Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 111(4): 761-777, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38503299

RESUMO

Ion channels mediate voltage fluxes or action potentials that are central to the functioning of excitable cells such as neurons. The KCNB family of voltage-gated potassium channels (Kv) consists of two members (KCNB1 and KCNB2) encoded by KCNB1 and KCNB2, respectively. These channels are major contributors to delayed rectifier potassium currents arising from the neuronal soma which modulate overall excitability of neurons. In this study, we identified several mono-allelic pathogenic missense variants in KCNB2, in individuals with a neurodevelopmental syndrome with epilepsy and autism in some individuals. Recurrent dysmorphisms included a broad forehead, synophrys, and digital anomalies. Additionally, we selected three variants where genetic transmission has not been assessed, from two epilepsy studies, for inclusion in our experiments. We characterized channel properties of these variants by expressing them in oocytes of Xenopus laevis and conducting cut-open oocyte voltage clamp electrophysiology. Our datasets indicate no significant change in absolute conductance and conductance-voltage relationships of most disease variants as compared to wild type (WT), when expressed either alone or co-expressed with WT-KCNB2. However, variants c.1141A>G (p.Thr381Ala) and c.641C>T (p.Thr214Met) show complete abrogation of currents when expressed alone with the former exhibiting a left shift in activation midpoint when expressed alone or with WT-KCNB2. The variants we studied, nevertheless, show collective features of increased inactivation shifted to hyperpolarized potentials. We suggest that the effects of the variants on channel inactivation result in hyper-excitability of neurons, which contributes to disease manifestations.


Assuntos
Epilepsia , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento , Canais de Potássio Shab , Animais , Humanos , Potenciais de Ação , Epilepsia/genética , Neurônios , Oócitos , Xenopus laevis , Canais de Potássio Shab/genética , Canais de Potássio Shab/metabolismo , Transtornos do Neurodesenvolvimento/genética
2.
Nature ; 592(7852): 93-98, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33568816

RESUMO

Long non-coding RNAs (lncRNAs) can be important components in gene-regulatory networks1, but the exact nature and extent of their involvement in human Mendelian disease is largely unknown. Here we show that genetic ablation of a lncRNA locus on human chromosome 2 causes a severe congenital limb malformation. We identified homozygous 27-63-kilobase deletions located 300 kilobases upstream of the engrailed-1 gene (EN1) in patients with a complex limb malformation featuring mesomelic shortening, syndactyly and ventral nails (dorsal dimelia). Re-engineering of the human deletions in mice resulted in a complete loss of En1 expression in the limb and a double dorsal-limb phenotype that recapitulates the human disease phenotype. Genome-wide transcriptome analysis in the developing mouse limb revealed a four-exon-long non-coding transcript within the deleted region, which we named Maenli. Functional dissection of the Maenli locus showed that its transcriptional activity is required for limb-specific En1 activation in cis, thereby fine-tuning the gene-regulatory networks controlling dorso-ventral polarity in the developing limb bud. Its loss results in the En1-related dorsal ventral limb phenotype, a subset of the full En1-associated phenotype. Our findings demonstrate that mutations involving lncRNA loci can result in human Mendelian disease.


Assuntos
Extremidades , Proteínas de Homeodomínio/genética , Deformidades Congênitas dos Membros/genética , RNA Longo não Codificante/genética , Deleção de Sequência/genética , Transcrição Gênica , Ativação Transcricional/genética , Animais , Linhagem Celular , Cromatina/genética , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Transgênicos
3.
J Med Genet ; 61(2): 132-141, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-37580113

RESUMO

BACKGROUND: Pathogenic variants in the zinc finger protein coding genes are rare causes of intellectual disability and congenital malformations. Mutations in the ZNF148 gene causing GDACCF syndrome (global developmental delay, absent or hypoplastic corpus callosum, dysmorphic facies; MIM #617260) have been reported in five individuals so far. METHODS: As a result of an international collaboration using GeneMatcher Phenome Central Repository and personal communications, here we describe the clinical and molecular genetic characteristics of 22 previously unreported individuals. RESULTS: The core clinical phenotype is characterised by developmental delay particularly in the domain of speech development, postnatal growth retardation, microcephaly and facial dysmorphism. Corpus callosum abnormalities appear less frequently than suggested by previous observations. The identified mutations concerned nonsense or frameshift variants that were mainly located in the last exon of the ZNF148 gene. Heterozygous deletion including the entire ZNF148 gene was found in only one case. Most mutations occurred de novo, but were inherited from an affected parent in two families. CONCLUSION: The GDACCF syndrome is clinically diverse, and a genotype-first approach, that is, exome sequencing is recommended for establishing a genetic diagnosis rather than a phenotype-first approach. However, the syndrome may be suspected based on some recurrent, recognisable features. Corpus callosum anomalies were not as constant as previously suggested, we therefore recommend to replace the term 'GDACCF syndrome' with 'ZNF148-related neurodevelopmental disorder'.


Assuntos
Deficiência Intelectual , Leucoencefalopatias , Humanos , Criança , Corpo Caloso , Fácies , Mutação/genética , Fenótipo , Genótipo , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Síndrome , Deficiências do Desenvolvimento/patologia , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
4.
Neuroradiology ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38886214

RESUMO

PURPOSE: To characterize Vanishing White Matter Disease (VWM) cases from a Brazilian University Tertiary hospital, focusing on brain magnetic resonance image (MRI) aspects, clinical and molecular data. METHODS: Medical records and brain MRI of 13 genetically confirmed VWM patients were reviewed. Epidemiological data such as age at symptom onset, gender and main symptoms were analyzed, along with genetic mutations and MRI characteristics, such as the distribution of white matter lesions and atrophy. RESULTS: The majority of patients were female, with the age of symptom onset ranging from 1 year and 6 months to 40 years. All mutations were identified in the EIF2B5 gene, the most prevalent being c.338G > A (p.Arg113His), and a novel mutation related to the disease was discovered, c.1051G > A (p.Gly351Ser). Trauma or infection were significant triggers. The most frequent symptoms were ataxia and limb spasticity. All MRI scans displayed deep white matter involvement, cystic degeneration, with U-fibers relatively spared and a predilection for the frontoparietal region. Lesions in the corpus callosum and posterior fossa were present in all patients. Follow-up exams revealed the evolution of white matter lesions and cerebral atrophy, which correlated with clinical deterioration. CONCLUSIONS: VWM affects various age groups, with a significant clinical and genetic variability. A novel mutation associated with the disease is highlighted. MRI reveals a typical pattern of white matter involvement, characterized by diffuse lesions in the periventricular and deep regions, with subsequent extension to the subcortical areas, accompanied by cystic degeneration, and plays a crucial role in diagnosis and follow-up.

5.
Genet Mol Biol ; 47(1): e20230285, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38488524

RESUMO

Mucopolysaccharidosis type IIIB (MPS IIIB) is caused by deficiency of alpha-N-acetylglucosaminidase, leading to storage of heparan sulphate. The disease is characterized by intellectual disability and hyperactivity, among other neurological and somatic features. Here we studied retrospective data from a total of 19 MPS IIIB patients from Brazil, aiming to evaluate disease progression. Mean age at diagnosis was 7.2 years. Speech delay was one of the first symptoms to be identified, around 2-3 years of age. Behavioral alterations include hyperactivity and aggressiveness, starting around age four. By the end of the first decade, patients lost acquired abilities such as speech and ability to walk. Furthermore, as disease progresses, respiratory, cardiovascular and joint abnormalities were found in more than 50% of the patients, along with organomegaly. Most common cause of death was respiratory problems. The disease progression was characterized in multiple systems, and hopefully these data will help the design of appropriate clinical trials and clinical management guidelines.

6.
Am J Med Genet A ; 191(9): 2274-2289, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37387251

RESUMO

Atypical progeroid syndromes (APS) are premature aging syndromes caused by pathogenic LMNA missense variants, associated with unaltered expression levels of lamins A and C, without accumulation of wild-type or deleted prelamin A isoforms, as observed in Hutchinson-Gilford progeria syndrome (HGPS) or HGPS-like syndromes. A specific LMNA missense variant, (p.Thr528Met), was previously identified in a compound heterozygous state in patients affected by APS and severe familial partial lipodystrophy, whereas heterozygosity was recently identified in patients affected by Type 2 familial partial lipodystrophy. Here, we report four unrelated boys harboring homozygosity for the p.Thr528Met, variant who presented with strikingly homogeneous APS clinical features, including osteolysis of mandibles, distal clavicles and phalanges, congenital muscular dystrophy with elevated creatine kinase levels, and major skeletal deformities. Immunofluorescence analyses of patient-derived primary fibroblasts showed a high percentage of dysmorphic nuclei with nuclear blebs and typical honeycomb patterns devoid of lamin B1. Interestingly, in some protrusions emerin or LAP2α formed aberrant aggregates, suggesting pathophysiology-associated clues. These four cases further confirm that a specific LMNA variant can lead to the development of strikingly homogeneous clinical phenotypes, in these particular cases a premature aging phenotype with major musculoskeletal involvement linked to the homozygous p.Thr528Met variant.


Assuntos
Senilidade Prematura , Disostoses , Lipodistrofia Parcial Familiar , Distrofias Musculares , Progéria , Humanos , Síndrome , Lipodistrofia Parcial Familiar/complicações , Clavícula/metabolismo , Clavícula/patologia , Mutação , Progéria/patologia , Disostoses/complicações , Lamina Tipo A/genética
7.
Am J Med Genet A ; 188(3): 760-767, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34806811

RESUMO

Mucopolysaccharidosis type IIIB is a rare autosomal recessive disorder characterized by deficiency of the enzyme N-acetyl-alpha-d-glucosaminidase (NAGLU), caused by biallelic pathogenic variants in the NAGLU gene, which leads to storage of heparan sulfate and a series of clinical consequences which hallmark is neurodegeneration. In this study clinical, epidemiological, and biochemical data were obtained from MPS IIIB patients diagnosed from 2004-2019 by the MPS Brazil Network ("Rede MPS Brasil"), which was created with the goal to provide an easily accessible and comprehensive investigation of all MPS types. One hundred and ten MPS IIIB patients were diagnosed during this period. Mean age at diagnosis was 10.9 years. Patients were from all over Brazil, with a few from abroad, with a possible cluster of MPS IIIB identified in Ecuador. All patients had increased urinary levels of glycosaminoglycans and low NAGLU activity in blood. Main clinical symptoms reported at diagnosis were coarse facies and neurocognitive regression. The most common variant was p.Leu496Pro (30% of alleles). MPS IIIB seems to be relatively frequent in Brazil, but patients are diagnosed later than in other countries, and reasons for that probably include the limited awareness about the disease by health professionals and the difficulties to access diagnostic tests, factors that the MPS Brazil Network is trying to mitigate.


Assuntos
Mucopolissacaridose III , Alelos , Brasil/epidemiologia , Criança , Heparitina Sulfato , Humanos , Mucopolissacaridose III/diagnóstico , Mucopolissacaridose III/epidemiologia , Mucopolissacaridose III/genética
8.
J Med Genet ; 58(3): 213-216, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32332102

RESUMO

Newly synthesised glycoproteins enter the rough endoplasmic reticulum through a translocation pore. The translocon associated protein (TRAP) complex is located close to the pore. In a patient with a homozygous start codon variant in TRAPγ (SSR3), absence of TRAPγ causes disruption of the TRAP complex, impairs protein translocation into the endoplasmic reticulum and affects transport, for example, into the brush-border membrane. Furthermore, we observed an unbalanced non-occupancy of N-glycosylation sites. The major clinical features are intrauterine growth retardation, facial dysmorphism, congenital diarrhoea, failure to thrive, pulmonary disease and severe psychomotor disability.


Assuntos
Retículo Endoplasmático Rugoso/genética , Retardo do Crescimento Fetal/genética , Glicoproteínas/genética , Fosfatase Ácida Resistente a Tartarato/genética , Criança , Pré-Escolar , Diarreia/genética , Diarreia/patologia , Insuficiência de Crescimento/genética , Insuficiência de Crescimento/patologia , Feminino , Retardo do Crescimento Fetal/patologia , Glicoproteínas/biossíntese , Glicosilação , Humanos , Lactente , Recém-Nascido , Pneumopatias/genética , Pneumopatias/patologia , Masculino , Transtornos Psicomotores/genética , Transtornos Psicomotores/patologia , Fosfatase Ácida Resistente a Tartarato/deficiência
9.
BMC Pediatr ; 22(1): 492, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986266

RESUMO

BACKGROUND: Achondroplasia is the most common bone dysplasia associated with disproportionate short stature, and other comorbidities, such as foramen magnum stenosis, thoracolumbar kyphosis, lumbar hyperlordosis, genu varum and spinal compression. Additionally, patients affected with this condition have higher frequency of sleep disorders, ear infections, hearing loss and slowed development milestones. Considering these clinical features, we aimed to summarize the regional experts' recommendations for the multidisciplinary management of patients with achondroplasia in Latin America, a vast geographic territory with multicultural characteristics and with socio-economical differences of developing countries. METHODS: Latin American experts (from Argentina, Brazil, Chile and Colombia) particiáted of an Advisory Board meeting (October 2019), and had a structured discussion how patients with achondroplasia are followed in their healthcare centers and punctuated gaps and opportunities for regional improvement in the management of achondroplasia. RESULTS: Practical recommendations have been established for genetic counselling, prenatal diagnosis and planning of delivery in patients with achondroplasia. An outline of strategies was added as follow-up guidelines to specialists according to patient developmental phases, amongst them neurologic, orthopedic, otorhinolaryngologic, nutritional and anthropometric aspects, and related to development milestones. Additionally, the role of physical therapy, physical activity, phonoaudiology and other care related to the quality of life of patients and their families were discussed. Preoperative recommendations to patients with achondroplasia were also included. CONCLUSIONS: This study summarized the main expert recommendations for the health care professionals management of achondroplasia in Latin America, reinforcing that achondroplasia-associated comorbidities are not limited to orthopedic concerns.


Assuntos
Acondroplasia , Cifose , Acondroplasia/diagnóstico , Acondroplasia/genética , Acondroplasia/terapia , Criança , Feminino , Aconselhamento Genético , Humanos , América Latina/epidemiologia , Qualidade de Vida
10.
Mov Disord ; 36(9): 2027-2035, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33893680

RESUMO

BACKGROUND: Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) causes unique retinal abnormalities, which have not been systematically investigated. OBJECTIVE: To deeply phenotype the retina in ARSACS in order to better understand its pathogenesis and identify potential biomarkers. METHODS: We evaluated 29 patients with ARSACS, 66 with spinocerebellar ataxia (SCA), 38 with autosomal recessive cerebellar ataxia (ATX), 22 with hereditary spastic paraplegia (SPG), 21 cases of papilledema, and 20 healthy controls (total n = 196 subjects). Participants underwent visual acuity assessment, intraocular pressure measurement, fundoscopy, and macular and peripapillary optical coherence tomography (OCT). Macular layers thicknesses in ARSACS were compared with those of age-matched healthy controls. Ophthalmologists analyzed the scans for abnormal signs in the different patient groups. Linear regression analysis was conducted to look for associations between retinal changes and age, age at onset, disease duration, and Scale for the Assessment and Rating of Ataxia (SARA) scores in ARSACS. RESULTS: Only patients with ARSACS exhibited peripapillary retinal striations (82%) on fundoscopy, and their OCT scans revealed foveal hypoplasia (100%), sawtooth appearance (89%), papillomacular fold (86%), and macular microcysts (18%). Average peripapillary retinal nerve fiber layer (pRNFL) was thicker in ARSACS than in SCA, ATX, SPG, and controls; a cut-off of 121 µm was 100% accurate in diagnosing ARSACS. All macular layers were thicker in ARSACS when compared to healthy controls. RNFL thickness in the inferior sector of the macula positively correlated with SARA scores. CONCLUSIONS: Retinal abnormalities are highly specific for ARSACS, and suggest retinal hyperplasia due to abnormal retinal development. OCT may provide potential biomarkers for future clinical trials. © 2021 International Parkinson and Movement Disorder Society.


Assuntos
Espasticidade Muscular , Ataxias Espinocerebelares , Biomarcadores , Humanos , Espasticidade Muscular/diagnóstico por imagem , Retina/diagnóstico por imagem , Ataxias Espinocerebelares/congênito , Ataxias Espinocerebelares/diagnóstico por imagem , Ataxias Espinocerebelares/genética
11.
Hum Mutat ; 40(7): 908-925, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30817854

RESUMO

Pathogenic de novo variants in the X-linked gene SLC35A2 encoding the major Golgi-localized UDP-galactose transporter required for proper protein and lipid glycosylation cause a rare type of congenital disorder of glycosylation known as SLC35A2-congenital disorders of glycosylation (CDG; formerly CDG-IIm). To date, 29 unique de novo variants from 32 unrelated individuals have been described in the literature. The majority of affected individuals are primarily characterized by varying degrees of neurological impairments with or without skeletal abnormalities. Surprisingly, most affected individuals do not show abnormalities in serum transferrin N-glycosylation, a common biomarker for most types of CDG. Here we present data characterizing 30 individuals and add 26 new variants, the single largest study involving SLC35A2-CDG. The great majority of these individuals had normal transferrin glycosylation. In addition, expanding the molecular and clinical spectrum of this rare disorder, we developed a robust and reliable biochemical assay to assess SLC35A2-dependent UDP-galactose transport activity in primary fibroblasts. Finally, we show that transport activity is directly correlated to the ratio of wild-type to mutant alleles in fibroblasts from affected individuals.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Uridina Difosfato Galactose/metabolismo , Animais , Biópsia , Células CHO , Células Cultivadas , Defeitos Congênitos da Glicosilação/metabolismo , Defeitos Congênitos da Glicosilação/patologia , Cricetulus , Feminino , Humanos , Masculino , Mutação
12.
Neurogenetics ; 19(2): 123-130, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29423566

RESUMO

Spastic paraplegia 35 (SPG35) is a recessive condition characterized by childhood onset, progressive course, complicated by dystonia, dysarthria, cognitive impairment, and epilepsy. Mutations in the FA2H gene have been described in several families, leading to the proposal of a single entity, named fatty acid hydrolase-associated neurodegeneration (FAHN). Several reports have described a polymorphic radiological picture with white matter lesions of various degrees and a distinct form of neurodegeneration with brain iron accumulation. While we reviewed the pertinent literature, we also report three new patients with SPG35, highlighting the possible absence of white matter lesions even after a long neuroimaging follow-up. Three-dimensional modeling of the mutated proteins was helpful to elucidate the role of the site of mutations and the correlation with the residual enzyme activity as determined in cultured skin fibroblasts.


Assuntos
Oxigenases de Função Mista/genética , Paraplegia Espástica Hereditária/diagnóstico por imagem , Paraplegia Espástica Hereditária/genética , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Criança , Feminino , Estudos de Associação Genética , Humanos , Imageamento por Ressonância Magnética , Oxigenases de Função Mista/química , Mutação de Sentido Incorreto , Estrutura Terciária de Proteína , Paraplegia Espástica Hereditária/patologia
13.
Mov Disord ; 33(10): 1650-1656, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30306626

RESUMO

BACKGROUND: Molecular imaging has proven to be a powerful tool to elucidate degenerated paths in a wide variety of neurological diseases and has not been systematically studied in hereditary spastic paraplegias. OBJECTIVES: To investigate dopaminergic degeneration in a cohort of 22 patients with hereditary spastic paraplegia attributed to SPG11 mutations and evaluate treatment response to l-dopa. METHODS: Patients and controls underwent single-photon emission computed tomography imaging utilizing 99m Tc-TRODAT-1 tracer. A single-blind trial with 600 mg of l-dopa was performed comparing UPDRS scores. RESULTS: Reduced dopamine transporter density was universal among patients. Nigral degeneration was symmetrical and correlated with disease duration and motor and cognitive handicap. No statistically significant benefit could be demonstrated with l-dopa intake during the trial. CONCLUSION: Disruption of presynaptic dopaminergic pathways is a widespread phenomenon in patients with SPG11 mutations, even in the absence of parkinsonism. Unresponsiveness to treatment could be related to postsynaptic damage that needs to be further investigated.


Assuntos
Antiparkinsonianos/uso terapêutico , Levodopa/uso terapêutico , Mutação/genética , Transtornos Parkinsonianos , Proteínas/genética , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Transtornos Cognitivos/etiologia , Estudos de Coortes , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Feminino , Humanos , Masculino , Transtornos Mentais/etiologia , Pessoa de Meia-Idade , Testes Neuropsicológicos , Compostos de Organotecnécio/farmacocinética , Transtornos Parkinsonianos/complicações , Transtornos Parkinsonianos/diagnóstico por imagem , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/genética , Método Simples-Cego , Estatísticas não Paramétricas , Tomógrafos Computadorizados , Tomografia Computadorizada de Emissão de Fóton Único , Tropanos/farmacocinética , Adulto Jovem
14.
Brain ; 140(12): 3112-3127, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29126212

RESUMO

Spastic paraplegia type 5 (SPG5) is a rare subtype of hereditary spastic paraplegia, a highly heterogeneous group of neurodegenerative disorders defined by progressive neurodegeneration of the corticospinal tract motor neurons. SPG5 is caused by recessive mutations in the gene CYP7B1 encoding oxysterol-7α-hydroxylase. This enzyme is involved in the degradation of cholesterol into primary bile acids. CYP7B1 deficiency has been shown to lead to accumulation of neurotoxic oxysterols. In this multicentre study, we have performed detailed clinical and biochemical analysis in 34 genetically confirmed SPG5 cases from 28 families, studied dose-dependent neurotoxicity of oxysterols in human cortical neurons and performed a randomized placebo-controlled double blind interventional trial targeting oxysterol accumulation in serum of SPG5 patients. Clinically, SPG5 manifested in childhood or adolescence (median 13 years). Gait ataxia was a common feature. SPG5 patients lost the ability to walk independently after a median disease duration of 23 years and became wheelchair dependent after a median 33 years. The overall cross-sectional progression rate of 0.56 points on the Spastic Paraplegia Rating Scale per year was slightly lower than the longitudinal progression rate of 0.80 points per year. Biochemically, marked accumulation of CYP7B1 substrates including 27-hydroxycholesterol was confirmed in serum (n = 19) and cerebrospinal fluid (n = 17) of SPG5 patients. Moreover, 27-hydroxycholesterol levels in serum correlated with disease severity and disease duration. Oxysterols were found to impair metabolic activity and viability of human cortical neurons at concentrations found in SPG5 patients, indicating that elevated levels of oxysterols might be key pathogenic factors in SPG5. We thus performed a randomized placebo-controlled trial (EudraCT 2015-000978-35) with atorvastatin 40 mg/day for 9 weeks in 14 SPG5 patients with 27-hydroxycholesterol levels in serum as the primary outcome measure. Atorvastatin, but not placebo, reduced serum 27-hydroxycholesterol from 853 ng/ml [interquartile range (IQR) 683-1113] to 641 (IQR 507-694) (-31.5%, P = 0.001, Mann-Whitney U-test). Similarly, 25-hydroxycholesterol levels in serum were reduced. In cerebrospinal fluid 27-hydroxycholesterol was reduced by 8.4% but this did not significantly differ from placebo. As expected, no effects were seen on clinical outcome parameters in this short-term trial. In this study, we define the mutational and phenotypic spectrum of SPG5, examine the correlation of disease severity and progression with oxysterol concentrations, and demonstrate in a randomized controlled trial that atorvastatin treatment can effectively lower 27-hydroxycholesterol levels in serum of SPG5 patients. We thus demonstrate the first causal treatment strategy in hereditary spastic paraplegia.


Assuntos
Atorvastatina/uso terapêutico , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Paraplegia Espástica Hereditária/tratamento farmacológico , Adolescente , Adulto , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Estudos de Casos e Controles , Proliferação de Células , Estudos Transversais , Família 7 do Citocromo P450/genética , Progressão da Doença , Método Duplo-Cego , Família , Feminino , Humanos , Hidroxicolesteróis/metabolismo , Células-Tronco Pluripotentes Induzidas , Masculino , Pessoa de Meia-Idade , Mutação , Neuritos , Oxisteróis/sangue , Oxisteróis/líquido cefalorraquidiano , Linhagem , Índice de Gravidade de Doença , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo , Esteroide Hidroxilases/genética , Adulto Jovem
15.
Hum Mol Genet ; 24(12): 3497-505, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25788519

RESUMO

Mucolipidosis II (MLII) and III alpha/beta are autosomal-recessive diseases of childhood caused by mutations in GNPTAB encoding the α/ß-subunit precursor protein of the GlcNAc-1-phosphotransferase complex. This enzyme modifies lysosomal hydrolases with mannose 6-phosphate targeting signals. Upon arrival in the Golgi apparatus, the newly synthesized α/ß-subunit precursor is catalytically activated by site-1 protease (S1P). Here we performed comprehensive expression studies of GNPTAB mutations, including two novel mutations T644M and T1223del, identified in Brazilian MLII/MLIII alpha/beta patients. We show that the frameshift E757KfsX1 and the non-sense R587X mutations result in the retention of enzymatically inactive truncated precursor proteins in the endoplasmic reticulum (ER) due to loss of cytosolic ER exit motifs consistent with a severe clinical phenotype in homozygosity. The luminal missense mutations, C505Y, G575R and T644M, partially impaired ER exit and proteolytic activation in accordance with less severe MLIII alpha/beta disease symptoms. Analogous to the previously characterized S399F mutant, we found that the missense mutation I403T led to retention in the ER and loss of catalytic activity. Substitution of further conserved residues in stealth domain 2 (I346 and W357) revealed similar biochemical properties and allowed us to define a putative binding site for accessory proteins required for ER exit of α/ß-subunit precursors. Interestingly, the analysis of the Y937_M972del mutant revealed partial Golgi localization and formation of abnormal inactive ß-subunits generated by S1P which correlate with a clinical MLII phenotype. Expression analyses of mutations identified in patients underline genotype-phenotype correlations in MLII/MLIII alpha/beta and provide novel insights into structural requirements of proper GlcNAc-1-phosphotransferase activity.


Assuntos
Estudos de Associação Genética , Mutação , Pró-Proteína Convertases/metabolismo , Domínios e Motivos de Interação entre Proteínas , Serina Endopeptidases/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Animais , Linhagem Celular , Retículo Endoplasmático/metabolismo , Ativação Enzimática , Expressão Gênica , Humanos , Espaço Intracelular/metabolismo , Masculino , Pró-Proteína Convertases/genética , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transporte Proteico , Proteólise , Serina Endopeptidases/genética , Transferases (Outros Grupos de Fosfato Substituídos)/química
16.
Am J Hum Genet ; 95(6): 698-707, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25434003

RESUMO

Mutations in components of the major spliceosome have been described in disorders with craniofacial anomalies, e.g., Nager syndrome and mandibulofacial dysostosis type Guion-Almeida. The U5 spliceosomal complex of eight highly conserved proteins is critical for pre-mRNA splicing. We identified biallelic mutations in TXNL4A, a member of this complex, in individuals with Burn-McKeown syndrome (BMKS). This rare condition is characterized by bilateral choanal atresia, hearing loss, cleft lip and/or palate, and other craniofacial dysmorphisms. Mutations were found in 9 of 11 affected families. In 8 families, affected individuals carried a rare loss-of-function mutation (nonsense, frameshift, or microdeletion) on one allele and a low-frequency 34 bp deletion (allele frequency 0.76%) in the core promoter region on the other allele. In a single highly consanguineous family, formerly diagnosed as oculo-oto-facial dysplasia, the four affected individuals were homozygous for a 34 bp promoter deletion, which differed from the promoter deletion in the other families. Reporter gene and in vivo assays showed that the promoter deletions led to reduced expression of TXNL4A. Depletion of TXNL4A (Dib1) in yeast demonstrated reduced assembly of the tri-snRNP complex. Our results indicate that BMKS is an autosomal-recessive condition, which is frequently caused by compound heterozygosity of low-frequency promoter deletions in combination with very rare loss-of-function mutations.


Assuntos
Atresia das Cóanas/genética , Surdez/congênito , Deleção de Genes , Cardiopatias Congênitas/genética , Regiões Promotoras Genéticas/genética , Ribonucleoproteína Nuclear Pequena U5/genética , Spliceossomos/genética , Alelos , Pré-Escolar , Atresia das Cóanas/diagnóstico , Surdez/diagnóstico , Surdez/genética , Exossomos/genética , Fácies , Feminino , Perfilação da Expressão Gênica , Frequência do Gene , Genes Reporter , Cardiopatias Congênitas/diagnóstico , Heterozigoto , Homozigoto , Humanos , Masculino , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Linhagem , Fenótipo , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Análise de Sequência de DNA , Spliceossomos/metabolismo
17.
Mol Genet Metab ; 122S: 55-61, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29170080

RESUMO

The mucopolysaccharidosis (MPS) disorders are caused by deficiencies of specific lysosomal enzymes involved in the catabolism of glycosaminoglycans (GAGs). The resulting GAG accumulation in cells and tissues throughout the body leads to progressive multi-organ dysfunction. MPS patients present with several somatic manifestations, including short stature, musculoskeletal abnormalities, and cardiorespiratory dysfunction, and several primary and secondary neurological signs and symptoms. Epileptic seizures are neurological signs of MPS thought to develop due to accumulation of GAGs in the brain, triggering alterations in neuronal connectivity and signaling, and release of inflammatory mediators. The amount of literature on the prevalence, pathophysiology, clinical features, and management of epileptic seizures in patients with MPS is limited. This review discusses current knowledge on this topic, as well as two case examples, presented and discussed during a closed meeting on MPS and the brain among an international group of experts with extensive experience in managing and treating MPS.


Assuntos
Anticonvulsivantes/uso terapêutico , Encéfalo/diagnóstico por imagem , Epilepsia/diagnóstico , Glicosaminoglicanos/toxicidade , Mucopolissacaridoses/complicações , Adolescente , Anticonvulsivantes/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Encéfalo/metabolismo , Criança , Eletroencefalografia/métodos , Epilepsia/tratamento farmacológico , Epilepsia/epidemiologia , Epilepsia/etiologia , Feminino , Glicosaminoglicanos/metabolismo , Humanos , Imageamento por Ressonância Magnética , Masculino , Mucopolissacaridoses/genética , Mucopolissacaridoses/patologia , Mucopolissacaridoses/terapia , Prevalência , Resultado do Tratamento
18.
Brain ; 139(Pt 3): 765-81, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26917586

RESUMO

Vici syndrome is a progressive neurodevelopmental multisystem disorder due to recessive mutations in the key autophagy gene EPG5. We report genetic, clinical, neuroradiological, and neuropathological features of 50 children from 30 families, as well as the neuronal phenotype of EPG5 knock-down in Drosophila melanogaster. We identified 39 different EPG5 mutations, most of them truncating and predicted to result in reduced EPG5 protein. Most mutations were private, but three recurrent mutations (p.Met2242Cysfs*5, p.Arg417*, and p.Gln336Arg) indicated possible founder effects. Presentation was mainly neonatal, with marked hypotonia and feeding difficulties. In addition to the five principal features (callosal agenesis, cataracts, hypopigmentation, cardiomyopathy, and immune dysfunction), we identified three equally consistent features (profound developmental delay, progressive microcephaly, and failure to thrive). The manifestation of all eight of these features has a specificity of 97%, and a sensitivity of 89% for the presence of an EPG5 mutation and will allow informed decisions about genetic testing. Clinical progression was relentless and many children died in infancy. Survival analysis demonstrated a median survival time of 24 months (95% confidence interval 0-49 months), with only a 10th of patients surviving to 5 years of age. Survival outcomes were significantly better in patients with compound heterozygous mutations (P = 0.046), as well as in patients with the recurrent p.Gln336Arg mutation. Acquired microcephaly and regression of skills in long-term survivors suggests a neurodegenerative component superimposed on the principal neurodevelopmental defect. Two-thirds of patients had a severe seizure disorder, placing EPG5 within the rapidly expanding group of genes associated with early-onset epileptic encephalopathies. Consistent neuroradiological features comprised structural abnormalities, in particular callosal agenesis and pontine hypoplasia, delayed myelination and, less frequently, thalamic signal intensity changes evolving over time. Typical muscle biopsy features included fibre size variability, central/internal nuclei, abnormal glycogen storage, presence of autophagic vacuoles and secondary mitochondrial abnormalities. Nerve biopsy performed in one case revealed subtotal absence of myelinated axons. Post-mortem examinations in three patients confirmed neurodevelopmental and neurodegenerative features and multisystem involvement. Finally, downregulation of epg5 (CG14299) in Drosophila resulted in autophagic abnormalities and progressive neurodegeneration. We conclude that EPG5-related Vici syndrome defines a novel group of neurodevelopmental disorders that should be considered in patients with suggestive features in whom mitochondrial, glycogen, or lysosomal storage disorders have been excluded. Neurological progression over time indicates an intriguing link between neurodevelopment and neurodegeneration, also supported by neurodegenerative features in epg5-deficient Drosophila, and recent implication of other autophagy regulators in late-onset neurodegenerative disease.


Assuntos
Agenesia do Corpo Caloso/diagnóstico , Agenesia do Corpo Caloso/genética , Autofagia/genética , Catarata/diagnóstico , Catarata/genética , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Proteínas/genética , Agenesia do Corpo Caloso/complicações , Animais , Proteínas Relacionadas à Autofagia , Catarata/complicações , Pré-Escolar , Estudos Transversais , Drosophila melanogaster , Feminino , Hipocampo/patologia , Humanos , Proteínas de Membrana Lisossomal , Masculino , Mutação/genética , Transtornos do Neurodesenvolvimento/complicações , Estudos Retrospectivos , Proteínas de Transporte Vesicular
19.
Am J Hum Genet ; 93(1): 118-23, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23746551

RESUMO

Hereditary spastic paraplegias (HSPs) form a heterogeneous group of neurological disorders. A whole-genome linkage mapping effort was made with three HSP-affected families from Spain, Portugal, and Tunisia and it allowed us to reduce the SPG26 locus interval from 34 to 9 Mb. Subsequently, a targeted capture was made to sequence the entire exome of affected individuals from these three families, as well as from two additional autosomal-recessive HSP-affected families of German and Brazilian origins. Five homozygous truncating (n = 3) and missense (n = 2) mutations were identified in B4GALNT1. After this finding, we analyzed the entire coding region of this gene in 65 additional cases, and three mutations were identified in two subjects. All mutated cases presented an early-onset spastic paraplegia, with frequent intellectual disability, cerebellar ataxia, and peripheral neuropathy as well as cortical atrophy and white matter hyperintensities on brain imaging. B4GALNT1 encodes ß-1,4-N-acetyl-galactosaminyl transferase 1 (B4GALNT1), involved in ganglioside biosynthesis. These findings confirm the increasing interest of lipid metabolism in HSPs. Interestingly, although the catabolism of gangliosides is implicated in a variety of neurological diseases, SPG26 is only the second human disease involving defects of their biosynthesis.


Assuntos
Disfunção Cognitiva/genética , Gangliosídeos/biossíntese , Paraplegia Espástica Hereditária/genética , Adolescente , Adulto , Idade de Início , Brasil , Ataxia Cerebelar/genética , Criança , Pré-Escolar , Mapeamento Cromossômico/métodos , Exoma , Feminino , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Gangliosídeos/genética , Predisposição Genética para Doença , Alemanha , Homozigoto , Humanos , Lactente , Metabolismo dos Lipídeos , Masculino , Mutação de Sentido Incorreto , Linhagem , Portugal , Espanha , Paraplegia Espástica Hereditária/metabolismo , Tunísia , Adulto Jovem
20.
Epilepsia ; 57(1): e18-23, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26611353

RESUMO

Dynamin 1 (DNM1) is a large guanosine triphosphatase involved in clathrin-mediated endocytosis. In recent studies, de novo mutations in DNM1 have been identified in five individuals with epileptic encephalopathy. In this study, we report two patients with early onset epileptic encephalopathy possessing de novo DNM1 mutations. Using whole exome sequencing, we detected the novel mutation c.127G>A (p.Gly43Ser) in a patient with Lennox-Gastaut syndrome, and a recurrent mutation c.709C>T (p.Arg237Trp) in a patient with West syndrome. Structural consideration of DNM1 mutations revealed that both mutations would destabilize the G domain structure and impair nucleotide binding, dimer formation, and/or GTPase activity of the G domain. These and previous cases of DNM1 mutations were reviewed to verify the phenotypic spectrum. The main clinical features of DNM1 mutations include intractable seizures, intellectual disability, developmental delay, and hypotonia. Most cases showed development delay before the onset of seizures. A patient carrying p.Arg237Trp in this report showed a different developmental status from that of a previously reported case, together with characteristic extrapyramidal movement.


Assuntos
Dinamina I/genética , Síndrome de Lennox-Gastaut/genética , Mutação/genética , Espasmos Infantis/genética , Adolescente , Análise Mutacional de DNA , Exoma , Humanos , Lactente , Masculino , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA