Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Reproduction ; 167(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579760

RESUMO

In brief: In some instances, extra-species breeding in equids is more successful than intraspecies breeding; however, little is known about the immunomodulatory effect of donkey semen and seminal plasma on the mare's endometrium. This study compared the mare uterine inflammatory response during extra- and intraspecies breeding. Abstract: Anecdotal experience suggests horse mares have less post-breeding inflammation and better fertility when bred with donkeys. This study aimed to compare the post-breeding inflammatory response of mares exposed to donkey and horse semen and seminal plasma and evaluate the proteome and metabolome of donkey and horse sperm and seminal plasma. Uterine edema, intrauterine fluid accumulation, polymorphonuclear neutrophils on cytology, and concentrations of progesterone, and pro- and anti-inflammatory cytokines (IL1A, IL1B, IL4, IL6, CXCL8, IL10) were assessed pre- and post infusion of semen and seminal plasma (donkey and horse). The metabolome and proteome were analyzed by LC-MS/MS. Mare cycles bred with horse semen had a greater progesterone concentration than those bred with donkey semen at 8 days post ovulation (P = 0.046). At 6 h post infusion, the inflammatory response due to the donkey semen tended to be lower (P = 0.074). Donkey seminal plasma had anti-inflammatory properties compared to horse semen and seminal plasma, as determined by fewer neutrophils on uterine cytology (P < 0.05). Horse semen resulted in greater concentrations of IL6 and lesser concentrations of IL1B (P < 0.05). PGE1, PGE3, and lactoferrin concentrations were significantly more abundant in donkey sperm and seminal plasma. Prostaglandins play an important role in immunomodulation and might contribute to the response triggered in interspecies breeding. In conclusion, breeding horse mares with donkey semen induces similar post-breeding endometritis as observed with horse semen. Donkey seminal plasma results in a lower post-infusion inflammatory response compared to other combinations in the immediate post-breeding.


Assuntos
Cruzamento , Endométrio , Equidae , Sêmen , Espermatozoides , Animais , Feminino , Masculino , Sêmen/metabolismo , Cavalos/fisiologia , Endométrio/metabolismo , Espermatozoides/metabolismo , Progesterona/sangue , Progesterona/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33853939

RESUMO

Most autosomal genes in the placenta show a biallelic expression pattern. However, some genes exhibit allele-specific transcription depending on the parental origin of the chromosomes on which the copy of the gene resides. Parentally expressed genes are involved in the reciprocal interaction between maternal and paternal genes, coordinating the allocation of resources between fetus and mother. One of the main challenges of studying parental-specific allelic expression (allele-specific expression [ASE]) in the placenta is the maternal cellular remnant at the fetomaternal interface. Horses (Equus caballus) have an epitheliochorial placenta in which both the endometrial epithelium and the epithelium of the chorionic villi are juxtaposed with minimal extension into the uterine mucosa, yet there is no information available on the allelic gene expression of equine chorioallantois (CA). In the current study, we present a dataset of 1,336 genes showing ASE in the equine CA (https://pouya-dini.github.io/equine-gene-db/) along with a workflow for analyzing ASE genes. We further identified 254 potentially imprinted genes among the parentally expressed genes in the equine CA and evaluated the expression pattern of these genes throughout gestation. Our gene ontology analysis implies that maternally expressed genes tend to decrease the length of gestation, while paternally expressed genes extend the length of gestation. This study provides fundamental information regarding parental gene expression during equine pregnancy, a species with a negligible amount of maternal cellular remnant in its placenta. This information will provide the basis for a better understanding of the role of parental gene expression in the placenta during gestation.


Assuntos
Impressão Genômica/genética , Cavalos/genética , Placentação/genética , Alelos , Animais , Feminino , Expressão Gênica/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Impressão Genômica/fisiologia , Cavalos/metabolismo , Placenta/metabolismo , Gravidez
3.
Reproduction ; 163(3): R25-R38, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35019860

RESUMO

Equine placental development is a long process with unique features. Implantation occurs around 40 days of gestation (dpo) with the presence of a transient invasive placenta from 25-35 to 100-120 dpo. The definitive, non-invasive placenta remains until term (330 days). This definitive placenta is diffuse and epitheliochorial, exchanging nutrients, gas and waste with the endometrium through microvilli, called microcotyledons. These are lined by an external layer of haemotrophic trophoblast. Moreover, histotrophic exchange remains active through the histotrophic trophoblast located along the areolae. Placental development is dependent on the maternal environment that can be affected by several factors (e.g. nutrition, metabolism, age, embryo technologies, pathologies) that may affect fetal development as well as long-term offspring health. The first section of the review focuses on normal placental development as well as definitive placental structure. Differences between the various regions of the placenta are also highlighted. The latter sections provide an overview of the effects of the maternal environment and reproductive pathologies, respectively, on trophoblast/placental gene expression and structure. So far, only pre-implantation and late gestation/term data are available, which demonstrate important placental plasticity in response to environmental variation, with genes involved in oxidative stress and tissue differentiation mostly involved in the pre-implantation period, whereas genes involved in feto-placental growth and nutrient transfers are mostly perturbed at term.


Assuntos
Placenta , Placentação , Animais , Implantação do Embrião , Feminino , Desenvolvimento Fetal , Cavalos , Placenta/metabolismo , Placentação/fisiologia , Gravidez , Trofoblastos
4.
Reproduction ; 163(3): R39-R54, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35038309

RESUMO

Development and the subsequent function of the fetal membranes of the equine placenta require both complex and precise regulation of gene expression. Advancements in recent years in bioinformatic techniques have allowed more extensive analyses into gene expression than ever before. This review starts by combining publically available transcriptomic data sets obtained from a range of embryonic, placental and maternal tissues, with previous knowledge of equine placental development and physiology, to gain insights into key gene families relevant to placentation in the horse. Covering the whole of pregnancy, the review covers trophectoderm, yolk sac, chorionic girdle cells, allantoamnion and allantochorion. In particular, 182 predicted 'early high impact' genes were identified (>100 transcripts per million (TPM) and >100 fold-change) that distinguish between progenitor trophectoderm, chorionic girdle tissue and allantochorion. Furthermore, 71 genes were identified as enriched in placental tissues (placental TPM > 10, with minimal expression in 12 non-placental TPM < 1), including excellent candidates for functional studies such as IGF1, apolipoproteins, VGLL1, GCM1, CDX2 and FABP4. It is pertinent that future studies should focus on single-cell transcriptomic approaches in order to determine how these changes in gene expression relate to tissue composition and start to better define trophoblast subpopulations in the equine placenta. Future functional characterisation of these genes and pathways will also be key not only to understanding normal placental development and fetal health but also their potential role in pathologies of pregnancy.


Assuntos
Placenta , Placentação , Animais , Diferenciação Celular/fisiologia , Feminino , Cavalos/genética , Placenta/metabolismo , Placentação/genética , Gravidez , Transcriptoma , Trofoblastos/metabolismo
5.
Biol Reprod ; 104(3): 638-656, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33345276

RESUMO

Improved understanding of the molecular mechanisms underlying ascending equine placentitis holds the potential for the development of new diagnostic tools and therapies to forestall placentitis-induced preterm labor. The current study characterized the equine placental transcriptome (chorioallantois [CA] and endometrium [EN]) during placentitis (placentitis group, n = 6) in comparison to gestationally-matched controls (control group, n = 6). Transcriptome analysis identified 2953 and 805 differentially expressed genes in CA and EN during placentitis, respectively. Upstream regulator analysis revealed the central role of toll-like receptors (TLRs) in triggering the inflammatory signaling, and consequent immune-cell chemotaxis. Placentitis was associated with the upregulation of matrix metalloproteinase (MMP1, MMP2, and MMP9) and apoptosis-related genes such as caspases (CASP3, CASP4, and CASP7) in CA. Also, placentitis was associated with downregulation of transcripts coding for proteins essential for placental steroidogenesis (SRD5A1 and AKR1C1), progestin signaling (PGRMC1 and PXR) angiogenesis (VEGFA, VEGFR2, and VEGFR3), and nutrient transport (GLUT12 and SLC1A4), as well as upregulation of hypoxia-related genes (HIF1A and EGLN3), which could explain placental insufficiency during placentitis. Placentitis was also associated with aberrant expression of several placenta-regulatory genes, such as PLAC8, PAPPA, LGALS1, ABCG2, GCM1, and TEPP, which could negatively affect placental functions. In conclusion, our findings revealed for the first time the key regulators and mechanisms underlying placental inflammation, separation, and insufficiency during equine placentitis, which might lead to the development of efficacious therapies or diagnostic aids by targeting the key molecular pathways.


Assuntos
Doenças dos Cavalos/metabolismo , Doenças Placentárias/veterinária , Placenta/metabolismo , Infecções Estreptocócicas/veterinária , Streptococcus equi , Animais , Regulação para Baixo , Feminino , Regulação da Expressão Gênica/imunologia , Regulação da Expressão Gênica/fisiologia , Cavalos , Imuno-Histoquímica , Doenças Placentárias/metabolismo , Gravidez , Infecções Estreptocócicas/metabolismo , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/patologia , Transcriptoma , Regulação para Cima
6.
Biol Reprod ; 104(6): 1386-1399, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33693478

RESUMO

RTL1 (retrotransposon Gag-like 1) is an essential gene in the development of the human and murine placenta. Several fetal and placental abnormalities such as intrauterine growth restriction (IUGR) and hydrops conditions have been associated with altered expression of this gene. However, the function of RTL1 has not been identified. RTL1 is located on a highly conserved region in eutherian mammals. Therefore, the genetic and molecular analysis in horses could hold important implications for other species, including humans. Here, we demonstrated that RTL1 is paternally expressed and is localized within the endothelial cells of the equine (Equus caballus) chorioallantois. We developed an equine placental microvasculature primary cell culture and demonstrated that RTL1 knockdown leads to loss of the sprouting ability of these endothelial cells. We further demonstrated an association between abnormal expression of RTL1 and development of hydrallantois. Our data suggest that RTL1 may be essential for placental angiogenesis, and its abnormal expression can lead to placental insufficiency. This placental insufficiency could be the reason for IUGR and hydrops conditions reported in other species, including humans.


Assuntos
Cavalos/fisiologia , Placenta/fisiologia , Proteínas da Gravidez/genética , Animais , Feminino , Cavalos/genética , Gravidez , Proteínas da Gravidez/metabolismo
7.
Reproduction ; 161(6): 603-621, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33780349

RESUMO

Cervical remodeling is a critical component in both term and preterm labor in eutherian mammals. However, the molecular mechanisms underlying cervical remodeling remain poorly understood in the mare. The current study compared the transcriptome of the equine cervix (cervical mucosa (CM) and stroma (CS)) during placentitis (placentitis group, n = 5) and normal prepartum mares (prepartum group, n = 3) to normal pregnant mares (control group, n = 4). Transcriptome analysis identified differentially expressed genes (DEGs) during placentitis (5310 in CM and 907 in CS) and during the normal prepartum period (189 in CM and 78 in CS). Our study revealed that cervical remodeling during placentitis was dominated by inflammatory signaling as reflected by the overrepresented toll-like receptor signaling, interleukin signaling, T cell activation, and B cell activation pathways. These pathways were accompanied by upregulation of several proteases, including matrix metalloproteinases (MMP1, MMP2, and MMP9), cathepsins (CTSB, CTSC, and CTSD) and a disintegrin and metalloproteinase with thrombospondin type 1 motifs (ADAMTS1, ADAMTS4, and ADAMTS5), which are crucial for degradation of cervical collagens during remodeling. Cervical remodeling during placentitis was also associated with upregulation of water channel-related transcripts (AQP9 and RLN), angiogenesis-related transcripts (NOS3, ENG1, THBS1, and RAC2), and aggrecan (ACAN), a hydrophilic glucosaminoglycan, with subsequent cervical hydration. The normal prepartum cervix was associated with upregulation of ADAMTS1, ADAMTS4, NOS3 and THBS1, which might reflect an early stage of cervical remodeling taking place in preparation for labor. In conclusion, our findings revealed the possible key regulators and mechanisms underlying equine cervical remodeling during placentitis and the normal prepartum period.


Assuntos
Colo do Útero/fisiopatologia , Regulação da Expressão Gênica , Doenças dos Cavalos/metabolismo , Doenças Placentárias/veterinária , Placenta/metabolismo , Transcriptoma , Animais , Feminino , Doenças dos Cavalos/genética , Doenças dos Cavalos/patologia , Cavalos , Doenças Placentárias/genética , Doenças Placentárias/metabolismo , Doenças Placentárias/patologia , Gravidez
8.
Vet Res ; 52(1): 103, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238364

RESUMO

Nocardioform placentitis (NP) continues to result in episodic outbreaks of abortion and preterm birth in mares and remains a poorly understood disease. The objective of this study was to characterize the transcriptome of the chorioallantois (CA) of mares with NP. The CA were collected from mares with confirmed NP based upon histopathology, microbiological culture and PCR for Amycolatopsis spp. Samples were collected from the margin of the NP lesion (NPL, n = 4) and grossly normal region (NPN, n = 4). Additionally, CA samples were collected from normal postpartum mares (Control; CRL, n = 4). Transcriptome analysis identified 2892 differentially expressed genes (DEGs) in NPL vs. CRL and 2450 DEGs in NPL vs. NPN. Functional genomics analysis elucidated that inflammatory signaling, toll-like receptor signaling, inflammasome activation, chemotaxis, and apoptosis pathways are involved in NP. The increased leukocytic infiltration in NPL was associated with the upregulation of matrix metalloproteinase (MMP1, MMP3, and MMP8) and apoptosis-related genes, such as caspases (CASP3 and CASP7), which could explain placental separation associated with NP. Also, NP was associated with downregulation of several placenta-regulatory genes (ABCG2, GCM1, EPAS1, and NR3C1), angiogenesis-related genes (VEGFA, FLT1, KDR, and ANGPT2), and glucose transporter coding genes (GLUT1, GLUT10, and GLUT12), as well as upregulation of hypoxia-related genes (HIF1A and EGLN3), which could elucidate placental insufficiency accompanying NP. In conclusion, our findings revealed for the first time, the key regulators and mechanisms underlying placental inflammation, separation, and insufficiency during NP, which might lead to the development of efficacious therapies or diagnostic aids by targeting the key molecular pathways.


Assuntos
Corioamnionite/veterinária , Infecções por Bactérias Gram-Positivas/veterinária , Doenças dos Cavalos/imunologia , Transcriptoma , Actinobacteria/isolamento & purificação , Amycolatopsis/isolamento & purificação , Animais , Corioamnionite/imunologia , Corioamnionite/microbiologia , Feminino , Perfilação da Expressão Gênica/veterinária , Infecções por Bactérias Gram-Positivas/imunologia , Infecções por Bactérias Gram-Positivas/microbiologia , Doenças dos Cavalos/microbiologia , Cavalos , Gravidez
9.
Reprod Fertil Dev ; 32(16): 1239-1249, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33108747

RESUMO

High blood urea nitrogen (BUN) in cows and ewes has a negative effect on embryo development; however, no comparable studies have been published in mares. The aims of the present study were to evaluate the effects of high BUN on blastocoele fluid, systemic progesterone and Day 14 equine embryos. When a follicle with a mean (±s.e.m.) diameter of 25±3mm was detected, mares were administered urea (0.4g kg-1) with sweet feed and molasses (n=9) or sweet feed and molasses alone (control; n=10). Blood samples were collected every other day. Mares were subjected to AI and the day ovulation was detected was designated as Day 0. Embryos were collected on Day 14 (urea-treated, n=5 embryos; control, n=7 embryos). There was an increase in systemic BUN in the urea-treated group compared with control (P<0.05), with no difference in progesterone concentrations. There were no differences between the two groups in embryo recovery or embryo size. Urea concentrations in the blastocoele fluid tended to be higher in the urea-treated mares, with a strong correlation with plasma BUN. However, there was no difference in the osmolality or pH of the blastocoele fluid between the two groups. Differentially expressed genes in Day 14 embryos from urea-treated mares analysed by RNA sequencing were involved in neurological development, urea transport, vascular remodelling and adhesion. In conclusion, oral urea treatment in mares increased BUN and induced transcriptome changes in Day 14 equine embryos of genes important in normal embryo development.


Assuntos
Nitrogênio da Ureia Sanguínea , Desenvolvimento Embrionário/efeitos dos fármacos , Progesterona/sangue , Transcriptoma/efeitos dos fármacos , Ureia/administração & dosagem , Animais , Feminino , Cavalos , Inseminação Artificial/veterinária , Indução da Ovulação/veterinária , Gravidez
10.
Biol Reprod ; 101(1): 162-176, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31107530

RESUMO

The current study aimed to elucidate the mechanisms underlying myometrial activation during equine placentitis related to progestogens and the progesterone receptor signaling pathways. Placentitis was induced via intracervical inoculation with Streptococcus equi ssp zooepidemicus in mares at approximately 290 days of gestation (placentitis group; n = 6) with uninoculated gestationally matched mares as controls (n = 4). Mares in the placentitis and control groups were euthanized, and myometrial samples were collected from two regions: region 1-parallel to active placentitis lesion with placental separation in placentitis group (P1) or caudal pole of the placenta in control group (C1); and region 2-parallel to apparently normal placenta without separation in placentitis group (P2) or uterine body in control group (C2). In the current study, SRD5A1 and AKR1C23, which encode for the key P4 metabolizing enzymes, were downregulated in P1 in comparison to C1, C2, and P2, and this was associated with a decline (P < 0.05) in 5αDHP, allopregnanolone (3αDHP), and 20αDHP in P1 in comparison to C1. Further, myometrial expression of PR was downregulated (P < 0.05) in P1 in comparison to C1 and P2, and this was associated with activation of the inflammatory cascade as reflected by significant upregulation of IL-1ß and IL-8 in P1 in comparison to C1, C2, and P2, and supported by increased tissue leukocytes in P1 in comparison to C1. In conclusion, equine placentitis is associated with a localized withdrawal of progestins and a downregulation of the PR in the myometrium concomitant with upregulation of inflammatory cytokines and subsequent myometrial activation.


Assuntos
Doenças dos Cavalos/metabolismo , Cavalos , Miométrio/metabolismo , Doenças Placentárias/metabolismo , Progestinas/metabolismo , Animais , Estudos de Casos e Controles , Corioamnionite/genética , Corioamnionite/metabolismo , Corioamnionite/patologia , Corioamnionite/veterinária , Citocinas/genética , Citocinas/metabolismo , Regulação para Baixo/genética , Feminino , Regulação da Expressão Gênica/genética , Doenças dos Cavalos/genética , Doenças dos Cavalos/patologia , Cavalos/genética , Cavalos/metabolismo , Mediadores da Inflamação/metabolismo , Miométrio/patologia , Doenças Placentárias/genética , Doenças Placentárias/patologia , Doenças Placentárias/veterinária , Gravidez , Complicações Infecciosas na Gravidez/genética , Complicações Infecciosas na Gravidez/metabolismo , Complicações Infecciosas na Gravidez/patologia , Complicações Infecciosas na Gravidez/veterinária , Progestinas/genética , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Transdução de Sinais/genética
11.
Reproduction ; 157(5): X1, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31995334

RESUMO

The authors apologize for errors in Figure 6 of their article published in the October 2017 issue of Reproduction (vol 154 iss 4 pp 445­454). The authors explain that the addition of data (Figure 6) on steroid concentrations in the chorioallantois to their manuscript on fetal adrenal and fetal gonadal steroids during development of the equine fetus was made in response to reviewer comments. However, in compiling, summarizing and graphing the data, the wrong units were used in the final figure. The manuscript as published represents the data in Figure 6 as "ng/g", when in fact they are "nmol/g". The authors very much regret having made the mistake and sincerely apologize for any confusion this might have caused.

12.
Reprod Fertil Dev ; 31(9): 1486-1496, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31092309

RESUMO

Characterisation of fetal fluids in healthy and disease states of pregnant mares can help to unravel the pathophysiology and to identify putative markers of disease. Thus, this study aimed to compare the protein composition of: (1) amniotic and allantoic fluids of healthy mares obtained immediately after euthanasia and (2) allantoic fluid harvested via centesis before and after experimental induction of placentitis via transcervical inoculation of Streptococcus equi ssp zooepidemicus in healthy mares. Fetal fluids were analysed with a high-throughput proteomic technique after in-gel digestion. Statistical comparisons were performed following normalisation of peptide spectral match. Global normalisation was performed to calculate relative expression. There were 112 unique proteins present in both allantoic and amniotic fluids. There were 13 and 29 proteins defined as amniotic- or allantoic-specific respectively that were present in at least two fluid samples. Another 26 proteins were present in both amniotic and allantoic fluids. Panther DB functional classification grouped fetal-fluid proteins as transfer carriers, signalling molecules, receptors, immunity, hydrolase, enzymes, membrane traffic, cytoskeleton, cell adhesion, calcium binding and extracellular matrix. Experimentally induced placentitis resulted in 10 proteins being upregulated and 10 downregulated in allantoic fluid. Newly identified proteins and changes in the fetal-fluid proteome provide clues about the physiology of pregnancy and pathogenesis of placentitis.


Assuntos
Líquido Amniótico/metabolismo , Doenças Placentárias/metabolismo , Proteoma , Animais , Feminino , Cavalos , Gravidez , Proteômica , Streptococcus equi
13.
Reprod Fertil Dev ; 31(6): 1144-1156, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30947806

RESUMO

Intrauterine infection and inflammation remain a major cause of preterm labour in women and mares, with little known about small RNA (sRNA) expression in tissue or circulation. To better characterise placental inflammation (placentitis), we examined sRNA expression in the endometrium, chorioallantois and serum of mares with and without placentitis. Disease was induced in 10 mares via intracervical inoculation of Streptococcus equi ssp. zooepidemicus, either with moderate or high levels of inoculum; three uninoculated gestationally matched mares were used as controls. Matched chorioallantois and endometrium were sampled in two locations: Region 1, gross inflammation near cervical star with placental separation and Region 2, gross inflammation without placental separation. In Region 1, 26 sRNAs were altered in chorioallantois, while 20 were altered in endometrium. Within Region 2, changes were more subdued in both chorioallantois (10 sRNAs) and endometrium (two sRNAs). Within serum, we identified nine significantly altered sRNAs. In summary, we have characterised the expression of sRNA in the chorioallantois, the endometrium and the serum of mares with experimentally induced placentitis using next-generation sequencing, identifying significant changes within each tissue examined. These data should provide valuable information about the physiology of placental inflammation to clinicians and researchers alike.


Assuntos
Membrana Corioalantoide/metabolismo , Endométrio/metabolismo , MicroRNAs/metabolismo , Doenças Placentárias/metabolismo , Placenta/metabolismo , Animais , Corioamnionite/sangue , Corioamnionite/genética , Corioamnionite/metabolismo , Feminino , Cavalos , Inflamação/sangue , Inflamação/genética , Inflamação/metabolismo , MicroRNAs/sangue , MicroRNAs/genética , Doenças Placentárias/sangue , Doenças Placentárias/genética , Gravidez
14.
Int J Mol Sci ; 20(24)2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31847075

RESUMO

Equine chromosome 24 microRNA cluster (C24MC), the ortholog of human C14MC, is a pregnancy-related miRNA cluster. This cluster is believed to be implicated in embryonic, fetal, and placental development. The current study aimed to characterize the expression profile of this cluster in maternal circulation throughout equine gestation. The expression profile of miRNAs belonging to this cluster was analyzed in the serum of non-pregnant (diestrus), pregnant (25 d, 45 d, 4 mo, 6 mo, 10 mo), and postpartum mares. Among the miRNAs examined, 11 miRNAs were differentially expressed across the analyzed time-points. Four of these miRNAs (eca-miR-1247-3p, eca-miR-134-5p, eca-miR-382-5p, and eca-miR-433-3p) were found to be enriched in the serum of pregnant mares at Day 25 relative to non-pregnant mares. To further assess the accuracy of these miRNAs in differentiating pregnant (25 d) from non-pregnant mares, receiver operating characteristic (ROC) analysis was performed for each of these miRNAs, revealing that eca-miR-1247-3p and eca-miR-134-5p had the highest accuracy (AUCROC = 0.92 and 0.91, respectively; p < 0.05). Moreover, eca-miR-1247-3p, eca-miR-134-5p, eca-miR-409-3p, and eca-miR-379-5p were enriched in the serum of Day 45 pregnant mares. Among those miRNAs, eca-miR-1247-3p and eca-miR-409-3p retained the highest accuracy as shown by ROC analysis. GO analysis revealed that these miRNAs are mainly implicated in nervous system development as well as organ development. Using in situ hybridization, we localized eca-miR-409-3p in the developing embryo (25 d) and extra-embryonic membranes (25 and 45 d). In conclusion, the present study is the first to elucidate the circulating maternal profile of C24MC-associated miRNAs throughout pregnancy and to suggest that serum eca-miR-1247-3p, eca-miR-134-5p, and eca-miR-409-3p could be used as pregnancy-specific markers during early gestation (25 and 45 d). Overall, the high abundance of these embryo-derived miRNAs in the maternal circulation suggests an embryo-maternal communication during the equine early pregnancy.


Assuntos
Cromossomos de Mamíferos/metabolismo , MicroRNA Circulante/sangue , Regulação da Expressão Gênica/fisiologia , Família Multigênica , Gravidez/sangue , Animais , Feminino , Cavalos
15.
BMC Genomics ; 19(1): 954, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30572819

RESUMO

BACKGROUND: The human chromosome 14 microRNA cluster (C14MC) is a conserved microRNA (miRNA) cluster across eutherian mammals, reported to play an important role in placental development. However, the expression kinetics and function of this cluster in the mammalian placenta are poorly understood. Here, we evaluated the expression kinetics of the equine C24MC, ortholog to the human C14MC, in the chorioallantoic membrane during the course of gestation. RESULTS: We demonstrated that C24MC-associated miRNAs presented a higher expression level during early stages of pregnancy, followed by a decline later in gestation. Evaluation of one member of C24MC (miR-409-3p) by in situ hybridization demonstrated that its cellular localization predominantly involved the chorion and allantoic epithelium and vascular endothelium. Additionally, expression of predicted target transcripts for C24MC-associated miRNAs was evaluated by RNA sequencing. Expression analysis of a subset of predicted mRNA targets showed a negative correlation with C24MC-associated miRNAs expression levels during gestation, suggesting the reciprocal control of these target transcripts by this miRNA cluster. Predicted functional analysis of these target mRNAs indicated enrichment of biological pathways related to embryonic development, endothelial cell migration and angiogenesis. Expression patterns of selected target mRNAs involved in angiogenesis were confirmed by RT-qPCR. CONCLUSION: This is the first report evaluating C24MC kinetics during pregnancy. The findings presented herein suggest that the C24MC may modulate angiogenic transcriptional profiles during placental development in the horse.


Assuntos
Membrana Corioalantoide/metabolismo , Cromossomos Humanos Par 14 , Perfilação da Expressão Gênica/veterinária , Cavalos , MicroRNAs/genética , Placentação , Animais , Membrana Corioalantoide/crescimento & desenvolvimento , Feminino , Humanos , Cinética , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma
16.
Reproduction ; 155(3): 251-258, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29339451

RESUMO

In the latter half of gestation in the mare, progesterone concentrations decline to near undetectable levels while other 5α-reduced pregnanes are elevated. Of these, 5α-dihydroprogesterone and allopregnanolone have been reported to have important roles in either pregnancy maintenance or fetal quiescence. During this time, the placenta is necessary for pregnane metabolism, with the enzyme 5α-reductase being required for the conversion of progesterone to 5α-dihydroprogesterone. The objectives of this study were to assess the effects of a 5α-reductase inhibitor, dutasteride on pregnane metabolism (pregnenolone, progesterone, 5α-dihydroprogesterone, 20α-hydroxy-5α-pregnan-3-one, 5α-pregnane-3ß,20α-diol and allopregnanolone), to determine circulating dutasteride concentrations and to assess effects of dutasteride treatment on gestational parameters. Pregnant mares (n = 5) received dutasteride (0.01 mg/kg/day, IM) and control mares (n = 4) received vehicle alone from 300 to 320 days of gestation or until parturition. Concentrations of dutasteride, pregnenolone, progesterone, 5α-dihydroprogesterone, 20α-hydroxy-5α-pregnan-3-one, 5α-pregnane-3ß,20α-diol, and allopregnanolone were evaluated via liquid chromatography-tandem mass spectrometry. Samples were analyzed as both days post treatment and as days prepartum. No significant treatment effects were detected in pregnenolone, 5α-dihydroprogesterone, 20α-hydroxy-5α-pregnan-3-one, 5α-pregnane-3ß,20α-diol or allopregnanolone for either analysis; however, progesterone concentrations were increased (P < 0.05) sixfold in dutasteride-treated mares compared to control mares. Dutasteride concentrations increased in the treated mares, with a significant correlation (P < 0.05) between dutasteride concentrations and pregnenolone or progesterone concentrations. Gestational length and neonatal outcomes were not significantly altered in dutasteride-treated mares. Although 5α-reduced metabolites were unchanged, these data suggest an accumulation of precursor progesterone with inhibition of 5α-reductase, indicating the ability of dutasteride to alter progesterone metabolism.


Assuntos
Colestenona 5 alfa-Redutase/química , Dutasterida/farmacologia , Feto/metabolismo , Placenta/metabolismo , Pregnanos/metabolismo , Inibidores de 5-alfa Redutase/farmacologia , Animais , Colestenona 5 alfa-Redutase/sangue , Feminino , Feto/efeitos dos fármacos , Idade Gestacional , Cavalos , Parto , Placenta/efeitos dos fármacos , Gravidez
17.
Reproduction ; 154(4): 445-454, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28878092

RESUMO

Equine fetuses have substantial circulating pregnenolone concentrations and thus have been postulated to provide significant substrate for placental 5α-reduced pregnane production, but the fetal site of pregnenolone synthesis remains unclear. The current studies investigated steroid concentrations in blood, adrenal glands, gonads and placenta from fetuses (4, 6, 9 and 10 months of gestational age (GA)), as well as tissue steroidogenic enzyme transcript levels. Pregnenolone and dehydroepiandrosterone (DHEA) were the most abundant steroids in fetal blood, pregnenolone was consistently higher but decreased progressively with GA. Tissue steroid concentrations generally paralleled those in serum with time. Adrenal and gonadal tissue pregnenolone concentrations were similar and 100-fold higher than those in allantochorion. DHEA was far higher in gonads than adrenals and progesterone was higher in adrenals than gonads. Androstenedione decreased with GA in adrenals but not in gonads. Transcript analysis generally supported these data. CYP17A1 was higher in fetal gonads than adrenals or allantochorion, and HSD3B1 was higher in fetal adrenals and allantochorion than gonads. CYP11A1 transcript was also significantly higher in adrenals and gonads than allantochorion and CYP19 and SRD5A1 transcripts were higher in allantochorion than either fetal adrenals or gonads. Given these data, and their much greater size, the fetal gonads are the source of DHEA and likely contribute more than fetal adrenal glands to circulating fetal pregnenolone concentrations. Low CYP11A1 but high HSD3B1 and SRD5A1 transcript abundance in allantochorion, and low tissue pregnenolone, suggests that endogenous placental pregnenolone synthesis is low and likely contributes little to equine placental 5α-reduced pregnane secretion.


Assuntos
Corticosteroides/biossíntese , Glândulas Suprarrenais/metabolismo , Hormônios Esteroides Gonadais/biossíntese , Ovário/metabolismo , Placenta/metabolismo , Testículo/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , Corticosteroides/sangue , Glândulas Suprarrenais/embriologia , Androstenodiona/biossíntese , Androstenodiona/sangue , Animais , Aromatase/genética , Aromatase/metabolismo , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Desidroepiandrosterona/biossíntese , Desidroepiandrosterona/sangue , Embrião de Mamíferos/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Idade Gestacional , Hormônios Esteroides Gonadais/sangue , Cavalos , Masculino , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Ovário/embriologia , Placenta/embriologia , Gravidez , Pregnenolona/biossíntese , Pregnenolona/sangue , Progesterona Redutase/genética , Progesterona Redutase/metabolismo , Esteroide 17-alfa-Hidroxilase/genética , Esteroide 17-alfa-Hidroxilase/metabolismo , Esteroide Isomerases/genética , Esteroide Isomerases/metabolismo , Testículo/embriologia
18.
Biol Reprod ; 91(6): 152, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25339104

RESUMO

Equine in vitro fertilization is not yet successful because equine sperm do not effectively capacitate in vitro. Results of previous studies suggest that this may be due to failure of induction of hyperactivated motility in equine sperm under standard capacitating conditions. To evaluate factors directly affecting axonemal motility in equine sperm, we developed a demembranated sperm model and analyzed motility parameters in this model under different conditions using computer-assisted sperm analysis. Treatment of ejaculated equine sperm with 0.02% Triton X-100 for 30 sec maximized both permeabilization and total motility after reactivation. The presence of ATP was required for motility of demembranated sperm after reactivation, but cAMP was not. The calculated intracellular pH of intact equine sperm was 7.14 ± 0.07. Demembranated sperm showed maximal total motility at pH 7. Neither increasing pH nor increasing calcium levels, nor any interaction of the two, induced hyperactivated motility in demembranated equine sperm. Motility of demembranated sperm was maintained at free calcium concentrations as low as 27 pM, and calcium arrested sperm motility at much lower concentrations than those reported in other species. Calcium arrest of sperm motility was not accompanied by flagellar curvature, suggesting a failure of calcium to induce the tonic bend seen in other species and thought to support hyperactivated motility. This indicated an absence, or difference in calcium sensitivity, of the related asymmetric doublet-sliding proteins. These studies show a difference in response to calcium of the equine sperm axoneme to that reported in other species that may be related to the failure of equine sperm to penetrate oocytes in vitro under standard capacitating conditions. Further work is needed to determine the factors that stimulate hyperactivated motility at the axonemal level in equine sperm.


Assuntos
Axonema/fisiologia , Cavalos , Movimento (Física) , Espermatozoides , Trifosfato de Adenosina/farmacologia , Animais , Axonema/efeitos dos fármacos , Cálcio/farmacologia , Fracionamento Celular , Membrana Celular , AMP Cíclico/farmacologia , Cavalos/fisiologia , Concentração de Íons de Hidrogênio , Masculino , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/citologia , Espermatozoides/ultraestrutura
19.
Biol Reprod ; 88(6): 138, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23595906

RESUMO

Protein tyrosine phosphorylation (PY) is a hallmark of sperm capacitation. In stallion sperm, calcium inhibits PY at pH <7.8, mediated by calmodulin. To explore the mechanism of that inhibition, we incubated stallion sperm in media without added calcium, with calcium, or with calcium plus the calmodulin inhibitor W-7 (Ca/W-7 treatment). Treatment with inhibitors of calcium/calmodulin-dependent kinases, protein kinase A (PRKA), or Src family kinases suppressed the PY induced by the absence of added calcium, but not that induced by the Ca/W-7 treatment, indicating that PY in the absence of added calcium occurred via the canonical PRKA pathway, but that PY in the Ca/W-7 treatment did not. This suggested that when calmodulin was inhibited, calcium stimulated PY via a noncanonical pathway. Incubation with PF-431396, an inhibitor of focal adhesion kinases (FAKs), a family of calcium-induced protein tyrosine kinases, inhibited the PY induced both by the absence of added calcium and by the Ca/W-7 treatment. Western blotting demonstrated that both FAK family members, protein tyrosine kinases 2 and 2B, were phosphorylated in the absence of added calcium and in the Ca/W-7 treatment, but not in the presence of calcium without calmodulin inhibitors. Inhibition of FAK proteins inhibited PY in stallion sperm incubated under capacitating conditions (in the presence of calcium, bovine serum albumin, and bicarbonate at pH >7.8). These results show for the first time a role for calcium/calmodulin-dependent kinases in PRKA-dependent sperm PY; a non-PRKA-dependent pathway regulating sperm PY; and the apparent involvement of the FAK family of protein tyrosine kinases downstream in both pathways.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Transdução de Sinais/fisiologia , Espermatozoides/metabolismo , Animais , Cálcio/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Cavalos , Masculino , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Capacitação Espermática/efeitos dos fármacos , Capacitação Espermática/fisiologia , Motilidade dos Espermatozoides/efeitos dos fármacos , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/efeitos dos fármacos , Sulfonamidas/farmacologia
20.
Biol Reprod ; 89(5): 123, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24048572

RESUMO

In vitro fertilization does not occur readily in the horse. This may be related to failure of equine sperm to initiate hyperactivated motility, as treating with procaine to induce hyperactivation increases fertilization rates. In mice, hyperactivated motility requires a sperm-specific pH-gated calcium channel (CatSper); therefore, we investigated this channel in equine sperm. Motility was assessed by computer-assisted sperm motility analysis and changes in intracellular pH and calcium were assessed using fluorescent probes. Increasing intracellular pH induced a rise in intracellular calcium, which was inhibited by the known CatSper blocker mibefradil, supporting the presence of a pH-gated calcium channel, presumably CatSper. Hyperactivation was associated with moderately increased intracellular pH, but appeared inversely related to increases in intracellular calcium. In calcium-deficient medium, high-pH treatment induced motility loss, consistent with influx of sodium through open CatSper channels in the absence of environmental calcium. However, sperm treated with procaine in calcium-deficient medium both maintained motility and underwent hyperactivation, suggesting that procaine did not act via opening of the CatSper channel. CATSPER1 mRNA was identified in equine sperm by PCR, and CATSPER1 protein was localized to the principal piece on immunocytochemistry. Analysis of the predicted equine CATSPER1 protein revealed species-specific differences in structure in the pH-sensor region. We conclude that the CatSper channel is present in equine sperm but that the relationship of hyperactivated motility to calcium influx is weak. Procaine does not appear to act via CatSper in equine sperm, and its initial hyperactivating action is not dependent upon external calcium influx.


Assuntos
Canais de Cálcio/fisiologia , Cálcio/metabolismo , Cavalos/fisiologia , Motilidade dos Espermatozoides/genética , Espermatozoides/fisiologia , Animais , Canais de Cálcio/genética , Sinalização do Cálcio/genética , Cavalos/genética , Concentração de Íons de Hidrogênio , Espaço Intracelular/metabolismo , Cinética , Masculino , RNA Mensageiro/metabolismo , Espermatozoides/metabolismo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA