RESUMO
The amyloid cascade hypothesis has strongly impacted the Alzheimer's disease research agenda and clinical trial designs over the past decades, but precisely how amyloid-ß pathology initiates the aggregation of neocortical tau remains unclear. We cannot exclude the possibility of a shared upstream process driving both amyloid-ß and tau in an independent manner instead of there being a causal relationship between amyloid-ß and tau. Here, we tested the premise that if a causal relationship exists, then exposure should be associated with outcome both at the individual level as well as within identical twin-pairs, who are strongly matched on genetic, demographic and shared environmental background. Specifically, we tested associations between longitudinal amyloid-ß PET and cross-sectional tau PET, neurodegeneration and cognitive decline using genetically identical twin-pair difference models, which provide the unique opportunity of ruling out genetic and shared environmental effects as potential confounders in an association. We included 78 cognitively unimpaired identical twins with [18F]flutemetamol (amyloid-ß)-PET, [18F]flortaucipir (tau)-PET, MRI (hippocampal volume) and cognitive data (composite memory). Associations between each modality were tested at the individual level using generalized estimating equation models, and within identical twin-pairs using within-pair difference models. Mediation analyses were performed to test for directionality in the associations as suggested by the amyloid cascade hypothesis. At the individual level, we observed moderate-to-strong associations between amyloid-ß, tau, neurodegeneration and cognition. The within-pair difference models replicated results observed at the individual level with comparably strong effect sizes. Within-pair differences in amyloid-ß were strongly associated with within-pair differences in tau (ß = 0.68, P < 0.001), and moderately associated with within-pair differences in hippocampal volume (ß = -0.37, P = 0.03) and memory functioning (ß = -0.57, P < 0.001). Within-pair differences in tau were moderately associated with within-pair differences in hippocampal volume (ß = -0.53, P < 0.001) and strongly associated with within-pair differences in memory functioning (ß = -0.68, P < 0.001). Mediation analyses showed that of the total twin-difference effect of amyloid-ß on memory functioning, the proportion mediated through pathways including tau and hippocampal volume was 69.9%, which was largely attributable to the pathway leading from amyloid-ß to tau to memory functioning (proportion mediated, 51.6%). Our results indicate that associations between amyloid-ß, tau, neurodegeneration and cognition are unbiased by (genetic) confounding. Furthermore, effects of amyloid-ß on neurodegeneration and cognitive decline were fully mediated by tau. These novel findings in this unique sample of identical twins are compatible with the amyloid cascade hypothesis and thereby provide important new knowledge for clinical trial designs.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Gêmeos Monozigóticos/genética , Proteínas tau/genética , Proteínas tau/metabolismo , Estudos Transversais , Tomografia por Emissão de Pósitrons/métodos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Proteínas Amiloidogênicas , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Peptídeos beta-Amiloides/metabolismoRESUMO
INTRODUCTION: Unraveling how Alzheimer's disease (AD) genetic risk is related to neuropathological heterogeneity, and whether this occurs through specific biological pathways, is a key step toward precision medicine. METHODS: We computed pathway-specific genetic risk scores (GRSs) in non-demented individuals and investigated how AD risk variants predict cerebrospinal fluid (CSF) and imaging biomarkers reflecting AD pathology, cardiovascular, white matter integrity, and brain connectivity. RESULTS: CSF amyloidbeta and phosphorylated tau were related to most GRSs. Inflammatory pathways were associated with cerebrovascular disease, whereas quantitative measures of white matter lesion and microstructure integrity were predicted by clearance and migration pathways. Functional connectivity alterations were related to genetic variants involved in signal transduction and synaptic communication. DISCUSSION: This study reveals distinct genetic risk profiles in association with specific pathophysiological aspects in predementia stages of AD, unraveling the biological substrates of the heterogeneity of AD-associated endophenotypes and promoting a step forward in disease understanding and development of personalized therapies. HIGHLIGHTS: Polygenic risk for Alzheimer's disease encompasses six biological pathways that can be quantified with pathway-specific genetic risk scores, and differentially relate to cerebrospinal fluid and imaging biomarkers. Inflammatory pathways are mostly related to cerebrovascular burden. White matter health is associated with pathways of clearance and membrane integrity, whereas functional connectivity measures are related to signal transduction and synaptic communication pathways.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Biomarcadores , Endofenótipos , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/patologia , Biomarcadores/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Feminino , Masculino , Proteínas tau/líquido cefalorraquidiano , Idoso , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Predisposição Genética para Doença , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética , Substância Branca/patologia , Substância Branca/diagnóstico por imagemRESUMO
BACKGROUND: We classified non-demented European Prevention of Alzheimer's Dementia (EPAD) participants through the amyloid/tau/neurodegeneration (ATN) scheme and assessed their neuropsychological and imaging profiles. MATERIALS AND METHODS: From 1500 EPAD participants, 312 were excluded. Cerebrospinal fluid cut-offs of 1000 pg/mL for amyloid beta (Aß)1-42 and 27 pg/mL for p-tau181 were validated using Gaussian mixture models. Given strong correlation of p-tau and t-tau (R2 = 0.98, P < 0.001), neurodegeneration was defined by age-adjusted hippocampal volume. Multinomial regressions were used to test whether neuropsychological tests and regional brain volumes could distinguish ATN stages. RESULTS: Age was 65 ± 7 years, with 58% females and 38% apolipoprotein E (APOE) ε4 carriers; 57.1% were A-T-N-, 32.5% were in the Alzheimer's disease (AD) continuum, and 10.4% suspected non-Alzheimer's pathology. Age and cerebrovascular burden progressed with biomarker positivity (P < 0.001). Cognitive dysfunction appeared with T+. Paradoxically higher regional gray matter volumes were observed in A+T-N- compared to A-T-N- (P < 0.001). DISCUSSION: In non-demented individuals along the AD continuum, p-tau drives cognitive dysfunction. Memory and language domains are affected in the earliest stages.
Assuntos
Amiloide/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Voluntários Saudáveis/estatística & dados numéricos , Hipocampo/patologia , Proteínas tau/líquido cefalorraquidiano , Idoso , Europa (Continente) , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos/estatística & dados numéricosRESUMO
Psoriasis is a chronic dermatologic disease which is frequently associated with psychological distress. Although studies suggest a relationship between this condition and difficulties in emotion regulation, behavioral and physiological evidence about this link is scarce. We measured implicit emotion regulation abilities of psoriasis patients and a healthy control group by examining the impact of distracting emotional (positive, negative or neutral) images on a working memory task ("Emotional N-Back") which could present high (2-back) or low (1-back) cognitive workload. Moreover, we used Functional Infrared Thermal Imaging to record participants' facial temperature and obtain a measure of the activation of the autonomic system. Rising of temperature over the peri-orbital areas and the nose tip are believed to reflect the activation and the de-activation of the sympathetic system, respectively. Patients scored higher than controls on the "Lack of emotional clarity" sub-scale of the Difficulties in Emotion Regulation Scale. Compared to controls, who performed much better in the low vs. high cognitive load condition, patients showed a smaller accuracy difference between the two conditions. Moreover, patients showed less sympathetic (lower peri-orbital and higher nasal tip temperature) activity (especially in the negative and neutral blocks) during the high vs. low cognitive load condition, suggesting that the former condition might be less emotionally demanding for them. Patients benefit more than controls from the load-dependent interference effect when dealing with emotional information; thus, therapeutic techniques aiming at teaching how to use cognitive strategies to downregulate emotions might be particularly appropriated for them.
Assuntos
Cognição/fisiologia , Emoções/fisiologia , Psoríase/fisiopatologia , Termografia/métodos , Adulto , Idoso , Feminino , Humanos , Modelos Lineares , Masculino , Memória de Curto Prazo/fisiologia , Pessoa de Meia-Idade , Testes Neuropsicológicos , Estimulação Luminosa , Inquéritos e Questionários , Adulto JovemRESUMO
Several studies have identified blood proteins that influence brain aging performance in mice, yet translating these findings to humans remains challenging. Here we found that higher predicted plasma levels of Tissue Inhibitor of Metalloproteinases 2 (TIMP2) were significantly associated with improved global cognition and memory performance in humans. We first identified 12 proteins with aging or rejuvenating effects on murine brains through a systematic review. Using protein quantitative trait loci data for these proteins, we computed polygenic scores as proxies for plasma protein levels and validated their prediction accuracy in two independent cohorts. Association models between genetic proxies and cognitive performance highlighted the significance of TIMP2, also when the models were stratified by sex, APOE -ε4, and Aß42 status. This finding aligns with TIMP2's brain-rejuvenating role in murine models, suggesting it as a promising therapeutic target for brain aging and age-related brain diseases in humans.
RESUMO
Background While numerous studies have identified blood proteins that modulate brain aging in mice, the direct translation of these findings to human health remains a substantial challenge. Bridging this gap is critical for developing interventions that can effectively target human brain aging and associated diseases. Methods We first identified 12 proteins with aging or rejuvenating properties in murine brains through a systematic review. Using protein quantitative trait loci data for these proteins, we developed polygenic scores to predict plasma protein levels, which we then validated in two independent human cohorts. We employed association models to explore the association between these genetically predicted protein levels and cognitive performance, focusing specifically on their interaction with key genetic markers such as sex, APOE -ε4 and Aß42 status. Results Predicted plasma levels of Tissue Inhibitor of Metalloproteinases 2 (TIMP2) were significantly associated with improved global cognition and memory performance in humans, also when the models were stratified by sex, APOE -ε4, and Aß42 status. Conclusions This finding aligns with TIMP2's brain-rejuvenating role in murine models, suggesting it as a promising therapeutic target for brain aging and age-related brain diseases in humans.
RESUMO
Alzheimer's disease (AD) is heterogenous at the molecular level. Understanding this heterogeneity is critical for AD drug development. Here we define AD molecular subtypes using mass spectrometry proteomics in cerebrospinal fluid, based on 1,058 proteins, with different levels in individuals with AD (n = 419) compared to controls (n = 187). These AD subtypes had alterations in protein levels that were associated with distinct molecular processes: subtype 1 was characterized by proteins related to neuronal hyperplasticity; subtype 2 by innate immune activation; subtype 3 by RNA dysregulation; subtype 4 by choroid plexus dysfunction; and subtype 5 by blood-brain barrier impairment. Each subtype was related to specific AD genetic risk variants, for example, subtype 1 was enriched with TREM2 R47H. Subtypes also differed in clinical outcomes, survival times and anatomical patterns of brain atrophy. These results indicate molecular heterogeneity in AD and highlight the need for personalized medicine.
Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , ProteômicaRESUMO
OBJECTIVE: Alzheimer's disease (AD) and cerebral small vessel disease (cSVD), the two most common causes of dementia, are characterized by white matter (WM) alterations diverging from the physiological changes occurring in healthy aging. Diffusion tensor imaging (DTI) is a valuable tool to quantify WM integrity non-invasively and identify the determinants of such alterations. Here, we investigated main effects and interactions of AD pathology, APOE-ε4, cSVD, and cardiovascular risk on spatial patterns of WM alterations in non-demented older adults. METHODS: Within the prospective European Prevention of Alzheimer's Dementia study, we selected 606 participants (64.9 ± 7.2 years, 376 females) with baseline cerebrospinal fluid samples of amyloid ß1-42 and p-Tau181 and MRI scans, including DTI scans. Longitudinal scans (mean follow-up time = 1.3 ± 0.5 years) were obtained in a subset (n = 223). WM integrity was assessed by extracting fractional anisotropy and mean diffusivity in relevant tracts. To identify the determinants of WM disruption, we performed a multimodel inference to identify the best linear mixed-effects model for each tract. RESULTS: AD pathology, APOE-ε4, cSVD burden, and cardiovascular risk were all associated with WM integrity within several tracts. While limbic tracts were mainly impacted by AD pathology and APOE-ε4, commissural, associative, and projection tract integrity was more related to cSVD burden and cardiovascular risk. AD pathology and cSVD did not show any significant interaction effect. INTERPRETATION: Our results suggest that AD pathology and cSVD exert independent and spatially different effects on WM microstructure, supporting the role of DTI in disease monitoring and suggesting independent targets for preventive medicine approaches.
Assuntos
Doença de Alzheimer , Doenças de Pequenos Vasos Cerebrais , Imagem de Tensor de Difusão , Substância Branca , Humanos , Doença de Alzheimer/patologia , Doença de Alzheimer/diagnóstico por imagem , Feminino , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/patologia , Masculino , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Idoso , Pessoa de Meia-Idade , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Peptídeos beta-Amiloides/metabolismo , Apolipoproteína E4/genética , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/metabolismo , Estudos ProspectivosRESUMO
BACKGROUND AND OBJECTIVES: Discordance between CSF and PET biomarkers of ß-amyloid (Aß) might reflect an imbalance between soluble and aggregated species, possibly reflecting disease heterogeneity. Previous studies generally used binary cutoffs to assess discrepancies in CSF/PET biomarkers, resulting in a loss of information on the extent of discordance. In this study, we (1) jointly modeled Aß-CSF/PET data to derive a continuous measure of the imbalance between soluble and fibrillar pools of Aß, (2) investigated factors contributing to this imbalance, and (3) examined associations with cognitive trajectories. METHODS: Across 822 cognitively unimpaired (n = 261) and cognitively impaired (n = 561) Alzheimer's Disease Neuroimaging Initiative individuals (384 [46.7%] females, mean age 73.0 ± 7.4 years), we fitted baseline CSF-Aß42 and global Aß-PET to a hyperbolic regression model, deriving a participant-specific Aß-aggregation score (standardized residuals); negative values represent more soluble relative to aggregated Aß and positive values more aggregated relative to soluble Aß. Using linear models, we investigated whether methodological factors, demographics, CSF biomarkers, and vascular burden contributed to Aß-aggregation scores. With linear mixed models, we assessed whether Aß-aggregation scores were predictive of cognitive functioning. Analyses were repeated in an early independent validation cohort of 383 Amyloid Imaging to Prevent Alzheimer's Disease Prognostic and Natural History Study individuals (224 [58.5%] females, mean age 65.2 ± 6.9 years). RESULTS: The imbalance model could be fit (pseudo-R2 = 0.94) in both cohorts, across CSF kits and PET tracers. Although no associations were observed with the main methodological factors, lower Aß-aggregation scores were associated with larger ventricular volume (ß = 0.13, p < 0.001), male sex (ß = -0.18, p = 0.019), and homozygous APOE-ε4 carriership (ß = -0.56, p < 0.001), whereas higher scores were associated with increased uncorrected CSF p-tau (ß = 0.17, p < 0.001) and t-tau (ß = 0.16, p < 0.001), better baseline executive functioning (ß = 0.12, p < 0.001), and slower global cognitive decline (ß = 0.14, p = 0.006). In the validation cohort, we replicated the associations with APOE-ε4, CSF t-tau, and, although modestly, with cognition. DISCUSSION: We propose a novel continuous model of Aß CSF/PET biomarker imbalance, accurately describing heterogeneity in soluble vs aggregated Aß pools in 2 independent cohorts across the full Aß continuum. Aß-aggregation scores were consistently associated with genetic and AD-associated CSF biomarkers, possibly reflecting disease heterogeneity beyond methodological influences.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Biomarcadores , Tomografia por Emissão de Pósitrons , Humanos , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico por imagem , Feminino , Masculino , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Idoso , Biomarcadores/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano , Idoso de 80 Anos ou mais , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico por imagem , Pessoa de Meia-IdadeRESUMO
BACKGROUND AND OBJECTIVES: Vascular risk factors (VRFs) and cerebral small vessel disease (cSVD) are common in patients with Alzheimer disease (AD). It remains unclear whether this coexistence reflects shared risk factors or a mechanistic relationship and whether vascular and amyloid pathologies have independent or synergistic influence on subsequent AD pathophysiology in preclinical stages. We investigated links between VRFs, cSVD, and amyloid levels (Aß1-42) and their combined effect on downstream AD biomarkers, that is, CSF hyperphosphorylated tau (P-tau181), atrophy, and cognition. METHODS: This retrospective study included nondemented participants (Clinical Dementia Rating < 1) from the European Prevention of Alzheimer's Dementia (EPAD) cohort and assessed VRFs with the Framingham risk score (FRS) and cSVD features on MRI using visual scales and white matter hyperintensity volumes. After preliminary linear analysis, we used structural equation modeling (SEM) to create a "cSVD severity" latent variable and assess the direct and indirect effects of FRS and cSVD severity on Aß1-42, P-tau181, gray matter volume (baseline and longitudinal), and cognitive performance (baseline and longitudinal). RESULTS: A total cohort of 1,592 participants were evaluated (mean age = 65.5 ± 7.4 years; 56.16% F). We observed positive associations between FRS and all cSVD features (all p < 0.05) and a negative association between FRS and Aß1-42 (ß = -0.04 ± 0.01). All cSVD features were negatively associated with CSF Aß1-42 (all p < 0.05). Using SEM, the cSVD severity fully mediated the association between FRS and CSF Aß1-42 (indirect effect: ß = -0.03 ± 0.01), also when omitting vascular amyloid-related markers. We observed a significant indirect effect of cSVD severity on P-tau181 (indirect effect: ß = 0.12 ± 0.03), baseline and longitudinal gray matter volume (indirect effect: ß = -0.10 ± 0.03; ß = -0.12 ± 0.05), and baseline cognitive performance (indirect effect: ß = -0.16 ± 0.03) through CSF Aß1-42. DISCUSSION: In a large nondemented population, our findings suggest that cSVD is a mediator of the relationship between VRFs and CSF Aß1-42 and affects downstream neurodegeneration and cognitive impairment. We provide evidence of VRFs indirectly affecting the pathogenesis of AD, highlighting the importance of considering cSVD burden in memory clinics for AD risk evaluation and as an early window for intervention. These results stress the role of VRFs and cerebrovascular pathology as key biomarkers for accurate design of anti-amyloid clinical trials and offer new perspectives for patient stratification.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doenças de Pequenos Vasos Cerebrais , Fragmentos de Peptídeos , Proteínas tau , Humanos , Doença de Alzheimer/patologia , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico por imagem , Masculino , Feminino , Idoso , Fatores de Risco , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Estudos Retrospectivos , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/complicações , Doenças de Pequenos Vasos Cerebrais/patologia , Proteínas tau/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética , Biomarcadores/líquido cefalorraquidiano , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Atrofia/patologiaRESUMO
Imaging markers of cerebral small vessel disease provide valuable information on brain health, but their manual assessment is time-consuming and hampered by substantial intra- and interrater variability. Automated rating may benefit biomedical research, as well as clinical assessment, but diagnostic reliability of existing algorithms is unknown. Here, we present the results of the VAscular Lesions DetectiOn and Segmentation (Where is VALDO?) challenge that was run as a satellite event at the international conference on Medical Image Computing and Computer Aided Intervention (MICCAI) 2021. This challenge aimed to promote the development of methods for automated detection and segmentation of small and sparse imaging markers of cerebral small vessel disease, namely enlarged perivascular spaces (EPVS) (Task 1), cerebral microbleeds (Task 2) and lacunes of presumed vascular origin (Task 3) while leveraging weak and noisy labels. Overall, 12 teams participated in the challenge proposing solutions for one or more tasks (4 for Task 1-EPVS, 9 for Task 2-Microbleeds and 6 for Task 3-Lacunes). Multi-cohort data was used in both training and evaluation. Results showed a large variability in performance both across teams and across tasks, with promising results notably for Task 1-EPVS and Task 2-Microbleeds and not practically useful results yet for Task 3-Lacunes. It also highlighted the performance inconsistency across cases that may deter use at an individual level, while still proving useful at a population level.
Assuntos
Doenças de Pequenos Vasos Cerebrais , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Hemorragia Cerebral , ComputadoresRESUMO
Aging-related cognitive decline can be accelerated by a combination of genetic factors, cardiovascular and cerebrovascular dysfunction, and amyloid-ß burden. Whereas cerebral blood flow (CBF) has been studied as a potential early biomarker of cognitive decline, its normal variability in healthy elderly is less known. In this study, we investigated the contribution of genetic, vascular, and amyloid-ß components of CBF in a cognitively unimpaired (CU) population of monozygotic older twins. We included 134 participants who underwent arterial spin labeling (ASL) MRI and [18F]flutemetamol amyloid-PET imaging at baseline and after a four-year follow-up. Generalized estimating equations were used to investigate the associations of amyloid burden and white matter hyperintensities with CBF. We showed that, in CU individuals, CBF: 1) has a genetic component, as within-pair similarities in CBF values were moderate and significant (ICC > 0.40); 2) is negatively associated with cerebrovascular damage; and 3) is positively associated with the interaction between cardiovascular risk scores and early amyloid-ß burden, which may reflect a vascular compensatory response of CBF to early amyloid-ß accumulation. These findings encourage future studies to account for multiple interactions with CBF in disease trajectory analyses.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Idoso , Circulação Cerebrovascular/genética , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Imageamento por Ressonância Magnética/métodos , Amiloide/genética , Tomografia por Emissão de Pósitrons , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/complicaçõesRESUMO
Brain-age can be inferred from structural neuroimaging and compared to chronological age (brain-age delta) as a marker of biological brain aging. Accelerated aging has been found in neurodegenerative disorders like Alzheimer's disease (AD), but its validation against markers of neurodegeneration and AD is lacking. Here, imaging-derived measures from the UK Biobank dataset (N=22,661) were used to predict brain-age in 2,314 cognitively unimpaired (CU) individuals at higher risk of AD and mild cognitive impaired (MCI) patients from four independent cohorts with available biomarker data: ALFA+, ADNI, EPAD, and OASIS. Brain-age delta was associated with abnormal amyloid-ß, more advanced stages (AT) of AD pathology and APOE-ε4 status. Brain-age delta was positively associated with plasma neurofilament light, a marker of neurodegeneration, and sex differences in the brain effects of this marker were found. These results validate brain-age delta as a non-invasive marker of biological brain aging in non-demented individuals with abnormal levels of biomarkers of AD and axonal injury.
Assuntos
Doença de Alzheimer , Humanos , Masculino , Feminino , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Peptídeos beta-Amiloides/metabolismo , Neuroimagem/métodos , Biomarcadores , Aprendizado de MáquinaRESUMO
Amyloid-ß accumulation starts in highly connected brain regions and is associated with functional connectivity alterations in the early stages of Alzheimer's disease. This regional vulnerability is related to the high neuronal activity and strong fluctuations typical of these regions. Recently, dynamic functional connectivity was introduced to investigate changes in functional network organization over time. High dynamic functional connectivity variations indicate increased regional flexibility to participate in multiple subnetworks, promoting functional integration. Currently, only a limited number of studies have explored the temporal dynamics of functional connectivity in the pre-dementia stages of Alzheimer's disease. We study the associations between abnormal cerebrospinal fluid amyloid and both static and dynamic properties of functional hubs, using eigenvector centrality, and their relationship with cognitive performance, in 701 non-demented participants from the European Prevention of Alzheimer's Dementia cohort. Voxel-wise eigenvector centrality was computed for the whole functional magnetic resonance imaging time series (static), and within a sliding window (dynamic). Differences in static eigenvector centrality between amyloid positive (A+) and negative (A-) participants and amyloid-tau groups were found in a general linear model. Dynamic eigenvector centrality standard deviation and range were compared between groups within clusters of significant static eigenvector centrality differences, and within 10 canonical resting-state networks. The effect of the interaction between amyloid status and cognitive performance on dynamic eigenvector centrality variability was also evaluated with linear models. Models were corrected for age, sex, and education level. Lower static centrality was found in A+ participants in posterior brain areas including a parietal and an occipital cluster; higher static centrality was found in a medio-frontal cluster. Lower eigenvector centrality variability (standard deviation) occurred in A+ participants in the frontal cluster. The default mode network and the dorsal visual networks of A+ participants had lower dynamic eigenvector centrality variability. Centrality variability in the default mode network and dorsal visual networks were associated with cognitive performance in the A- and A+ groups, with lower variability being observed in A+ participants with good cognitive scores. Our results support the role and timing of eigenvector centrality alterations in very early stages of Alzheimer's disease and show that centrality variability over time adds relevant information on the dynamic patterns that cause static eigenvector centrality alterations. We propose that dynamic eigenvector centrality is an early biomarker of the interplay between early Alzheimer's disease pathology and cognitive decline.
RESUMO
Theory of mind (ToM, the ability to attribute mental states to others) deficit is a frequent finding in neurodegenerative conditions, mediated by a diffuse brain network confirmed by 18F-FDG-PET and MR imaging, involving frontal, temporal and parietal areas. However, the role of hubs and spokes network regions in ToM performance, and their respective damage, is still unclear. To study this mechanism, we combined ToM testing with brain 18F-FDG-PET imaging in 25 subjects with mild cognitive impairment due to Alzheimer's disease (MCI−AD), 24 subjects with the behavioral variant of frontotemporal dementia (bvFTD) and 40 controls. Regions included in the ToM network were divided into hubs and spokes based on their structural connectivity and distribution of hypometabolism. The hubs of the ToM network were identified in frontal regions in both bvFTD and MCI−AD patients. A mediation analysis revealed that the impact of spokes damage on ToM performance was mediated by the integrity of hubs (p < 0.001), while the impact of hubs damage on ToM performance was independent from the integrity of spokes (p < 0.001). Our findings support the theory that a key role is played by the hubs in ToM deficits, suggesting that hubs could represent a final common pathway leading from the damage of spoke regions to clinical deficits.
RESUMO
White matter hyperintensities (WMHs) have a heterogeneous aetiology, associated with both vascular risk factors and amyloidosis due to Alzheimer's disease. While spatial distribution of both amyloid and WM lesions carry important information for the underlying pathogenic mechanisms, the regional relationship between these two pathologies and their joint contribution to early cognitive deterioration remains largely unexplored. We included 662 non-demented participants from three Amyloid Imaging to Prevent Alzheimer's disease (AMYPAD)-affiliated cohorts: EPAD-LCS (N = 176), ALFA+ (N = 310), and EMIF-AD PreclinAD Twin60++ (N = 176). Using PET imaging, cortical amyloid burden was assessed regionally within early accumulating regions (medial orbitofrontal, precuneus, and cuneus) and globally, using the Centiloid method. Regional WMH volume was computed using Bayesian Model Selection. Global associations between WMH, amyloid, and cardiovascular risk scores (Framingham and CAIDE) were assessed using linear models. Partial least square (PLS) regression was used to identify regional associations. Models were adjusted for age, sex, and APOE-e4 status. Individual PLS scores were then related to cognitive performance in 4 domains (attention, memory, executive functioning, and language). While no significant global association was found, the PLS model yielded two components of interest. In the first PLS component, a fronto-parietal WMH pattern was associated with medial orbitofrontal-precuneal amyloid, vascular risk, and age. Component 2 showed a posterior WMH pattern associated with precuneus-cuneus amyloid, less related to age or vascular risk. Component 1 was associated with lower performance in all cognitive domains, while component 2 only with worse memory. In a large pre-dementia population, we observed two distinct patterns of regional associations between WMH and amyloid burden, and demonstrated their joint influence on cognitive processes. These two components could reflect the existence of vascular-dependent and -independent manifestations of WMH-amyloid regional association that might be related to distinct primary pathophysiology.
RESUMO
Background: Amyloid-ß (Aß) accumulation is considered the earliest pathological change in Alzheimer's disease (AD). The Amyloid Imaging to Prevent Alzheimer's Disease (AMYPAD) consortium is a collaborative European framework across European Federation of Pharmaceutical Industries Associations (EFPIA), academic, and 'Small and Medium-sized enterprises' (SME) partners aiming to provide evidence on the clinical utility and cost-effectiveness of Positron Emission Tomography (PET) imaging in diagnostic work-up of AD and to support clinical trial design by developing optimal quantitative methodology in an early AD population. The AMYPAD studies: In the Diagnostic and Patient Management Study (DPMS), 844 participants from eight centres across three clinical subgroups (245 subjective cognitive decline, 342 mild cognitive impairment, and 258 dementia) were included. The Prognostic and Natural History Study (PNHS) recruited pre-dementia subjects across 11 European parent cohorts (PCs). Approximately 1600 unique subjects with historical and prospective data were collected within this study. PET acquisition with [18F]flutemetamol or [18F]florbetaben radiotracers was performed and quantified using the Centiloid (CL) method. Results: AMYPAD has significantly contributed to the AD field by furthering our understanding of amyloid deposition in the brain and the optimal methodology to measure this process. Main contributions so far include the validation of the dual-time window acquisition protocol to derive the fully quantitative non-displaceable binding potential (BP ND ), assess the value of this metric in the context of clinical trials, improve PET-sensitivity to emerging Aß burden and utilize its available regional information, establish the quantitative accuracy of the Centiloid method across tracers and support implementation of quantitative amyloid-PET measures in the clinical routine. Future steps: The AMYPAD consortium has succeeded in recruiting and following a large number of prospective subjects and setting up a collaborative framework to integrate data across European PCs. Efforts are currently ongoing in collaboration with ARIDHIA and ADDI to harmonize, integrate, and curate all available clinical data from the PNHS PCs, which will become openly accessible to the wider scientific community.
RESUMO
The European Prevention of Alzheimer Dementia (EPAD) is a multi-center study that aims to characterize the preclinical and prodromal stages of Alzheimer's Disease. The EPAD imaging dataset includes core (3D T1w, 3D FLAIR) and advanced (ASL, diffusion MRI, and resting-state fMRI) MRI sequences. Here, we give an overview of the semi-automatic multimodal and multisite pipeline that we developed to curate, preprocess, quality control (QC), and compute image-derived phenotypes (IDPs) from the EPAD MRI dataset. This pipeline harmonizes DICOM data structure across sites and performs standardized MRI preprocessing steps. A semi-automated MRI QC procedure was implemented to visualize and flag MRI images next to site-specific distributions of QC features - i.e. metrics that represent image quality. The value of each of these QC features was evaluated through comparison with visual assessment and step-wise parameter selection based on logistic regression. IDPs were computed from 5 different MRI modalities and their sanity and potential clinical relevance were ascertained by assessing their relationship with biological markers of aging and dementia. The EPAD v1500.0 data release encompassed core structural scans from 1356 participants 842 fMRI, 831 dMRI, and 858 ASL scans. From 1356 3D T1w images, we identified 17 images with poor quality and 61 with moderate quality. Five QC features - Signal to Noise Ratio (SNR), Contrast to Noise Ratio (CNR), Coefficient of Joint Variation (CJV), Foreground-Background energy Ratio (FBER), and Image Quality Rate (IQR) - were selected as the most informative on image quality by comparison with visual assessment. The multimodal IDPs showed greater impairment in associations with age and dementia biomarkers, demonstrating the potential of the dataset for future clinical analyses.
Assuntos
Doença de Alzheimer , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/prevenção & controle , Biomarcadores , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Sintomas Prodrômicos , Fluxo de TrabalhoRESUMO
BACKGROUND: Hypersensitivity, stereotyped behaviors and attentional problems in autism spectrum disorder (ASD) are compatible with inefficient filtering of undesired or irrelevant sensory information at early stages of neural processing. This could stem from the persistent overconnectivity between primary sensory regions and deep brain nuclei in both children and adults with ASD - as reported by several previous studies - which could reflect a decreased or arrested maturation of brain connectivity. However, it has not yet been investigated whether this overconnectivity can be modelled as an excessive directional influence of subcortical brain activity on primary sensory cortical regions in ASD, with respect to age-matched typically developing (TD) individuals. METHODS: To this aim, we used dynamic causal modelling to estimate (1) the directional influence of subcortical activity on cortical processing and (2) the functional segregation of primary sensory cortical regions from subcortical activity in 166 participants with ASD and 193 TD participants from the Autism Brain Imaging Data Exchange (ABIDE). We then specifically tested the hypothesis that the age-related changes of these indicators of brain connectivity would differ between the two groups. RESULTS: We found that in TD participants age was significantly associated with decreased influence of subcortical activity on cortical processing, paralleled by an increased functional segregation of cortical sensory processing from subcortical activity. Instead these effects were highly reduced and mostly absent in ASD participants, suggesting a delayed or arrested development of the segregation between subcortical and cortical sensory processing in ASD. CONCLUSION: This atypical configuration of subcortico-cortical connectivity in ASD can result in an excessive amount of unprocessed sensory input relayed to the cortex, which is likely to impact cognitive functioning in everyday situations where it is beneficial to limit the influence of basic sensory information on cognitive processing, such as activities requiring focused attention or social interactions.