Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 2962, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34016969

RESUMO

The human type IIA topoisomerases (Top2) are essential enzymes that regulate DNA topology and chromosome organization. The Topo IIα isoform is a prime target for antineoplastic compounds used in cancer therapy that form ternary cleavage complexes with the DNA. Despite extensive studies, structural information on this large dimeric assembly is limited to the catalytic domains, hindering the exploration of allosteric mechanism governing the enzyme activities and the contribution of its non-conserved C-terminal domain (CTD). Herein we present cryo-EM structures of the entire human Topo IIα nucleoprotein complex in different conformations solved at subnanometer resolutions (3.6-7.4 Å). Our data unveils the molecular determinants that fine tune the allosteric connections between the ATPase domain and the DNA binding/cleavage domain. Strikingly, the reconstruction of the DNA-binding/cleavage domain uncovers a linker leading to the CTD, which plays a critical role in modulating the enzyme's activities and opens perspective for the analysis of post-translational modifications.


Assuntos
DNA Topoisomerases Tipo II/ultraestrutura , Proteínas de Ligação a Poli-ADP-Ribose/ultraestrutura , Regulação Alostérica , Animais , Domínio Catalítico , Linhagem Celular , Microscopia Crioeletrônica , DNA/metabolismo , DNA/ultraestrutura , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/isolamento & purificação , DNA Topoisomerases Tipo II/metabolismo , Humanos , Mesocricetus , Modelos Moleculares , Nucleoproteínas , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/isolamento & purificação , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura
2.
Cancer Drug Resist ; 3(2): 149-160, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-35582608

RESUMO

The type 2 DNA topoisomerases (Top2) are conserved enzymes and biomarkers for cell proliferation. The catalytic activities of the human isoform Top2α are essential for the regulation of DNA topology during DNA replication, transcription, and chromosome segregation. Top2α is a prominent target for anti-cancer drugs and is highly regulated by post-translational modifications (PTM). Despite an increasing number of proteomic studies, the extent of PTM in cancer cells and its importance in drug response remains largely uncharacterized. In this review, we highlight the different modifications affecting the human Top2α in healthy and cancer cells, taking advantage of the structure-function information accumulated in the past decades. We also overview the regulation of Top2α by PTM, the level of PTM in cancer cells, and the resistance to therapeutic compounds targeting the Top2 enzyme. Altogether, this review underlines the importance of future studies addressing more systematically the interplay between PTM and Top2 drug resistance.

3.
Nat Commun ; 10(1): 4935, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31666516

RESUMO

DNA gyrase is an essential enzyme involved in the homeostatic control of DNA supercoiling and the target of successful antibacterial compounds. Despite extensive studies, a detailed architecture of the full-length DNA gyrase from the model organism E. coli is still missing. Herein, we report the complete structure of the E. coli DNA gyrase nucleoprotein complex trapped by the antibiotic gepotidacin, using phase-plate single-particle cryo-electron microscopy. Our data unveil the structural and spatial organization of the functional domains, their connections and the position of the conserved GyrA-box motif. The deconvolution of two states of the DNA-binding/cleavage domain provides a better understanding of the allosteric movements of the enzyme complex. The local atomic resolution in the DNA-bound area reaching up to 3.0 Å enables the identification of the antibiotic density. Altogether, this study paves the way for the cryo-EM determination of gyrase complexes with antibiotics and opens perspectives for targeting conformational intermediates.


Assuntos
DNA Girase/ultraestrutura , Escherichia coli , Nucleoproteínas/ultraestrutura , Acenaftenos/metabolismo , Antibacterianos/metabolismo , Microscopia Crioeletrônica , DNA Girase/metabolismo , Compostos Heterocíclicos com 3 Anéis/metabolismo , Modelos Moleculares , Complexos Multiproteicos/ultraestrutura , Nucleoproteínas/metabolismo , Imagem Individual de Molécula
4.
Sci Rep ; 8(1): 9272, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29915179

RESUMO

Type 2 DNA topoisomerases (Top2) are critical components of key protein complexes involved in DNA replication, chromosome condensation and segregation, as well as gene transcription. The Top2 were found to be the main targets of anticancer agents, leading to intensive efforts to understand their functional and physiological role as well as their molecular structure. Post-translational modifications have been reported to influence Top2 enzyme activities in particular those of the mammalian Top2α isoform. In this study, we identified phosphorylation, and for the first time, acetylation sites in the human Top2α isoform produced in eukaryotic expression systems. Structural analysis revealed that acetylation sites are clustered on the catalytic domains of the homodimer while phosphorylation sites are located in the C-terminal domain responsible for nuclear localization. Biochemical analysis of the eukaryotic-specific K168 residue in the ATPase domain shows that acetylation affects a key position regulating ATP hydrolysis through the modulation of dimerization. Our findings suggest that acetylation of specific sites involved in the allosteric regulation of human Top2 may provide a mechanism for modulation of its catalytic activity.


Assuntos
DNA Topoisomerases Tipo II/metabolismo , Células Eucarióticas/metabolismo , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Acetilação , Sequência de Aminoácidos , Linhagem Celular , Humanos , Proteínas Mutantes/metabolismo , Fosforilação , Domínios Proteicos , Saccharomyces cerevisiae/metabolismo , Temperatura
5.
Sci Rep ; 8(1): 10673, 2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-29988042

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA