Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Gen Virol ; 104(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37750869

RESUMO

Hepatitis C virus (HCV) infects millions of people worldwide and is a leading cause of liver disease. Despite recent advances in antiviral therapies, viral resistance can limit drug efficacy and understanding the mechanisms that confer viral escape is important. We employ an unbiased interactome analysis to discover host binding partners of the HCV non-structural protein 5A (NS5A), a key player in viral replication and assembly. We identify ASPP2, apoptosis-stimulating protein of p53, as a new host co-factor that binds NS5A via its SH3 domain. Importantly, silencing ASPP2 reduces viral replication and spread. Our study uncovers a previously unknown role for ASPP2 to potentiate HCV RNA replication.


Assuntos
Hepacivirus , Hepatite C , Humanos , Hepacivirus/genética , Domínios de Homologia de src , Replicação Viral , Proteínas não Estruturais Virais/metabolismo , Domínios Proteicos
2.
Cell Death Dis ; 14(4): 274, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072394

RESUMO

The transcription factor p63 shares a high sequence identity with the tumour suppressor p53 which manifests itself in high structural similarity and preference for DNA sequences. Mutations in the DNA binding domain (DBD) of p53 have been studied in great detail, enabling a general mechanism-based classification. In this study we provide a detailed investigation of all currently known mutations in the p63 DBD, which are associated with developmental syndromes, by measuring their impact on transcriptional activity, DNA binding affinity, zinc binding capacity and thermodynamic stability. Some of the mutations we have further characterized with respect to their ability to convert human dermal fibroblasts into induced keratinocytes. Here we propose a classification of the p63 DBD mutations based on the four different mechanisms of DNA binding impairment which we identified: direct DNA contact, zinc finger region, H2 region, and dimer interface mutations. The data also demonstrate that, in contrast to p53 cancer mutations, no p63 mutation induces global unfolding and subsequent aggregation of the domain. The dimer interface mutations that affect the DNA binding affinity by disturbing the interaction between the individual DBDs retain partial DNA binding capacity which correlates with a milder patient phenotype.


Assuntos
Proteína Supressora de Tumor p53 , Proteínas Supressoras de Tumor , Humanos , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ligação Proteica/genética , Mutação/genética , DNA/metabolismo , Sítios de Ligação
3.
Cell Rep ; 41(3): 111503, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36261000

RESUMO

Concurrent mutation of a RAS oncogene and the tumor suppressor p53 is common in tumorigenesis, and inflammation can promote RAS-driven tumorigenesis without the need to mutate p53. Here, we show, using a well-established mutant RAS and an inflammation-driven mouse skin tumor model, that loss of the p53 inhibitor iASPP facilitates tumorigenesis. Specifically, iASPP regulates expression of a subset of p63 and AP1 targets, including genes involved in skin differentiation and inflammation, suggesting that loss of iASPP in keratinocytes supports a tumor-promoting inflammatory microenvironment. Mechanistically, JNK-mediated phosphorylation regulates iASPP function and inhibits iASPP binding with AP1 components, such as JUND, via PXXP/SH3 domain-mediated interaction. Our results uncover a JNK-iASPP-AP1 regulatory axis that is crucial for tissue homeostasis. We show that iASPP is a tumor suppressor and an AP1 coregulator.


Assuntos
Proteínas Repressoras , Proteína Supressora de Tumor p53 , Animais , Camundongos , Transformação Celular Neoplásica/genética , Inflamação/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Repressoras/metabolismo , Microambiente Tumoral , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , MAP Quinase Quinase 4/metabolismo , Fator de Transcrição AP-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA