and compression molding procedures. They have been studied in terms of flexural and low-velocity impact behavior. The influence related to the matrix modification with a pre-optimized amount of maleic anhydride grafted PP as coupling agent was studied. The mechanical performances of the composite systems were compared with those of laminates consisting of the pure matrix and obtained by hot-pressing of PP pellets and PP films used in the stacking procedure. Results, on one side, demonstrated a slight reduction of both static and dynamic parameters at the break for specimens from superimposed films to ones prepared from PP pellets. Moreover, an outstanding improvement of mechanical performances was shown in the presence of basalt layers, especially for compatibilized samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA