Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 81: 451-78, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22663080

RESUMO

The peptidoglycan biosynthetic pathway is a critical process in the bacterial cell and is exploited as a target for the design of antibiotics. This pathway culminates in the production of the peptidoglycan layer, which is composed of polymerized glycan chains with cross-linked peptide substituents. This layer forms the major structural component of the protective barrier known as the cell wall. Disruption in the assembly of the peptidoglycan layer causes a weakened cell wall and subsequent bacterial lysis. With bacteria responsible for both properly functioning human health (probiotic strains) and potentially serious illness (pathogenic strains), a delicate balance is necessary during clinical intervention. Recent research has furthered our understanding of the precise molecular structures, mechanisms of action, and functional interactions involved in peptidoglycan biosynthesis. This research is helping guide our understanding of how to capitalize on peptidoglycan-based therapeutics and, at a more fundamental level, of the complex machinery that creates this critical barrier for bacterial survival.


Assuntos
Bactérias/metabolismo , Infecções Bacterianas/microbiologia , Peptidoglicano/biossíntese , Animais , Infecções Bacterianas/tratamento farmacológico , Parede Celular/química , Parede Celular/metabolismo , Interações Hospedeiro-Patógeno , Humanos
2.
EMBO Rep ; 25(1): 82-101, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38228789

RESUMO

The E. coli Paraquat Inducible (Pqi) Pathway is a putative Gram-negative phospholipid transport system. The pathway comprises three components: an integral inner membrane protein (PqiA), a periplasmic spanning MCE family protein (PqiB) and an outer membrane lipoprotein (PqiC). Interactions between all complex components, including stoichiometry, remain uncharacterised; nevertheless, once assembled into their quaternary complex, the trio of Pqi proteins are anticipated to provide a continuous channel between the inner and outer membranes of diderms. Here, we present X-ray structures of both the native and a truncated, soluble construct of the PqiC lipoprotein, providing insight into its biological assembly, and utilise neutron reflectometry to characterise the nature of the PqiB-PqiC-membrane interaction. Finally, we employ phenotypic complementation assays to probe specific PqiC residues, which imply the interaction between PqiB and PqiC is less intimate than previously anticipated.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Membrana/metabolismo , Transporte Biológico , Lipoproteínas/metabolismo
3.
J Biol Chem ; 300(1): 105494, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38006948

RESUMO

Peptidoglycan is an essential component of the bacterial cell envelope that contains glycan chains substituted by short peptide stems. Peptide stems are polymerized by D,D-transpeptidases, which make bonds between the amino acid in position four of a donor stem and the third residue of an acceptor stem (4-3 cross-links). Some bacterial peptidoglycans also contain 3-3 cross-links that are formed by another class of enzymes called L,D-transpeptidases which contain a YkuD catalytic domain. In this work, we investigate the formation of unusual bacterial 1-3 peptidoglycan cross-links. We describe a version of the PGFinder software that can identify 1-3 cross-links and report the high-resolution peptidoglycan structure of Gluconobacter oxydans (a model organism within the Acetobacteraceae family). We reveal that G. oxydans peptidoglycan contains peptide stems made of a single alanine as well as several dipeptide stems with unusual amino acids at their C-terminus. Using a bioinformatics approach, we identified a G. oxydans mutant from a transposon library with a drastic reduction in 1-3 cross-links. Through complementation experiments in G. oxydans and recombinant protein production in a heterologous host, we identify an L,D-transpeptidase enzyme with a domain distantly related to the YkuD domain responsible for these non-canonical reactions. This work revisits the enzymatic capabilities of L,D-transpeptidases, a versatile family of enzymes that play a key role in bacterial peptidoglycan remodelling.


Assuntos
Proteínas de Bactérias , Gluconobacter oxydans , Modelos Moleculares , Peptidoglicano , Peptidil Transferases , Aminoácidos/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico/genética , Peptidoglicano/química , Peptidoglicano/genética , Peptidoglicano/metabolismo , Peptidil Transferases/química , Peptidil Transferases/genética , Peptidil Transferases/metabolismo , Software , Gluconobacter oxydans/enzimologia , Gluconobacter oxydans/genética , Biologia Computacional , Teste de Complementação Genética , Estrutura Terciária de Proteína
4.
J Biol Chem ; 300(1): 105529, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043796

RESUMO

Clostridioides difficile is the leading cause of antibiotic-associated diarrhea worldwide with significant morbidity and mortality. This organism is naturally resistant to several beta-lactam antibiotics that inhibit the polymerization of peptidoglycan, an essential component of the bacteria cell envelope. Previous work has revealed that C. difficile peptidoglycan has an unusual composition. It mostly contains 3-3 cross-links, catalyzed by enzymes called L,D-transpeptidases (Ldts) that are poorly inhibited by beta-lactams. It was therefore hypothesized that peptidoglycan polymerization by these enzymes could underpin antibiotic resistance. Here, we investigated the catalytic activity of the three canonical Ldts encoded by C. difficile (LdtCd1, LdtCd2, and LdtCd3) in vitro and explored their contribution to growth and antibiotic resistance. We show that two of these enzymes catalyze the formation of novel types of peptidoglycan cross-links using meso-diaminopimelic acid both as a donor and an acceptor, also observed in peptidoglycan sacculi. We demonstrate that the simultaneous deletion of these three genes only has a minor impact on both peptidoglycan structure and resistance to beta-lactams. This unexpected result therefore implies that the formation of 3-3 peptidoglycan cross-links in C. difficile is catalyzed by as yet unidentified noncanonical Ldt enzymes.


Assuntos
Proteínas de Bactérias , Clostridioides difficile , Peptidoglicano , Peptidil Transferases , Proteínas de Bactérias/química , Resistência beta-Lactâmica , beta-Lactamas/farmacologia , Catálise , Clostridioides difficile/enzimologia , Clostridioides difficile/genética , Peptidoglicano/química , Peptidil Transferases/química , Peptidil Transferases/genética
5.
J Physiol ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38924564

RESUMO

During sea-level exercise, blood flow through intrapulmonary arteriovenous anastomoses (IPAVA) in humans without a patent foramen ovale (PFO) is negatively correlated with pulmonary pressure. Yet, it is unknown whether the superior exercise capacity of Tibetans well adapted to living at high altitude is the result of lower pulmonary pressure during exercise in hypoxia, and whether their cardiopulmonary characteristics are significantly different from lowland natives of comparable ancestry (e.g. Han Chinese). We found a 47% PFO prevalence in male Tibetans (n = 19) and Han Chinese (n = 19) participants. In participants without a PFO (n = 10 each group), we measured heart structure and function at rest and peak oxygen uptake ( V ̇ O 2 peak ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}{\mathrm{peak}}}}$ ), peak power output ( W ̇ p e a k ${{\dot{W}}_{peak}}$ ), pulmonary artery systolic pressure (PASP), blood flow through IPAVA and cardiac output ( Q ̇ T ${{\dot{Q}}_{\mathrm{T}}} $ ) at rest and during recumbent cycle ergometer exercise at 760 Torr (SL) and at 410 Torr (ALT) barometric pressure in a pressure chamber. Tibetans achieved a higher W peak ${W}_{\textit{peak}}$ than Han, and a higher V ̇ O 2 peak ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}{\mathrm{peak}}}}$ at ALT without differences in heart rate, stroke volume or Q ̇ T ${{\dot{Q}}_{\mathrm{T}}} $ . Blood flow through IPAVA was generally similar between groups. Increases in PASP and total pulmonary resistance at ALT were comparable between the groups. There were no differences in the slopes of PASP plotted as a function of Q ̇ T ${{\dot{Q}}_{\mathrm{T}}} $ during exercise. In those without PFO, our data indicate that the superior aerobic exercise capacity of Tibetans over Han Chinese is independent of cardiopulmonary features and more probably linked to differences in local muscular oxygen extraction. KEY POINTS: Patent foramen ovale (PFO) prevalence was 47% in Tibetans and Han Chinese living at 2 275 m. Subjects with PFO were excluded from exercise studies. Compared to Han Chinese, Tibetans had a higher peak workload with acute compression to sea level barometric pressure (SL) and acute decompression to 5000 m altitude (ALT). Comprehensive cardiac structure and function at rest were not significantly different between Han Chinese and Tibetans. Tibetans and Han had similar blood flow through intrapulmonary arteriovenous anastomoses (IPAVA) during exercise at SL. Peak pulmonary artery systolic pressure (PASP) and total pulmonary resistance were different between SL and ALT, with significantly increased PASP for Han compared to Tibetans at ALT. No differences were observed between groups at acute SL and ALT.

6.
J Physiol ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409819

RESUMO

Acute hypoxia increases pulmonary arterial (PA) pressures, though its effect on right ventricular (RV) function is controversial. The objective of this study was to characterize exertional RV performance during acute hypoxia. Ten healthy participants (34 ± 10 years, 7 males) completed three visits: visits 1 and 2 included non-invasive normoxic (fraction of inspired oxygen ( F i O 2 ${F_{{\mathrm{i}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ) = 0.21) and isobaric hypoxic ( F i O 2 ${F_{{\mathrm{i}}{{\mathrm{O}}_{\mathrm{2}}}}}$  = 0.12) cardiopulmonary exercise testing (CPET) to determine normoxic/hypoxic maximal oxygen uptake ( V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ ). Visit 3 involved invasive haemodynamic assessments where participants were randomized 1:1 to either Swan-Ganz or conductance catheterization to quantify RV performance via pressure-volume analysis. Arterial oxygen saturation was determined by blood gas analysis from radial arterial catheterization. During visit 3, participants completed invasive submaximal CPET testing at 50% normoxic V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ and again at 50% hypoxic V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ ( F i O 2 ${F_{{\mathrm{i}}{{\mathrm{O}}_{\mathrm{2}}}}}$  = 0.12). Median (interquartile range) values for non-invasive V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ values during normoxic and hypoxic testing were 2.98 (2.43, 3.66) l/min and 1.84 (1.62, 2.25) l/min, respectively (P < 0.0001). Mean PA pressure increased significantly when transitioning from rest to submaximal exercise during normoxic and hypoxic conditions (P = 0.0014). Metrics of RV contractility including preload recruitable stroke work, dP/dtmax , and end-systolic pressure increased significantly during the transition from rest to exercise under normoxic and hypoxic conditions. Ventricular-arterial coupling was maintained during normoxic exercise at 50% V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ . During submaximal exercise at 50% of hypoxic V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ , ventricular-arterial coupling declined but remained within normal limits. In conclusion, resting and exertional RV functions are preserved in response to acute exposure to hypoxia at an F i O 2 ${F_{{\mathrm{i}}{{\mathrm{O}}_{\mathrm{2}}}}}$  = 0.12 and the associated increase in PA pressures. KEY POINTS: The healthy right ventricle augments contractility, lusitropy and energetics during periods of increased metabolic demand (e.g. exercise) in acute hypoxic conditions. During submaximal exercise, ventricular-arterial coupling decreases but remains within normal limits, ensuring that cardiac output and systemic perfusion are maintained. These data describe right ventricular physiological responses during submaximal exercise under conditions of acute hypoxia, such as occurs during exposure to high altitude and/or acute hypoxic respiratory failure.

7.
J Bacteriol ; 205(4): e0047522, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37010281

RESUMO

Lytic transglycosylases cut peptidoglycan backbones, facilitating a variety of functions within bacteria, including cell division, pathogenesis, and insertion of macromolecular machinery into the cell envelope. Here, we identify a novel role of a secreted lytic transglycosylase associated with the predatory lifestyle of Bdellovibrio bacteriovorus strain HD100. During wild-type B. bacteriovorus prey invasion, the predator rounds up rod-shaped prey into spherical prey bdelloplasts, forming a spacious niche within which the predator grows. Deleting the MltA-like lytic transglycosylase Bd3285 still permitted predation but resulted in three different, invaded prey cell shapes: spheres, rods, and "dumbbells." Amino acid D321 within the catalytic C-terminal 3D domain of Bd3285 was essential for wild-type complementation. Microscopic analyses revealed that dumbbell-shaped bdelloplasts are derived from Escherichia coli prey undergoing cell division at the moment of Δbd3285 predator invasion. Prelabeling of E. coli prey peptidoglycan prior to predation with the fluorescent D-amino acid HADA showed that the dumbbell bdelloplasts invaded by B. bacteriovorus Δbd3285 contained a septum. Fluorescently tagged Bd3285, expressed in E. coli, localized to the septum of dividing cells. Our data indicate that B. bacteriovorus secretes the lytic transglycosylase Bd3285 into the E. coli periplasm during prey invasion to cleave the septum of dividing prey, facilitating prey cell occupation. IMPORTANCE Antimicrobial resistance is a serious and rapidly growing threat to global health. Bdellovibrio bacteriovorus can prey upon an extensive range of Gram-negative bacterial pathogens and thus has promising potential as a novel antibacterial therapeutic and is a source of antibacterial enzymes. Here, we elucidate the role of a unique secreted lytic transglycosylase from B. bacteriovorus which acts on the septal peptidoglycan of its prey. This improves our understanding of mechanisms that underpin bacterial predation.


Assuntos
Bdellovibrio bacteriovorus , Bdellovibrio , Animais , Bdellovibrio bacteriovorus/genética , Bdellovibrio/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Peptidoglicano/metabolismo , Comportamento Predatório , Aminoácidos/metabolismo
8.
Proteins ; 91(12): 1571-1599, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37493353

RESUMO

We present an in-depth analysis of selected CASP15 targets, focusing on their biological and functional significance. The authors of the structures identify and discuss key protein features and evaluate how effectively these aspects were captured in the submitted predictions. While the overall ability to predict three-dimensional protein structures continues to impress, reproducing uncommon features not previously observed in experimental structures is still a challenge. Furthermore, instances with conformational flexibility and large multimeric complexes highlight the need for novel scoring strategies to better emphasize biologically relevant structural regions. Looking ahead, closer integration of computational and experimental techniques will play a key role in determining the next challenges to be unraveled in the field of structural molecular biology.


Assuntos
Biologia Computacional , Proteínas , Conformação Proteica , Modelos Moleculares , Biologia Computacional/métodos , Proteínas/química
9.
EMBO J ; 38(17): e100772, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31355487

RESUMO

Bacterial usage of the cyclic dinucleotide c-di-GMP is widespread, governing the transition between motile/sessile and unicellular/multicellular behaviors. There is limited information on c-di-GMP metabolism, particularly on regulatory mechanisms governing control of EAL c-di-GMP phosphodiesterases. Herein, we provide high-resolution structures for an EAL enzyme Bd1971, from the predatory bacterium Bdellovibrio bacteriovorus, which is controlled by a second signaling nucleotide, cAMP. The full-length cAMP-bound form reveals the sensory N-terminus to be a domain-swapped variant of the cNMP/CRP family, which in the cAMP-activated state holds the C-terminal EAL enzyme in a phosphodiesterase-active conformation. Using a truncation mutant, we trap both a half-occupied and inactive apo-form of the protein, demonstrating a series of conformational changes that alter juxtaposition of the sensory domains. We show that Bd1971 interacts with several GGDEF proteins (c-di-GMP producers), but mutants of Bd1971 do not share the discrete phenotypes of GGDEF mutants, instead having an elevated level of c-di-GMP, suggesting that the role of Bd1971 is to moderate these levels, allowing "action potentials" to be generated by each GGDEF protein to effect their specific functions.


Assuntos
Bdellovibrio bacteriovorus/metabolismo , AMP Cíclico/metabolismo , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bdellovibrio bacteriovorus/química , Bdellovibrio bacteriovorus/genética , Sítios de Ligação , Cristalografia por Raios X , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Nucleotídeos/metabolismo , Diester Fosfórico Hidrolases/genética , Ligação Proteica , Conformação Proteica , Transdução de Sinais
10.
Microbiology (Reading) ; 169(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37535060

RESUMO

The bacterial predator Bdellovibrio bacteriovorus is a model for the wider phenomenon of bacteria:bacteria predation, and the specialization required to achieve a lifestyle dependent on prey consumption. Bdellovibrio bacteriovorus is able to recognize, enter and ultimately consume fellow Gram-negative bacteria, killing these prey from within their periplasmic space, and lysing the host at the end of the cycle. The classic phenotype-driven characterization (and observation of predation) has benefitted from an increased focus on molecular mechanisms and fluorescence microscopy and tomography, revealing new features of several of the lifecycle stages. Herein we summarize a selection of these advances and describe likely areas for exploration that will push the field toward a more complete understanding of this fascinating 'two-cell' system.


Assuntos
Bdellovibrio bacteriovorus , Bdellovibrio bacteriovorus/genética , Bactérias Gram-Negativas
11.
Am J Physiol Regul Integr Comp Physiol ; 325(1): R96-R105, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37184225

RESUMO

Blood flow through intrapulmonary arteriovenous anastomoses (IPAVA) (QIPAVA) increases during exercise breathing air, but it has been proposed that QIPAVA is reduced during exercise while breathing a fraction of inspired oxygen ([Formula: see text]) of 1.00. It has been argued that the reduction in saline contrast bubbles through IPAVA is due to altered in vivo microbubble dynamics with hyperoxia reducing bubble stability, rather than closure of IPAVA. To definitively determine whether breathing hyperoxia decreases saline contrast bubble stability in vivo, the present study included individuals with and without patent foramen ovale (PFO) to determine if hyperoxia also eliminates left heart contrast in people with an intracardiac right-to-left shunt. Thirty-two participants consisted of 16 without a PFO; 8 females, 8 with a PFO; 4 females, and 8 with late-appearing left-sided contrast (4 females) completed five, 4-min bouts of constant-load cycle ergometer exercise (males: 250 W, females: 175 W), breathing an [Formula: see text] = 0.21, 0.40, 0.60, 0.80, and 1.00 in a balanced Latin Squares design. QIPAVA was assessed at rest and 3 min into each exercise bout via transthoracic saline contrast echocardiography and our previously used bubble scoring system. Bubble scores at [Formula: see text]= 0.21, 0.40, and 0.60 were unchanged and significantly greater than at [Formula: see text]= 0.80 and 1.00 in those without a PFO. Participants with a PFO had greater bubble scores at [Formula: see text]= 1.00 than those without a PFO. These data suggest that hyperoxia-induced decreases in QIPAVA during exercise occur when [Formula: see text] ≥ 0.80 and is not a result of altered in vivo microbubble dynamics supporting the idea that hyperoxia closes QIPAVA.


Assuntos
Forame Oval Patente , Hiperóxia , Masculino , Feminino , Humanos , Hemodinâmica/fisiologia , Oxigênio , Coração , Circulação Pulmonar/fisiologia
12.
J Bacteriol ; 204(3): e0059721, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35129368

RESUMO

The Gram-negative periodontal pathogen Tannerella forsythia is inherently auxotrophic for N-acetylmuramic acid (MurNAc), which is an essential carbohydrate constituent of the peptidoglycan (PGN) of the bacterial cell wall. Thus, to build up its cell wall, T. forsythia strictly depends on the salvage of exogenous MurNAc or sources of MurNAc, such as polymeric or fragmentary PGN, derived from cohabiting bacteria within the oral microbiome. In our effort to elucidate how T. forsythia satisfies its demand for MurNAc, we recognized that the organism possesses three putative orthologs of the exo-ß-N-acetylmuramidase BsNamZ from Bacillus subtilis, which cleaves nonreducing end, terminal MurNAc entities from the artificial substrate pNP-MurNAc and the naturally-occurring disaccharide substrate MurNAc-N-acetylglucosamine (MurNAc-GlcNAc). TfNamZ1 and TfNamZ2 were successfully purified as soluble, pure recombinant His6-fusions and characterized as exo-lytic ß-N-acetylmuramidases with distinct substrate specificities. The activity of TfNamZ1 was considerably lower compared to TfNamZ2 and BsNamZ, in the cleavage of MurNAc-GlcNAc. When peptide-free PGN glycans were used as substrates, we revealed striking differences in the specificity and mode of action of these enzymes, as analyzed by mass spectrometry. TfNamZ1, but not TfNamZ2 or BsNamZ, released GlcNAc-MurNAc disaccharides from these glycans. In addition, glucosamine (GlcN)-MurNAc disaccharides were generated when partially N-deacetylated PGN glycans from B. subtilis 168 were applied. This characterizes TfNamZ1 as a unique disaccharide-forming exo-lytic ß-N-acetylmuramidase (exo-disaccharidase), and, TfNamZ2 and BsNamZ as sole MurNAc monosaccharide-lytic exo-ß-N-acetylmuramidases. IMPORTANCE Two exo-N-acetylmuramidases from T. forsythia belonging to glycosidase family GH171 (www.cazy.org) were shown to differ in their activities, thus revealing a functional diversity within this family: NamZ1 releases disaccharides (GlcNAc-MurNAc/GlcN-MurNAc) from the nonreducing ends of PGN glycans, whereas NamZ2 releases terminal MurNAc monosaccharides. This work provides a better understanding of how T. forsythia may acquire the essential growth factor MurNAc by the salvage of PGN from cohabiting bacteria in the oral microbiome, which may pave avenues for the development of anti-periodontal drugs. On a broad scale, our study indicates that the utilization of PGN as a nutrient source, involving exo-lytic N-acetylmuramidases with different modes of action, appears to be a general feature of bacteria, particularly among the phylum Bacteroidetes.


Assuntos
Peptidoglicano , Tannerella forsythia , Acetilglucosamina/metabolismo , Bacillus subtilis/metabolismo , Parede Celular/metabolismo , Dissacarídeos/metabolismo , Peptidoglicano/metabolismo , Especificidade por Substrato , Tannerella forsythia/genética
13.
J Physiol ; 600(3): 463-482, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34961925

RESUMO

Progressive improvements in perinatal care and respiratory management of preterm infants have resulted in increased survival of newborns of extremely low gestational age over the past few decades. However, the incidence of bronchopulmonary dysplasia, the chronic lung disease after preterm birth, has not changed. Studies of the long-term follow-up of adults born preterm have shown persistent abnormalities of respiratory, cardiovascular and cardiopulmonary function, possibly leading to a lower exercise capacity. The underlying causes of these abnormalities are incompletely known, but we hypothesize that dysanapsis, i.e. discordant growth and development, in the respiratory and cardiovascular systems is a central structural feature that leads to a lower exercise capacity in young adults born preterm than those born at term. We discuss how the hypothesized system dysanapsis underscores the observed respiratory, cardiovascular and cardiopulmonary limitations. Specifically, adults born preterm have: (1) normal lung volumes but smaller airways, which causes expiratory airflow limitation and abnormal respiratory mechanics but without impacts on pulmonary gas exchange efficiency; (2) normal total cardiac size but smaller cardiac chambers; and (3) in some cases, evidence of pulmonary hypertension, particularly during exercise, suggesting a reduced pulmonary vascular capacity despite reduced cardiac output. We speculate that these underlying developmental abnormalities may accelerate the normal age-associated decline in exercise capacity, via an accelerated decline in respiratory, cardiovascular and cardiopulmonary function. Finally, we suggest areas of future research, especially the need for longitudinal and interventional studies from infancy into adulthood to better understand how preterm birth alters exercise capacity across the lifespan.


Assuntos
Displasia Broncopulmonar , Nascimento Prematuro , Adulto , Exercício Físico/fisiologia , Feminino , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Gravidez , Troca Gasosa Pulmonar/fisiologia , Adulto Jovem
14.
J Physiol ; 600(7): 1541-1553, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35043424

RESUMO

The foramen ovale is an essential component of the fetal circulation contributing to oxygenation and carbon dioxide elimination that remains patent under certain circumstances in ∼30% of the healthy adult population, without major negative sequelae in most. Adults with a patent foramen ovale (PFO) have a greater tendency to develop symptoms of acute mountain sickness and high-altitude pulmonary oedema upon ascent to high altitude, and PFO presence is associated with worse cardiopulmonary function in chronic mountain sickness. This increase in altitude illness prevalence may be related to dysregulated cerebral blood flow associated with altered respiratory chemoreflex sensitivity; however, the mechanisms remain to be elucidated. Interestingly, men with a PFO appear to have a shift in thermoregulatory control to higher internal temperatures, both at rest and during exercise, and they have blunted thermal hyperpnoea. The teleological 'reason' for this thermoregulatory shift is unclear, but the shift of ∼0.5°C in core body temperature does not appear to be sufficient to have any significant negative consequences in terms of risk of heat illness. Further work in this area is needed, particularly in women, to evaluate mechanisms of heat storage and dissipation in these individuals compared to people without a PFO. Consequences of a PFO in SCUBA divers include a greater incidence of unprovoked decompression sickness, but whether PFO is beneficial or detrimental to breath hold diving remains unexplored. Whether PFO presence will explain interindividual variability in responses to, and consequences from, other environmental stressors such as spaceflight remain entirely unknown.


Assuntos
Doença da Altitude , Doença da Descompressão , Mergulho , Forame Oval Patente , Hipertensão Pulmonar , Adulto , Doença da Descompressão/complicações , Feminino , Forame Oval Patente/complicações , Humanos , Hipertensão Pulmonar/complicações , Masculino
15.
Nat Chem Biol ; 16(1): 24-30, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31686030

RESUMO

Lysostaphin is a bacteriolytic enzyme targeting peptidoglycan, the essential component of the bacterial cell envelope. It displays a very potent and specific activity toward staphylococci, including methicillin-resistant Staphylococcus aureus. Lysostaphin causes rapid cell lysis and disrupts biofilms, and is therefore a therapeutic agent of choice to eradicate staphylococcal infections. The C-terminal SH3b domain of lysostaphin recognizes peptidoglycans containing a pentaglycine crossbridge and has been proposed to drive the preferential digestion of staphylococcal cell walls. Here we elucidate the molecular mechanism underpinning recognition of staphylococcal peptidoglycan by the lysostaphin SH3b domain. We show that the pentaglycine crossbridge and the peptide stem are recognized by two independent binding sites located on opposite sides of the SH3b domain, thereby inducing a clustering of SH3b domains. We propose that this unusual binding mechanism allows synergistic and structurally dynamic recognition of S. aureus peptidoglycan and underpins the potent bacteriolytic activity of this enzyme.


Assuntos
Lisostafina/química , Peptidoglicano/química , Staphylococcus aureus/química , Bacteriólise/efeitos dos fármacos , Biofilmes , Parede Celular/química , Cromatografia Líquida de Alta Pressão , Análise Mutacional de DNA , Glicina/química , Ligantes , Espectroscopia de Ressonância Magnética , Mutagênese Sítio-Dirigida , Peptídeos/química , Ligação Proteica , Domínios Proteicos , Proteínas Recombinantes/química , Domínios de Homologia de src
16.
Exp Physiol ; 107(3): 243-252, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35068009

RESUMO

NEW FINDINGS: What is the central question of this study? Do individuals with a patent foramen ovale (PFO+ ) have a lower lung transfer factor for carbon monoxide than those without (PFO- )? What is the main finding and its importance? We found a lower rate constant for carbon monoxide uptake in PFO+ compared with PFO- women, which was physiologically relevant (≥0.5 z-score difference), but not for PFO+ versus PFO- men. This suggests that factors independent of the PFO are responsible for our findings, possibly inherent structural differences in the lung. ABSTRACT: The transfer factor of the lung for carbon monoxide (TLCO ) measure assumes that all cardiac output flows through the pulmonary circuit. However, right-to-left blood flow through a shunt can result in a lower transfer factor than predicted. A patent foramen ovale (PFO) is a potential source of right-to-left shunt that is present in ∼35% of the population, but the effect of PFO on TLCO is unknown. We sought to determine the effect of PFO on the TLCO . We conducted a retrospective analysis of TLCO data from 239 (101 women) participants. Anthropometrics and lung function, including spirometry, plethysmography and TLCO , were compiled from our previously published work. Women, but not men, with a PFO had a significantly lower TLCO and rate constant for carbon monoxide uptake (KCO ) (percentage of predicted and z-score) than women without a PFO. Women and men with a PFO had normal alveolar volumes that did not differ from those without a PFO. Correcting the data for haemoglobin in a subset of subjects did not change the results (n = 58; 25 women). The lower KCO in women with versus without a PFO was physiologically relevant (≥0.5 z-score difference). There was no effect of PFO in men. This suggests that factors independent of the PFO are responsible for our findings, possibly inherent structural differences in the lung.


Assuntos
Monóxido de Carbono , Forame Oval Patente , Feminino , Humanos , Pulmão , Masculino , Estudos Retrospectivos , Fator de Transferência
17.
Exp Physiol ; 107(2): 122-132, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34907608

RESUMO

NEW FINDINGS: What is the central question to this study? Is there a relationship between a patent foramen ovale and the development of acute mountain sickness and an exaggerated increase in pulmonary pressure in response to 7-10 h of normobaric hypoxia? What is the main finding and its importance? Patent foramen ovale presence did not increase susceptibility to acute mountain sickness or result in an exaggerated increase in pulmonary artery systolic pressure with normobaric hypoxia. This suggests hypobaric hypoxia is integral to the increased susceptibility to acute mountain sickness previously reported in those with patent foramen ovale, and patent foramen ovale presence alone does not contribute to the hypoxic pulmonary pressor response. ABSTRACT: Acute mountain sickness (AMS) develops following rapid ascent to altitude, but its exact causes remain unknown. A patent foramen ovale (PFO) is a right-to-left intracardiac shunt present in ∼30% of the population that has been shown to increase AMS susceptibility with high altitude hypoxia. Additionally, high altitude pulmonary oedema (HAPE) is a severe type of altitude illness characterized by an exaggerated pulmonary pressure response, and there is a greater prevalence of PFO in those with a history of HAPE. However, whether hypoxia per se is causing the increased incidence of AMS in those with a PFO and whether a PFO is associated with an exaggerated increase in pulmonary pressure in those without a history of HAPE is unknown. Participants (n = 36) matched for biological sex (18 female) and the presence or absence of a PFO (18 PFO+) were exposed to 7-10 h of normobaric hypoxia equivalent to 4755 m. Presence and severity of AMS was determined using the Lake Louise AMS scoring system. Pulmonary artery systolic pressure, cardiac output and total pulmonary resistance were measured using ultrasound. We found no significant association of PFO with incidence or severity of AMS and no association of PFO with arterial oxygen saturation. Additionally, there was no effect of a PFO on pulmonary pressure, cardiac output or total pulmonary resistance. These data suggest that hypobaric hypoxia is necessary for those with a PFO to have increased incidence of AMS and that presence of PFO is not associated with an exaggerated pulmonary pressor response.


Assuntos
Doença da Altitude , Forame Oval Patente , Hipertensão Pulmonar , Altitude , Feminino , Humanos , Hipóxia
18.
Exp Physiol ; 107(11): 1225-1240, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35993480

RESUMO

NEW FINDINGS: What is the central question of this study? Does the hyperbaric, hypercapnic, acidotic, hypoxic stress of apnoea diving lead to greater pulmonary vasoreactivity and increased right heart work in apnoea divers? What is the main finding and its importance? Compared with sex- and age-matched control subjects, divers experienced significantly less change in total pulmonary resistance in response to short-duration isocapnic hypoxia. With oral sildenafil (50 mg), there were no differences in total pulmonary resistance between groups, suggesting that divers can maintain normal pulmonary artery tone in hypoxic conditions. Blunted hypoxic pulmonary vasoconstriction might be beneficial during apnoea diving. ABSTRACT: Competitive apnoea divers dive repetitively to depths >50 m. During the final portions of ascent, divers experience significant hypoxaemia. Additionally, hyperbaria during diving increases thoracic blood volume while simultaneously reducing lung volume and increasing pulmonary artery pressure. We hypothesized that divers would have exaggerated hypoxic pulmonary vasoconstriction, leading to increased right heart work owing to their repetitive hypoxaemia and hyperbaria, and that the administration of sildenafil would have a greater effect in reducing pulmonary resistance in divers. We recruited 16 divers (Divers) and 16 age- and sex-matched non-diving control subjects (Controls). Using a double-blinded, placebo-controlled, cross-over design, participants were evaluated for normal cardiac and lung function, then their cardiopulmonary responses to 20-30 min of isocapnic hypoxia (end-tidal partial pressure of O2  = 50 mmHg) were measured 1 h after ingestion of 50 mg sildenafil or placebo. Cardiac structure and cardiopulmonary function were similar at baseline. With placebo, Divers had a significantly smaller increase in total pulmonary resistance than Controls after 20-30 min isocapnic hypoxia (change -3.85 ± 72.85 vs. 73.74 ± 91.06 dyns cm-5 , P = 0.0222). With sildenafil, Divers and Controls had similar blunted increases in total pulmonary resistance after 20-30 min of hypoxia. Divers also had a significantly lower systemic vascular resistance after sildenafil in normoxia. These data indicate that repetitive apnoea diving leads to a blunted hypoxic pulmonary vasoconstriction. We suggest that this is a beneficial adaption allowing for increased cardiac output with reduced right heart work and thus reducing cardiac oxygen utilization in hypoxaemic conditions.


Assuntos
Apneia , Vasoconstrição , Humanos , Hipóxia , Pulmão , Oxigênio , Citrato de Sildenafila , Método Duplo-Cego , Estudos Cross-Over
19.
Proteins ; 89(12): 1647-1672, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34561912

RESUMO

The biological and functional significance of selected Critical Assessment of Techniques for Protein Structure Prediction 14 (CASP14) targets are described by the authors of the structures. The authors highlight the most relevant features of the target proteins and discuss how well these features were reproduced in the respective submitted predictions. The overall ability to predict three-dimensional structures of proteins has improved remarkably in CASP14, and many difficult targets were modeled with impressive accuracy. For the first time in the history of CASP, the experimentalists not only highlighted that computational models can accurately reproduce the most critical structural features observed in their targets, but also envisaged that models could serve as a guidance for further studies of biologically-relevant properties of proteins.


Assuntos
Modelos Moleculares , Conformação Proteica , Proteínas/química , Software , Sequência de Aminoácidos , Biologia Computacional , Microscopia Crioeletrônica , Cristalografia por Raios X , Análise de Sequência de Proteína
20.
Microbiology (Reading) ; 167(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33843574

RESUMO

Bdellovibrio bacteriovorus is an environmentally-ubiquitous bacterium that uses unique adaptations to kill other bacteria. The best-characterized strain, HD100, has a multistage lifestyle, with both a free-living attack phase and an intraperiplasmic growth and division phase inside the prey cell. Advances in understanding the basic biology and regulation of predation processes are paving the way for future potential therapeutic and bioremediation applications of this unusual bacterium.


Assuntos
Antibiose , Bdellovibrio bacteriovorus/fisiologia , Bactérias , Fenômenos Fisiológicos Bacterianos , Bdellovibrio bacteriovorus/classificação , Bdellovibrio bacteriovorus/genética , Bdellovibrio bacteriovorus/isolamento & purificação , Genoma Bacteriano , Filogenia , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA