Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Infect Dis ; 23(1): 294, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147570

RESUMO

BACKGROUND: An unprecedent increase in the number of cases and deaths reported from dengue virus (DENV) infection has occurred in the southwestern Indian ocean in recent years. From 2017 to mid-2021 more than 70,000 confirmed dengue cases were reported in Reunion Island, and 1967 cases were recorded in the Seychelles from 2015 to 2016. Both these outbreaks displayed similar trends, with the initial circulation of DENV-2 which was replaced by DENV-1. Here, we aim to determine the origin of the DENV-1 epidemic strains and to explore their genetic characteristics along the uninterrupted circulation, particularly in Reunion. METHODS: Nucleic acids were extracted from blood samples collected from dengue positive patients; DENV-1 was identified by RT-qPCR. Positive samples were used to infect VERO cells. Genome sequences were obtained from either blood samples or infected-cell supernatants through a combination of both Illumina or MinION technologies. RESULTS: Phylogenetic analyses of partial or whole genome sequences revealed that all DENV-1 sequences from Reunion formed a monophyletic cluster that belonged to genotype I and were closely related to one isolate from Sri Lanka (OL752439.1, 2020). Sequences from the Seychelles belonged to the same major phylogenetic branch of genotype V, but fell into two paraphyletic clusters, with greatest similarity for one cluster to 2016-2017 isolate from Bangladesh, Singapore and China, and for the other cluster to ancestral isolates from Singapore, dating back to 2012. Compared to publicly available DENV-1 genotype I sequences, fifteen non-synonymous mutations were identified in the Reunion strains, including one in the capsid and the others in nonstructural proteins (NS) (three in NS1, two in NS2B, one in NS3, one in NS4B, and seven in NS5). CONCLUSION: In contrast to what was seen in previous outbreaks, recent DENV-1 outbreaks in Reunion and the Seychelles were caused by distinct genotypes, all likely originating from Asia where dengue is (hyper)endemic in many countries. Epidemic DENV-1 strains from Reunion harbored specific non-synonymous mutations whose biological significance needs to be further investigated.


Assuntos
Vírus da Dengue , Dengue , Animais , Chlorocebus aethiops , Humanos , Dengue/epidemiologia , Sorogrupo , Reunião/epidemiologia , Filogenia , Seicheles , Células Vero , Surtos de Doenças , Genótipo , Sri Lanka
2.
Microbiol Resour Announc ; 9(4)2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31974157

RESUMO

Dengue virus has recently reemerged in the southern Indian Ocean islands, causing outbreaks in Reunion Island and the Seychelles. In the present study, we determined the complete genome sequences of closely related clinical isolates of dengue virus type 2 circulating in the Seychelles in 2016 and Reunion Island in 2018.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA