Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 19(12): e3001496, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34928937

RESUMO

Magnesium is essential for cellular life, but how it is homeostatically controlled still remains poorly understood. Here, we report that members of CNNM family, which have been controversially implicated in both cellular Mg2+ influx and efflux, selectively bind to the TRPM7 channel to stimulate divalent cation entry into cells. Coexpression of CNNMs with the channel markedly increased uptake of divalent cations, which is prevented by an inactivating mutation to the channel's pore. Knockout (KO) of TRPM7 in cells or application of the TRPM7 channel inhibitor NS8593 also interfered with CNNM-stimulated divalent cation uptake. Conversely, KO of CNNM3 and CNNM4 in HEK-293 cells significantly reduced TRPM7-mediated divalent cation entry, without affecting TRPM7 protein expression or its cell surface levels. Furthermore, we found that cellular overexpression of phosphatases of regenerating liver (PRLs), known CNNMs binding partners, stimulated TRPM7-dependent divalent cation entry and that CNNMs were required for this activity. Whole-cell electrophysiological recordings demonstrated that deletion of CNNM3 and CNNM4 from HEK-293 cells interfered with heterologously expressed and native TRPM7 channel function. We conclude that CNNMs employ the TRPM7 channel to mediate divalent cation influx and that CNNMs also possess separate TRPM7-independent Mg2+ efflux activities that contribute to CNNMs' control of cellular Mg2+ homeostasis.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Ciclinas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Canais de Cátion TRPM/metabolismo , Proteínas de Transporte de Cátions/fisiologia , Cátions Bivalentes/metabolismo , Linhagem Celular Tumoral , Ciclinas/fisiologia , Células HEK293 , Humanos , Magnésio/metabolismo , Técnicas de Patch-Clamp , Proteínas Serina-Treonina Quinases/fisiologia , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/fisiologia
2.
J Environ Manage ; 351: 119629, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38043303

RESUMO

The low C/N ratio, high moisture content, and low porosity of food waste require the addition of bulking agents for adjustment during the composting process. However, the effect and mechanism of different bulking agents on the reduction of carbon and nitrogen losses are unclear. Therefore, this study conducted experiments to evaluate and clarify the differences in carbon and nitrogen transformation between sawdust, rice husk and wheat bran in food waste composting. The results showed that the addition of bulking agents promoted the conversion of carbon and nitrogen into total organic carbon (TOC) and total organic nitrogen (TON) rather than CO2 and NH3. The carbon and nitrogen losses were reduced by 16.00-25.71% and 11.56-29.54%, respectively. Notably, the Sawdust group exhibited the highest carbon retention, whereas the Wheat_bran group demonstrated superior nitrogen retention. The succession of bacterial communities showed that sawdust enhanced the cellulolysis and xylanolysis functions while wheat bran promoted nitrogen fixation. Correlation analysis was further employed to speculate on potential interactions among carbon and nitrogen components. The incorporation of sawdust and rice husk improved humification partly due to the addition of lignocellulose and the accumulation of total dissolved nitrogen (DTN) in the substrate, respectively. In the process of ammonia assimilation, the addition of wheat bran promoted the accumulation of dissolved organic carbon (DOC), contributing to the synthesis of TON to a degree. These findings offer cost-effective strategies for conserving carbon and nitrogen from loss in food waste composting by selecting suitable bulking agents, ultimately producing high-quality fertilizer.


Assuntos
Compostagem , Eliminação de Resíduos , Carbono , Nitrogênio/análise , Eliminação de Resíduos/métodos , Perda e Desperdício de Alimentos , Solo/química , Fibras na Dieta
3.
Environ Res ; 216(Pt 4): 114782, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36395864

RESUMO

Sulfidized nanoscale zerovalent iron (S-nZVI) was a promising material for degrading halogenated contaminants, but the easy aggregation limits its application for in-situ groundwater remediation. Hence, S-nZVI was decorated onto modified biochar (mBC) to obtain better dispersity and reactivity with florfenicol (FF), a widely used antibiotic. Uniform dispersion of S-nZVI particles were achieved on the mBC with plentiful oxygen-containing functional groups and negative surface charge. Thus, the removal rate of FF by S-nZVI@mBC was 2.5 and 3.1 times higher than that by S-nZVI and S-nZVI@BC, respectively. Adsorption and dechlorination of FF showed synergistic effect under appropriate mBC addition (e.g., C/Fe mass ratio = 1:3, 1:1), probably due to the enrichment of FF facilitates its reduction. In contrast, the contact between FF and S-nZVI could be hindered under more mBC addition, significantly decrease the reduction rate of FF and the reduction capacity of per unit Fe0. In addition, sulfur dose altered the surface species of surface Fe and S, and removal rates of FF correlated well with surface reductive species, i.e., FeS (r = 0.90, p < 0.05) and Fe0 (r = 0.98, p < 0.01). These mechanistic insights indicate the importance of rational design for biochar supported S-nZVI, which can lead to more efficient FF degradation.


Assuntos
Ferro , Poluentes Químicos da Água , Adsorção , Poluentes Químicos da Água/análise
4.
Ecotoxicol Environ Saf ; 211: 111952, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33513523

RESUMO

The accumulation of cadmium (Cd) in Oryza sativa L., the world's most significant staple crop, is a health threat to millions of people. The objective of this study was to evaluate the effectiveness of commercially available biofertilizers (with high (BF2) and low organic matter (OM) content (BF1)) on Cd accumulation in two types of soils and to determine the bacterial community responses by high-throughput sequencing. The study was conducted in the form of pot experiment in greenhouse in 2018. Four treatments were set: BF1, BF2, organic fertilizer (OF), and control (CK) and the amendments were applied before the rice cultivation. The results showed that the addition of biofertilizers immobilized or mobilized Cd in soils, depending on the soil type and the OM content in biofertilizers. The exogenous OM in biofertilizers was the driving factor for the difference in pH and Cd accumulation in rice grains. The application of biofertilizers with high OM content was effective in reducing Cd accumulation in the rice grains (19.7% lower than CK) by significantly increasing soil pH (from 6.02 to 6.67) in acid silt loam soil (TZ). The consumption of acid fermentation products by soil chemoorganotrophs and the complexation of organic anions in the biofertilizer treatment tended to buffer the pH drop in the drainage and decrease the Cd availability. However, in the weak acid silty clay loam soil (SX), the addition of biofertilizer with high OM significantly increased Cd accumulation in rice grains (21.9% higher than CK), probably owing to the release of acid substances, resulting from the significant increase of the predominant bacteria Chloroflexi. The addition of biofertilizer with low OM content did not significantly change Cd accumulation in rice grains or affect the soil microbial structures in both soils. In conclusion, the effects of biofertilizer on rice Cd accumulation were related to the OM content and soil bacterial community. Biofertilizers with high organic matter may not be suitable for amendments in the paddy soils with high clay content to reduce Cd accumulation in rice grains.


Assuntos
Cádmio/metabolismo , Oryza/metabolismo , Poluentes do Solo/metabolismo , Bactérias , Cádmio/análise , Fertilizantes/análise , Oryza/efeitos dos fármacos , Estruturas Vegetais/química , Solo/química , Poluentes do Solo/análise
5.
J Environ Manage ; 278(Pt 2): 111587, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33160229

RESUMO

Swine manure is considered as an extensive reservoir of antibiotic resistance genes (ARGs) spreading in the natural environment after application in soils. To understand whether ARGs abundance in swine manure is underestimated and the hosts are ignored, this study successively extracted DNA from swine manure six times and determined the abundance of several ARGs, class I integron (intI1), and 16S rRNA as well as the microbial communities. It is found that successive six DNA extraction of swine manures elevated the yield of DNA and strongly increased the abundance of ARGs, intI1, and 16S rRNA. Compared with single DNA extraction, the most dominant bacterial phylum in swine manures shifted from Proteobacteria to Firmicutes, and the dominant bacterial genera changed from Acinetobacter Clostridium after six DNA extraction. The ignored abundance of bacterial phylum and genus emphasized the possible hosts carrying these genes should be paid more attention. It is suggested that the successive DNA extraction of manures is required in the future study to improve the knowledge of estimating the risk and hosts of ARGs in manures entering the environment.


Assuntos
Antibacterianos , Esterco , Animais , Antibacterianos/farmacologia , DNA , Resistência Microbiana a Medicamentos , Genes Bacterianos , RNA Ribossômico 16S/genética , Suínos
6.
J Environ Sci (China) ; 102: 216-225, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33637246

RESUMO

Black carbon (BC) is a promising sediment amendment, as proven by its considerable adsorption capacity for hydrophobic organic pollutants and accessibility, but its reliability when used for the removal of pollutants in natural sediments still needs to be evaluated. For example, the ageing process, resulting in changing of surface physicochemical properties of BC, will decrease the adsorption capacity and performance of BC when applied to sediment pollution control. In this study, how the ageing process and BC proportion affect the adsorption capacity of BC-sediment systems was modelled and quantitatively investigated to predict their adsorption capacity under different ageing times and BC additions. The results showed that the ageing process decreased the adsorption capacity of both BC-sediment systems, due to the blockage of the non-linear adsorption sites of BC. The adsorption capacity of rice straw black carbon (RC)-sediment systems was higher than that of fly ash black carbon (FC)-sediment systems, indicating that RC is more efficient than FC for nonylphenol (NP) pollution control in sediment. The newly established model for the prediction of adsorption capacity fits the experimental data appropriately and yields acceptable predictions, especially when based on parameters from the Freundlich model. However, to fully reflect the influence of the ageing process on BC-sediment systems and make more precise predictions, it is recommended that future work considering more factors and conditions, such as modelling of the correlation between the adsorption capacity and the pore volume or specific surface area of BC, be applied to build an accurate and sound model.


Assuntos
Carbono , Sedimentos Geológicos , Adsorção , Fenóis , Reprodutibilidade dos Testes
7.
Environ Res ; 182: 109150, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32069768

RESUMO

The gradual updating of the water supply network is one of the crucial ways to ensure the safety of drinking water all over the world. The phenomenon and regularity of the biological risk and chemical risk of biofilms of the new pipes in drinking water distribution system (DWDS) is inadequate researched by now. In order to explore the biochemical risks of biofilms after new pipes are used, this paper studied the growth of biofilms, the content of disinfection by-products (DBPs) and the potential for disinfection by-products (DBPsFP) after 2-year use by establishing a pilot test platform at both ends of the DWDS in City S. The results showed that the total bacterial count in new pipelines was between 1.38 × 108-9.97 × 108/cm2; the DBPsFP at the front end and at the back end was subtly different. The overall DBPsFP of biofilms was the highest, followed by the ductile cast iron pipe and the galvanized pipe whereas the stainless steel pipe was the lowest. The HPC content of the 2-year-old pipe (1.68 × 105-7.09 × 106 CFU/cm2) was remarkably higher than that of the 1-year-old pipe (1.04 × 105-8.76 × 105 CFU/cm2), and the generation DBPsFP was about 50% higher. When a new pipeline was put into use in the urban drinking water distribution system, biofilms with certain biological hazards and risks of DBPs disinfection by-products would form in a short period of time.


Assuntos
Biofilmes , Água Potável , Purificação da Água , Desinfecção , Aço Inoxidável , Microbiologia da Água , Abastecimento de Água
8.
Environ Res ; 186: 109540, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32339956

RESUMO

As the most abundant microbes in the atmosphere, airborne bacteria are closely involved in affecting human health, regional climate and ecological balance. The mobility of airborne microorganisms makes it necessary to study the community dynamic in short cycle. Nevertheless, it remains obscure how the airborne bacteria especially the pathogenic bacteria vary on the small time scale of day and night. To investigate the nycterohemeral discrepancy of airborne total bacteria and pathogenic bacteria, PM2.5 samples were collected in Hangzhou between day and night. Microbial taxonomic information was obtained through 16S rRNA gene sequencing and "human pathogens database" screening. Further analyses based on Multiple Regression Matrices (MRM) approach and Concentration Weighted Trajectory (CWT) model were conducted to elucidate the effect of local environmental factors and long-range transport. The community composition of total bacteria tended to be similar in the daytime while pathogenic bacteria turned out to be homogeneous in the nighttime. To be vigilant, the diversity of airborne pathogenic bacteria echoed the frequency of anthropogenic activities with the pathogen inhalation rate roughly at 428 copies/h and 235 copies/h respectively in daytime and nighttime. The nycterohemeral discrepancy of total bacteria was principally driven by the filtering of environmental factors, i.e., CO and NO2, indicating that anthropogenic activities brought about the homogeneity. Airborne pathogenic bacteria coupled with the strong resistances of environmental filtering stood out from their non-pathogenic counterpart, which enabled the long-range transport. Indeed, the nycterohemeral discrepancy of pathogenic bacteria was shaped by the transport of air masses. This research filled the gaps in temporal variance of airborne microorganisms on the small time scale of day and night, providing crucial foundation for precisely predicting ecological and health effects of bioaerosols.


Assuntos
Microbiologia do Ar , Material Particulado , Bactérias/genética , Monitoramento Ambiental , Humanos , Material Particulado/análise , RNA Ribossômico 16S/genética
9.
Environ Res ; 187: 109662, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32460094

RESUMO

Sulfide-modified nanoscale zerovalent iron (S-nZVI) has excellent reducing performance for heavy metals in water. The influence of environmental factors on the reactivity can be used to explore the practical feasibility of S-nZVI and analyze the reaction mechanism in depth. This study compared the removal effect and mechanism of Cu2+ and Ni2+ by nanoscale zerovalent iron (nZVI), S-nZVI, and carboxymethyl cellulose-modified nanoscale zerovalent iron (CMC-nZVI). The results show that the pseudo-first-order kinetic constant of Cu2+ removal by nZVI, S-nZVI, and CMC-nZVI was 1.384, 1.919, and 2.890 min-1, respectively, and the rate of Ni2+ removal was 0.304, 0.931, and 0.360 min-1, respectively. The removal mechanism of S-nZVI was similar to that of nZVI and CMC-nZVI. Specifically, Cu2+ was predominantly removed by reduction, while Ni2+ removal included adsorption and reduction. Environmental factors had a specific inhibitory effect on the removal of Cu2+ but had a negligible impact on Ni2+. The condition of low pH, the presence of Cl- and humic acid (HA) promoted the corrosion consumption of Fe0, in which H+ directly corroded Fe0 at low pH. At the same time, Cl- and HA inhibited the adsorption or binding of heavy metal ions on the particle surface, thereby reducing the electron transfer and utilization efficiency. The passivation of NO3- reduced the anaerobic corrosion of the material in water but suppressed the release of electrons, thereby reducing the reduction efficiency of the three types of materials. The anaerobic corrosion of S-nZVI was less affected by environmental factors, and it can still maintain more than 80% of the electronic utilization efficiency under different environmental factors, which illustrates that S-nZVI has broad prospects for practical applications in heavy metal polluted water.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adsorção , Ferro , Sulfetos , Poluentes Químicos da Água/análise
10.
J Biol Chem ; 293(29): 11491-11504, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-29866880

RESUMO

The channel-kinase transient receptor potential melastatin 7 (TRPM7) is a bifunctional protein with ion channel and kinase domains. The kinase activity of TRPM7 has been linked to the regulation of a broad range of cellular activities, but little is understood as to how the channel itself is regulated by its own kinase activity. Here, using several mammalian cell lines expressing WT TRPM7 or kinase-inactive variants, we discovered that compared with the cells expressing WT TRPM7, cells in which TRPM7's kinase activity was inactivated had faster degradation, elevated ubiquitination, and increased intracellular retention of the channel. Mutational analysis of TRPM7 autophosphorylation sites further revealed a role for Ser-1360 of TRPM7 as a key residue mediating both TRPM7 stability and intracellular trafficking. Additional trafficking roles were uncovered for Ser-1403 and Ser-1567, whose phosphorylation by TRPM7's kinase activity mediated the interaction of the channel with the signaling protein 14-3-3θ. In summary, our results point to a critical role for TRPM7's kinase activity in regulating proteasome-mediated turnover of the TRPM7 channel and controlling its cellular localization in polarized epithelial cells. Overall, these findings improve our understanding of the significance of TRPM7's kinase activity for functional regulation of its channel activity.


Assuntos
Células Epiteliais/metabolismo , Canais de Cátion TRPM/metabolismo , Proteínas 14-3-3/metabolismo , Animais , Polaridade Celular , Células Epiteliais/citologia , Células HEK293 , Humanos , Camundongos , Fosforilação , Ligação Proteica , Proteínas Quinases/análise , Proteínas Quinases/metabolismo , Estabilidade Proteica , Transporte Proteico , Canais de Cátion TRPM/análise
11.
Chin J Cancer Res ; 31(3): 471-480, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31354216

RESUMO

OBJECTIVE: The present study examined the effect of radiotherapy on recurrence and survival in elderly patients with hormone receptor-positive early breast cancer. METHODS: A retrospective analysis of 327 patients aged ≥65 years, with stage I-II, hormone receptor-positive breast cancer who underwent breast-conserving surgery and received endocrine therapy (ET) or radiotherapy plus endocrine therapy (ET+RT) was performed. Both groups were divided into luminal A type and luminal B type subgroups. Evaluation criteria were 5-year disease-free survival (DFS), local relapse rate (LRR), overall survival (OS), and distant metastasis rate (DMR). RESULTS: There were significant differences in 5-year DFS [hazard ratio (HR)=1.59, 95% confidence interval (95% CI), 1.15-2.19; P=0.005] and LRR (HR=3.33, 95% CI, 1.51-7.34; P=0.003), whereas there were no significant differences in OS and DMR between ET group and ET+RT group. In luminal A type, there was no significant difference in 5-year DFS, LRR, OS and DMR between ET group and ET+RT group. In luminal B type, there were statistically significant differences in 5-year DFS (HR=2.19, 95% CI, 1.37-3.49; P=0.001), LRR (HR=5.45, 95% CI, 1.65-17.98; P=0.005), and OS (HR=1.75, 95% CI, 1.01-3.05; P=0.048) between ET group and ET+RT group. In the ET group, there were significant differences between luminal A type and luminal B type in 5-year DFS (HR=1.84, 95% CI, 1.23-2.75; P=0.003) and OS (HR=1.76, 95% CI, 1.07-2.91; P=0.026). CONCLUSIONS: After breast-conserving surgery, radiotherapy can reduce the LRR and improve the DFS and OS of luminal B type elderly patients, whereas luminal A type elderly patients do not benefit from radiotherapy. Without radiotherapy, luminal A type patients have better DFS and OS than luminal B type patients.

12.
Water Sci Technol ; 77(7-8): 1791-1801, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29676736

RESUMO

The application of carbonized materials (CMs) from solid wastes for the control of hydrophobic organic contaminants is a promising way to treat wastes. In this paper, the physicochemical properties of CMs prepared from industry (fly ash and sewage sludge), plant (rice straw and bamboo fragments), and livestock (chicken manure) were analyzed, their adsorption capacities for nonylphenol were studied, and the relationship between the adsorption capacity and the physicochemical properties of different types of CMs was investigated. The results showed that the adsorption capacities of CMs prepared from plant solid wastes (rice straw and bamboo fragments) far exceeded those of the industrial and livestock solid wastes. The parameter Kf obtained by the Freundlich model showed a significant and positive correlation with carbon content (C%), carboxyl content, specific surface area (SSA), and pore volume, and a negative correlation with ash content (ash%). Compared with CMs produced by the other two types of solid wastes, CMs from the plant solid wastes had the characteristics of a large SSA, rich pore structure (especially mesoporous) and high aromaticity (high C%), which were the main reasons for their superior adsorption capacity. The results could provide a scientific basis for the utilization of solid wastes.


Assuntos
Cinza de Carvão/química , Esterco , Fenóis/química , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Adsorção , Incineração , Oryza , Resíduos Sólidos/análise
13.
Appl Microbiol Biotechnol ; 101(2): 749-759, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27761636

RESUMO

Biofilms in the pipe wall may lead to water quality deterioration and biological instability in drinking water distribution systems (DWDSs). In this study, bacterial community radial-spatial distribution in biofilms along the pipe wall in a chlorinated DWDS of East China was investigated. Three pipes of large diameter (300, 600, and 600 mm) were sampled in this DWDS, including a ductile cast iron pipe (DCIP) with pipe age of 11 years and two gray cast iron pipes (GCIP) with pipe ages of 17 and 19 years, and biofilms in the upper, middle, and lower parts of each pipe wall were collected. Real-time quantitative polymerase chain reaction (qPCR) and culture-based method were used to quantify bacteria. 454 pyrosequencing was used for bacterial community analysis. The results showed that the biofilm density and total solid (TS) and volatile solid (VS) contents increased gradually from the top to the bottom along the pipe wall. Microorganisms were concentrated in the upper and lower parts of the pipe wall, together accounting for more than 80 % of the total biomass in the biofilms. The bacterial communities in biofilms were significantly different in different areas of the pipe wall and had no strong interaction. Compared with the upper and lower parts of the pipe wall, the bacterial community in the middle of the pipe wall was distributed evenly and had the highest diversity. The 16S rRNA genes of various possible pathogens, including Escherichia coli, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Salmonella enterica, were detected in the biofilms, and the abundances of these possible pathogens were highest in the middle of the pipe wall among three areas. The detachment of the biofilms is the main reason for the deterioration of the water quality in DWDSs. The results of this study suggest that the biofilms in the middle of the pipe wall have highly potential risk for drinking water safety, which provides new ideas for the study of the microbial ecology in DWDS.


Assuntos
Bactérias/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Microbiologia Ambiental , Bactérias/classificação , Bactérias/genética , Carga Bacteriana , Biota , China , Cloro , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Desinfecção , Água Potável/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
14.
Proc Natl Acad Sci U S A ; 111(12): 4495-500, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24616523

RESUMO

The process of nitrite-dependent anaerobic methane oxidation (n-damo) was recently discovered and shown to be mediated by "Candidatus Methylomirabilis oxyfera" (M. oxyfera). Here, evidence for n-damo in three different freshwater wetlands located in southeastern China was obtained using stable isotope measurements, quantitative PCR assays, and 16S rRNA and particulate methane monooxygenase gene clone library analyses. Stable isotope experiments confirmed the occurrence of n-damo in the examined wetlands, and the potential n-damo rates ranged from 0.31 to 5.43 nmol CO2 per gram of dry soil per day at different depths of soil cores. A combined analysis of 16S rRNA and particulate methane monooxygenase genes demonstrated that M. oxyfera-like bacteria were mainly present in the deep soil with a maximum abundance of 3.2 × 10(7) gene copies per gram of dry soil. It is estimated that ∼0.51 g of CH4 m(-2) per year could be linked to the n-damo process in the examined wetlands based on the measured potential n-damo rates. This study presents previously unidentified confirmation that the n-damo process is a previously overlooked microbial methane sink in wetlands, and n-damo has the potential to be a globally important methane sink due to increasing nitrogen pollution.


Assuntos
Anaerobiose , Bactérias/metabolismo , Metano/metabolismo , Áreas Alagadas , Bactérias/classificação , Bactérias/genética , Genes Bacterianos , Dados de Sequência Molecular , Oxirredução , Filogenia , RNA Ribossômico 16S/genética
15.
Appl Microbiol Biotechnol ; 100(16): 7171-80, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27225473

RESUMO

In the current study, we investigated nitrite-dependent anaerobic methane oxidation (N-DAMO) as a potential methane sink in the Hangzhou Bay and the adjacent Zhoushan sea area. The potential activity of the N-DAMO process was primarily observed in Hangzhou Bay by means of (13)C-labeling experiments, whereas very low or no potential N-DAMO activity could be detected in the Zhoushan sea area. The measured potential N-DAMO rates ranged from 0.2 to 1.3 nmol (13)CO2 g(-1) (dry sediment) day(-1), and the N-DAMO potentially contributed 2.0-9.4 % to the total microbial methane oxidation in the examined sediments. This indicated that the N-DAMO process may be an alternative pathway in the coastal methane cycle. Phylogenetic analyses confirmed the presence of Candidatus Methylomirabilis oxyfera-like bacteria in all the examined sediments, while the group A members (the dominant bacteria responsible for N-DAMO) were found mainly in Hangzhou Bay. Quantitative PCR showed that the 16S rRNA gene abundance of Candidatus M. oxyfera-like bacteria varied from 5.4 × 10(6) to 5.0 × 10(7) copies g(-1) (dry sediment), with a higher abundance observed in Hangzhou Bay. In addition, the overlying water NO3 (-) concentration and salinity were identified as the most important factors influencing the abundance and potential activity of Candidatus M. oxyfera-like bacteria in the examined sediments. This study showed the evidence of N-DAMO in coastal environments and indicated the importance of N-DAMO as a potential methane sink in coastal environments.


Assuntos
Bactérias/metabolismo , Baías/microbiologia , Sedimentos Geológicos/microbiologia , Metano/metabolismo , Nitratos/química , Nitritos/química , Anaerobiose , Sequência de Bases , DNA Bacteriano/genética , Marcação por Isótopo , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Salinidade , Análise de Sequência de DNA , Microbiologia do Solo
16.
Appl Environ Microbiol ; 81(16): 5538-45, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26048927

RESUMO

Anaerobic oxidation of methane (AOM) coupled to nitrite reduction is a novel AOM process that is mediated by denitrifying methanotrophs. To date, enrichments of these denitrifying methanotrophs have been confined to freshwater systems; however, the recent findings of 16S rRNA and pmoA gene sequences in marine sediments suggest a possible occurrence of AOM coupled to nitrite reduction in marine systems. In this research, a marine denitrifying methanotrophic culture was obtained after 20 months of enrichment. Activity testing and quantitative PCR (qPCR) analysis were then conducted and showed that the methane oxidation activity and the number of NC10 bacteria increased correlatively during the enrichment period. 16S rRNA gene sequencing indicated that only bacteria in group A of the NC10 phylum were enriched and responsible for the resulting methane oxidation activity, although a diverse community of NC10 bacteria was harbored in the inoculum. Fluorescence in situ hybridization showed that NC10 bacteria were dominant in the enrichment culture after 20 months. The effect of salinity on the marine denitrifying methanotrophic culture was investigated, and the apparent optimal salinity was 20.5‰, which suggested that halophilic bacterial AOM coupled to nitrite reduction was obtained. Moreover, the apparent substrate affinity coefficients of the halophilic denitrifying methanotrophs were determined to be 9.8 ± 2.2 µM for methane and 8.7 ± 1.5 µM for nitrite.


Assuntos
Organismos Aquáticos/metabolismo , Bactérias/metabolismo , Metano/metabolismo , Nitritos/metabolismo , Anaerobiose , Organismos Aquáticos/classificação , Organismos Aquáticos/isolamento & purificação , Bactérias/classificação , Bactérias/isolamento & purificação , Análise por Conglomerados , DNA Ribossômico/química , DNA Ribossômico/genética , Sedimentos Geológicos/microbiologia , Consórcios Microbianos , Dados de Sequência Molecular , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Salinidade , Análise de Sequência de DNA , Cloreto de Sódio/metabolismo
17.
Appl Microbiol Biotechnol ; 99(2): 939-46, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25186148

RESUMO

Nitrite-dependent anaerobic methane oxidation (n-damo) is a newly discovered biological process that couples anaerobic oxidation of methane (AOM) to nitrite reduction. In this study, three different inocula, methanogenic sludge, paddy soil, and freshwater sediment were used to enrich n-damo bacteria in three sequencing batch reactors (SBRs), and three n-damo enrichment cultures, C1, C2 and C3, were obtained, respectively. After 500 days of incubation, Methylomirabilis oxyfera-like bacteria and n-damo activities were observed in cultures C1, C2, and C3, and the specific activities were 0.8 ± 0.1, 1.4 ± 0.1, and 1.0 ± 0.1 µmol CH4 h(-1) g(-1) VSS, respectively. The copy numbers of 16S rRNA genes from cultures C1, C2, and C3 were 5.0 ± 0.4 × 10(8), 6.1 ± 0.1 × 10(9), and 1.0 ± 0.2 × 10(9) copies g(-1) dry weight, respectively. The results indicated that paddy soil is an excellent inoculum for n-damo bacterial enrichment. This work expanded the alternative source of n-damo inoculum and benefited the further research of n-damo process.


Assuntos
Bactérias Anaeróbias/metabolismo , Metano/metabolismo , Nitritos/metabolismo , Bactérias Anaeróbias/classificação , Reatores Biológicos , China , Clonagem Molecular , DNA Bacteriano/genética , Água Doce/microbiologia , Sedimentos Geológicos/microbiologia , Hibridização in Situ Fluorescente , Microscopia Eletrônica de Transmissão , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Esgotos/microbiologia , Microbiologia do Solo
18.
Appl Microbiol Biotechnol ; 99(1): 349-57, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25242345

RESUMO

Nitrite-dependent anaerobic methane oxidation (n-damo) is a recently discovered process that is catalysed by "Candidatus Methylomirabilis oxyfera". In the present study, the vertical distribution (0-10, 20-30, 50-60 and 90-100 cm) of M. oxyfera-like bacteria was investigated in Xiazhuhu wetland, the largest natural wetland on the southern Yangtze River (China). Phylogenetic analyses showed that group A of M. oxyfera-like bacteria and pmoA genes occurred primarily at depths of 50-60 and 90-100 cm. Quantitative PCR further confirmed the presence of M. oxyfera-like bacteria in soil cores from different depths, with the highest abundance of 5.1 × 10(7) copies g(-1) dry soil at depth of 50-60 cm. Stable isotope experiments demonstrated that the n-damo process occurred primarily at depths of 50-60 and 90-100 cm, with the potential rates ranging from 0.2 to 14.5 nmol CO2 g(-1) dry soil d(-1). It was estimated that the methane flux may increase by approximately 2.7-4.3% in the examined wetland in the absence of n-damo. This study shows that the deep wetland soils (50-60 and 90-100 cm) are the preferred habitats for M. oxyfera-like bacteria. The study also highlights the potential importance of these bacteria in the methane and nitrogen cycles in deep wetland soils.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Biota , Metano/metabolismo , Nitritos/metabolismo , Microbiologia do Solo , Anaerobiose , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , China , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , Água Doce , Marcação por Isótopo , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Áreas Alagadas
19.
Appl Microbiol Biotechnol ; 99(24): 10713-24, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26311220

RESUMO

Biofilms in drinking water distribution systems (DWDSs) could cause several types of problems, such as the deterioration of water quality, corrosion of pipe walls, and potential proliferation of opportunistic pathogens. In this study, ten biofilm samples from different pipe materials, including ductile cast iron pipe (DCIP), gray cast iron pipe (GCIP), galvanized steel pipe (GSP), stainless steel clad pipe (SSCP), and polyvinyl chloride (PVC), were collected from an actual DWDS to investigate the effect of pipe material on bacterial community. Real-time quantitative polymerase chain reaction (qPCR) and culture-based method were used to quantify bacteria. 454 pyrosequencing was used for bacterial community analysis. The results showed that the numbers of total bacteria and culturable heterotrophic bacteria from iron pipes were higher than that in PVC, while the numbers of Shigella and vibrios were low in biofilms from iron pipes. Bacterial community analysis showed that Hyphomicrobium or Desulfovibrio were the predominant microorganism in iron pipes, whereas Sphingomonas or Pseudomonas were dominant in other types of pipe. This study revealed differences in bacterial communities in biofilms among different pipe materials, and the results were useful for pipeline material selection in DWDSs.


Assuntos
Bactérias/classificação , Biofilmes/crescimento & desenvolvimento , Biota , Água Potável , Microbiologia Ambiental , Bactérias/genética , China , Cidades , Reação em Cadeia da Polimerase em Tempo Real
20.
Appl Environ Microbiol ; 80(24): 7611-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25261523

RESUMO

Anaerobic ammonium oxidation (anammox) and nitrite-dependent anaerobic methane oxidation (n-damo) are two of the most recent discoveries in the microbial nitrogen cycle. In the present study, we provide direct evidence for the cooccurrence of the anammox and n-damo processes in a flooded paddy field in southeastern China. Stable isotope experiments showed that the potential anammox rates ranged from 5.6 to 22.7 nmol N2 g(-1) (dry weight) day(-1) and the potential n-damo rates varied from 0.2 to 2.1 nmol CO2 g(-1) (dry weight) day(-1) in different layers of soil cores. Quantitative PCR showed that the abundance of anammox bacteria ranged from 1.0 × 10(5) to 2.0 × 10(6) copies g(-1) (dry weight) in different layers of soil cores and the abundance of n-damo bacteria varied from 3.8 × 10(5) to 6.1 × 10(6) copies g(-1) (dry weight). Phylogenetic analyses of the recovered 16S rRNA gene sequences showed that anammox bacteria affiliated with "Candidatus Brocadia" and "Candidatus Kuenenia" and n-damo bacteria related to "Candidatus Methylomirabilis oxyfera" were present in the soil cores. It is estimated that a total loss of 50.7 g N m(-2) per year could be linked to the anammox process, which is at intermediate levels for the nitrogen flux ranges of aerobic ammonium oxidation and denitrification reported in wetland soils. In addition, it is estimated that a total of 0.14 g CH4 m(-2) per year could be oxidized via the n-damo process, while this rate is at the lower end of the aerobic methane oxidation rates reported in wetland soils.


Assuntos
Compostos de Amônio/metabolismo , Bactérias/isolamento & purificação , Bactérias/metabolismo , Metano/metabolismo , Nitritos/metabolismo , Microbiologia do Solo , Anaerobiose , Bactérias/classificação , Bactérias/genética , China , Inundações , Dados de Sequência Molecular , Oxirredução , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA