Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nat Cancer ; 4(9): 1345-1361, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37743366

RESUMO

RET receptor tyrosine kinase is activated in various cancers (lung, thyroid, colon and pancreatic, among others) through oncogenic fusions or gain-of-function single-nucleotide variants. Small-molecule RET kinase inhibitors became standard-of-care therapy for advanced malignancies driven by RET. The therapeutic benefit of RET inhibitors is limited, however, by acquired mutations in the drug target as well as brain metastasis, presumably due to inadequate brain penetration. Here, we perform preclinical characterization of vepafestinib (TAS0953/HM06), a next-generation RET inhibitor with a unique binding mode. We demonstrate that vepafestinib has best-in-class selectivity against RET, while exerting activity against commonly reported on-target resistance mutations (variants in RETL730, RETV804 and RETG810), and shows superior pharmacokinetic properties in the brain when compared to currently approved RET drugs. We further show that these properties translate into improved tumor control in an intracranial model of RET-driven cancer. Our results underscore the clinical potential of vepafestinib in treating RET-driven cancers.


Assuntos
Neoplasias Encefálicas , Mutação , Encéfalo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Solventes
2.
J Pharmacol Exp Ther ; 343(1): 44-52, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22736506

RESUMO

The suppression of overactive bladder symptoms in patients and overactive bladder reflexes in animal models by neurokinin (NK)-1 receptor antagonists raises the possibility that these drugs target sensory neurons. This mechanism was evaluated by examining the interactions between a specific NK-1 agonist, [Sar(9),Met(O(2))(11)]-substance P (Sar-Met-SP), and a potent NK-1 antagonist, netupitant (NTP), on small size (20-30 µm) dissociated L6 and S1 dorsal root ganglion (DRG) neurons from female guinea pigs. Current-clamp recording revealed that Sar-Met-SP (1 µM) elicited membrane depolarization (average 8.05 ± 1.38 mV) in 27% (18 of 65) of DRG neurons. In 74% of the remaining neurons (35 of 47) Sar-Met-SP decreased the rheobase for action potential (AP) generation and increased the response to a suprathreshold stimulus (3 times rheobase) without changing the membrane potential. Sar-Met-SP also induced changes in the action potential (AP) wave form, including 1) an increase in overshoot (average 5 mV, n = 35 neurons), 2) a prolongation of AP duration (from 4.64 to 5.29 ms, n = 34), and 3) a reduction in the maximal rate of AP repolarization. NTP (200 nM) reversed the Sar-Met-SP-induced changes. Ca(2+) imaging showed that application of Sar-Met-SP (1 µM) decreased the tachyphylaxis induced by repeated application of capsaicin (0.5 µM), an effect blocked by pretreatment with NTP (200 nM). These results raise the possibility that activation of NK-1 receptors in primary sensory neurons plays a role in the generation of overactive bladder and that block of NK-1 receptors in these neurons may contribute to efficacy of NK-1 antagonists in the treatment of overactive bladder symptoms.


Assuntos
Potenciais de Ação/fisiologia , Gânglios Espinais/fisiologia , Receptores da Neurocinina-1/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Células Cultivadas , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Cobaias , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Antagonistas dos Receptores de Neurocinina-1 , Piridinas/farmacologia , Receptores da Neurocinina-1/agonistas , Substância P/farmacologia
3.
Blood Adv ; 5(10): 2467-2480, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33999145

RESUMO

Histone deacetylase inhibitors (HDACis) are antitumor agents with distinct efficacy in hematologic tumors. Pracinostat is a pan-HDACi with promising early clinical activity. However, similar to other HDACis, its activity as a single agent is limited. Diffuse large B-cell lymphoma (DLBCL) includes distinct molecular subsets or metabolically defined subtypes that rely in different ways on the B-cell receptor signaling pathway, oxidative phosphorylation, and glycolysis for their survival. The antitumor activity of pracinostat has not been determined in lymphomas. We performed preclinical in vitro activity screening of 60 lymphoma cell lines that included 25 DLBCLs. DLBCL cells belonging to distinct metabolic subtypes were treated with HDACis for 6 hours or 14 days followed by transcriptional profiling. DLBCL xenograft models enabled assessment of the in vivo antilymphoma activity of pracinostat. Combination treatments with pracinostat plus 10 other antilymphoma agents were performed. Western blot was used to assess acetylation levels of histone and nonhistone proteins after HDACi treatment. Robust antiproliferative activity was observed across all lymphoma histotypes represented. Focusing on DLBCL, we identified a low-sensitivity subset that almost exclusively consists of the oxidative phosphorylation (OxPhos)-DLBCL metabolic subtype. OxPhos-DLBCL cells also showed poorer sensitivity to other HDACis, including vorinostat. Transcriptomic analysis revealed fewer modulated transcripts but an enrichment of antioxidant pathway genes after HDACi treatment of OxPhos-DLBCLs compared with high-sensitivity B-cell receptor (BCR)-DLBCLs. Pharmacologic inhibition of antioxidant production rescued sensitivity of OxPhos-DLBCLs to pracinostat whereas BCR-DLBCLs were unaffected. Our study provides novel insights into the antilymphoma activity of pracinostat and identifies a differential response of DLBCL metabolic subtypes to HDACis.


Assuntos
Antineoplásicos , Linfoma Difuso de Grandes Células B , Antineoplásicos/uso terapêutico , Benzimidazóis/uso terapêutico , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética
4.
Br J Pharmacol ; 177(7): 1635-1650, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31722444

RESUMO

BACKGROUND AND PURPOSE: HM01, a novel, orally bioavailable, brain-penetrating agonist of ghrelin receptors, ameliorates emesis in Suncus murinus. This study compared HM01's activity against motion sickness with that of the less brain-penetrating ghrelin receptor agonist, HM02. EXPERIMENTAL APPROACH: The potential of HM01 and HM02 to relax isolated mesenteric arteries and to increase feeding was investigated. Radio telemetry was used to record gastric slow waves and body temperature. Plethysmography was used to measure respiratory function. HM01 and HM02 were administered p.o. 1 hr prior to provocative motion, and c-Fos expression in brain sections was assessed. KEY RESULTS: HM01 and HM02 both relaxed precontracted arteries, yielding EC50 values of 2.5 ± 0.5 and 3.5 ± 0.4 nM respectively. HM01 increased feeding, but HM02 did not. Both compounds caused hypothermia and bradygastria. Motion induced 123 ± 24 emetic events. HM01, but not HM02, reduced motion-induced emesis by 67.6%. Motion increased c-Fos expression in the nucleus tractus solitarius (NTS), dorsal motor nucleus of the vagus (DMNV), medial vestibular nucleus (MVe), central nucleus of the amygdala, and paraventricular hypothalamic nucleus (PVH). HM01 alone increased c-Fos expression in the area postrema, NTS, DMNV, PVH, and arcuate hypothalamic nucleus; HM02 had a similar pattern except it did not increase c-Fos in the PVH. Both compounds antagonized the motion-induced increases in c-Fos expression in the MVe. CONCLUSIONS AND IMPLICATIONS: HM01 is more effective than HM02 in preventing motion-induced emesis. The difference in potency may relate to activation of ghrelin receptors in the PVH.


Assuntos
Receptores de Grelina , Musaranhos , Animais , Piperidinas , Vômito
6.
Front Pharmacol ; 9: 869, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30127745

RESUMO

Ghrelin has well-known activity to stimulate appetite and weight gain. Evidence suggests that ghrelin may also have effects in reducing chemotherapy-induced emesis via growth hormone secretagogue receptors (GHS-R1A) in the brain. However, it is not known whether the stimulation of GHS-R1A has broad inhibitory anti-emetic effects. In the present studies, we used Suncus murinus to investigate the potential of the new and novel orally bioavailable brain-penetrating GHS-R1A mimetic, HM01 (1-[(1S)-1-(2,3-dichloro-4-methoxyphenyl)ethyl]-3-methyl-3-[(4R)-1-Methyl-3,3-dimethyl-4-piperidyl]urea), to reduce emesis induced by a variety of emetic challenges. HM01 (1 to 30 mg/kg, p.o.) antagonized emesis induced by cisplatin (30 mg/kg, i.p.) and by motion (4 cm horizontal displacement, 1 Hz) but was ineffective against emesis induced by nicotine (5 mg/kg, s.c.) and copper sulfate (120 mg/kg by intragastric gavage). In other experiments, HM01 (3 mg/kg, p.o.) enhanced the anti-emetic control of a regimen of palonosetron (0.01 mg/kg, p.o.) alone and palonosetron (0.01 mg/kg p.o.) plus netupitant (1 mg/kg, p.o.). HM01 (10 mg/kg, p.o.) also had positive effects in increasing feeding and drinking in nicotine-treated animals, and it shortened the latency to drink in animals treated with cisplatin. These data indicate that brain-penetrating GHS-R1A agonists may have use alone and/or in combination with standard anti-emetic regimens for the treatment of chemotherapy-induced nausea and vomiting and motion sickness. Highlights: - The novel orally bioavailable brain-penetrating GHS-R1A agonist, HM01 (1-[(1S)-1-(2,3-dichloro-4-methoxyphenyl)ethyl]-3-methyl-3-[(4R)-1-Methyl-3,3-dimethyl-4-piperidyl]urea), antagonizes motion- and cisplatin-induced emesis.- HM01 did not reduce emesis induced by nicotine or by intragastric copper sulfate.- HM01 has positive effects on food consumption after treatment with nicotine.- HM01 has synergistic effects against cisplatin when combined with palonosetron and palonosetron/netupitant regimens.- It is suggested that GHS-R1A agonists may be protective against chemotherapy-induced nausea and vomiting in combination with traditional anti-emetics and against motion-induced emesis.

8.
Front Pharmacol ; 7: 263, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27630563

RESUMO

BACKGROUND AND AIMS: Chemotherapy-induced acute and delayed emesis involves the activation of multiple pathways, with 5-hydroxytryptamine (5-HT; serotonin) playing a major role in the initial response. Substance P tachykinin NK1 receptor antagonists can reduce emesis induced by disparate emetic challenges and therefore have a clinical utility as broad inhibitory anti-emetic drugs. In the present studies, we investigate the broad inhibitory anti-emetic profile of a relatively new NK1 receptor antagonist, netupitant, alone or in combination with the long acting 5-HT3 receptor antagonist, palonosetron, for a potential to reduce emesis in ferrets and shrews. MATERIALS AND METHODS: Ferrets were pretreated with netupitant and/or palonosetron, and then administered apomorphine (0.125 mg/kg, s.c.), morphine (0.5 mg/kg, s.c.), ipecacuanha (1.2 mg/kg, p.o.), copper sulfate (100 mg/kg, intragastric), or cisplatin (5-10 mg/kg, i.p.); in other studies netupitant was administered to Suncus murinus before motion (4 cm horizontal displacement, 2 Hz for 10 min). RESULTS: Netupitant (3 mg/kg, p.o.) abolished apomorphine-, morphine-, ipecacuanha- and copper sulfate-induced emesis. Lower doses of netupitant (0.03-0.3 mg/kg, p.o.) dose-dependently reduced cisplatin (10 mg/kg, i.p.)-induced emesis in an acute (8 h) model, and motion-induced emesis in S. murinus. In a ferret cisplatin (5 mg/kg, i.p.)-induced acute and delayed emesis model, netupitant administered once at 3 mg/kg, p.o., abolished the first 24 h response and reduced the 24-72 h response by 94.6%; the reduction was markedly superior to the effect of a three times per day administration of ondansetron (1 mg/kg, i.p.). A single administration of netupitant (1 mg/kg, p.o.) plus palonosetron (0.1 mg/kg, p.o.) combined with dexamethasone (1 mg/kg, i.p., once per day), also significantly antagonized cisplatin-induced acute and delayed emesis and was comparable with a once-daily regimen of ondansetron (1 mg/kg, p.o.) plus aprepitant (1 mg/kg, p.o.) in combination with dexamethasone (1 mg/kg, i.p.). CONCLUSION: In conclusion, netupitant has potent and long lasting anti-emetic activity against a number of emetic challenges indicating broad inhibitory properties. The convenience of protection afforded by the single dosing of netupitant together with palonosetron was demonstrated and also is known to provide an advantage over other therapeutic strategies to control emesis in man.

9.
Front Pharmacol ; 7: 234, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27540361

RESUMO

Introduction. Tachykinins potently contract the isolated urinary bladder from a number of animal species and play an important role in the regulation of the micturition reflex. On the guinea-pig isolated urinary bladder we examined the effects of a new potent and selective NK1 receptor antagonist (netupitant) on the contractions induced by a selective NK1 receptor agonist, SP-methylester (SP-OMe). Moreover, the effects of netupitant and another selective NK1 antagonist (L-733,060) were studied in anesthetized guinea-pigs using two experimental models, the isovolumetric bladder contractions and a model of bladder overactivity induced by intravesical administration of acetic acid (AA). Methods and Results. Detrusor muscle strips were mounted in 5 mL organ baths and isometric contractions to cumulative concentrations of SP-OME were recorded before and after incubation with increasing concentrations of netupitant. In anesthetized female guinea-pigs, reflex bladder activity was examined under isovolumetric conditions with the bladder distended with saline or during cystometry using intravesical infusion of AA. After a 30 min stabilization period, netupitant (0.1-3 mg/kg, i.v.) or L-733,060 (3-10 mg/kg, i.v.) were administered. In the detrusor muscle, netupitant produced a concentration-dependent inhibition (mean pKB = 9.24) of the responses to SP-OMe. Under isovolumetric conditions, netupitant or L-733,060 reduced bladder contraction frequency in a dose-dependent manner, but neither drug changed bladder contraction amplitude. In the AA model, netupitant dose-dependently increased intercontraction interval (ICI) but had no effect on the amplitude of micturition (AM). L-733,060 dose-dependently increased ICI also but this effect was paralleled by a significant reduction of AM. Conclusion. Netupitant decreases the frequency of reflex bladder contractions without altering their amplitude, suggesting that this drug targets the afferent limb of the micturition reflex circuit and therefore may be useful clinically in treating bladder overactivity symptoms.

10.
Invest Radiol ; 40(7): 421-9, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15973133

RESUMO

OBJECTIVES: The aim of this study was to compare the efficacy of gadoteridol, B22956/1 (a new protein binding blood pool contrast agent), and (Gd-DTPA)37-albumin in detecting, by dynamic contrast-enhanced magnetic resonance imaging (MRI), the effect in vivo of tamoxifen in an experimental model of breast tumor implanted in rats. MATERIALS AND METHODS: Tumors were induced by subcutaneous injection of 10 mammary adenocarcinoma cells (13762 MAT B III). Treatment with tamoxifen (or vehicle) started on day 4 after implantation. On day 10 after implantation, animals were observed by MRI using B22956/1 (or gadoteridol) and, 24 hours later, using (Gd-DTPA)37-albumin. RESULTS: Dynamic contrast-enhanced magnetic resonance imaging data showed that tamoxifen treatment decreased vascular permeability to B22956/1, whereas no difference was detectable in permeability to gadoteridol or to (Gd-DTPA)37-albumin. No effect on fractional plasma volume was detected with either of contrast agents. CONCLUSIONS: B22956/1 is superior to both small Gd chelates and macromolecular contrast agents in the assessment of the effect of tamoxifen treatment on tumor vasculature.


Assuntos
Inibidores da Angiogênese/farmacologia , Neoplasias da Mama/tratamento farmacológico , Antagonistas de Estrogênios/farmacologia , Compostos Heterocíclicos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Compostos Organometálicos , Tamoxifeno/farmacologia , Albuminas , Animais , Neoplasias da Mama/irrigação sanguínea , Meios de Contraste , Antagonistas de Estrogênios/uso terapêutico , Feminino , Gadolínio , Gadolínio DTPA , Aumento da Imagem , Neoplasias Mamárias Experimentais , Ratos , Tamoxifeno/uso terapêutico
11.
Peptides ; 69: 26-32, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25843024

RESUMO

The aim of the present study was to investigate the pharmacological activity of Pronetupitant, a novel compound designed to act as prodrug of the NK1 antagonist Netupitant. In receptor binding experiments Pronetupitant displayed high selectivity for the NK1 receptor. In a calcium mobilization assay performed on CHONK1 cells Pronetupitant (100 nM, 15 min preincubation) behaved as an NK1 antagonist more potent than Netupitant (pK(B) 8.72 and 7.54, respectively). In the guinea pig ileum bioassay Pronetupitant antagonized the contractile effect of SP showing a similar potency as Netupitant (pK(B)≈9). Similar results were obtained with 5 min preincubation time while at 2 min only Pronetupitant produced significant effects. In vivo in mice the intrathecal injection of 0.1 nmol SP elicited the typical scratching, biting and licking (SBL) nociceptive response. This effect of SP was dose dependently (0.1-10 mg/kg) antagonized by Pronetupitant given intravenously 2 h before the peptide. Superimposable results were obtained using Netupitant. Pharmacokinetic studies performed in rats demonstrate that Pronetupitant, after i.v. administration, is quickly (few minutes) and completely converted to Netupitant. Collectively the present results indicated that Pronetupitant acts in vitro as selective NK1 antagonist more potent than Netupitant. However based on the short half-life measured for Pronetupitant in rats, the in vivo action of Pronetupitant can be entirely interpreted as due to its conversion to Netupitant.


Assuntos
Antagonistas dos Receptores de Neurocinina-1/farmacologia , Dor Nociceptiva/tratamento farmacológico , Pró-Fármacos/farmacologia , Piridinas/farmacologia , Animais , Cálcio/metabolismo , Cobaias , Humanos , Íleo/efeitos dos fármacos , Íleo/patologia , Camundongos , Antagonistas dos Receptores de Neurocinina-1/farmacocinética , Dor Nociceptiva/patologia , Pró-Fármacos/farmacocinética , Piridinas/farmacocinética , Ratos , Receptores da Neurocinina-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA