Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell ; 183(3): 636-649.e18, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33031745

RESUMO

Cytoplasmic accumulation of TDP-43 is a disease hallmark for many cases of amyotrophic lateral sclerosis (ALS), associated with a neuroinflammatory cytokine profile related to upregulation of nuclear factor κB (NF-κB) and type I interferon (IFN) pathways. Here we show that this inflammation is driven by the cytoplasmic DNA sensor cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS) when TDP-43 invades mitochondria and releases DNA via the permeability transition pore. Pharmacologic inhibition or genetic deletion of cGAS and its downstream signaling partner STING prevents upregulation of NF-κB and type I IFN induced by TDP-43 in induced pluripotent stem cell (iPSC)-derived motor neurons and in TDP-43 mutant mice. Finally, we document elevated levels of the specific cGAS signaling metabolite cGAMP in spinal cord samples from patients, which may be a biomarker of mtDNA release and cGAS/STING activation in ALS. Our results identify mtDNA release and cGAS/STING activation as critical determinants of TDP-43-associated pathology and demonstrate the potential for targeting this pathway in ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Membrana/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Nucleotidiltransferases/metabolismo , Alarminas/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Citoplasma/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Inflamação/metabolismo , Interferon Tipo I/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , NF-kappa B/metabolismo , Degeneração Neural/patologia , Fosfotransferases (Aceptor do Grupo Álcool) , Subunidades Proteicas/metabolismo , Transdução de Sinais
2.
Mol Cell ; 71(4): 510-525.e6, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30033372

RESUMO

Telomeres regulate DNA damage response (DDR) and DNA repair activity at chromosome ends. How telomere macromolecular structure contributes to ATM regulation and its potential dissociation from control over non-homologous end joining (NHEJ)-dependent telomere fusion is of central importance to telomere-dependent cell aging and tumor suppression. Using super-resolution microscopy, we identify that ATM activation at mammalian telomeres with reduced TRF2 or at human telomeres during mitotic arrest occurs specifically with a structural change from telomere loops (t-loops) to linearized telomeres. Additionally, we find the TRFH domain of TRF2 regulates t-loop formation while suppressing ATM activity. Notably, we demonstrate that ATM activation and telomere linearity occur separately from telomere fusion via NHEJ and that linear DDR-positive telomeres can remain resistant to fusion, even during an extended G1 arrest, when NHEJ is most active. Collectively, these results suggest t-loops act as conformational switches that specifically regulate ATM activation independent of telomere mechanisms to inhibit NHEJ.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Reparo do DNA por Junção de Extremidades , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Dano ao DNA , Fibroblastos/citologia , Fibroblastos/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Células HEK293 , Células HeLa , Humanos , Camundongos , Mitose , Domínios Proteicos , Telômero/ultraestrutura , Proteína 2 de Ligação a Repetições Teloméricas/química , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo
3.
Methods Mol Biol ; 2823: 77-93, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39052215

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a lethal solid malignancy with many patients succumbing to the disease within 6 months of diagnosis. The mechanisms that underlie PDAC initiation and progression are poorly understood. Current treatment options are primarily limited to chemotherapy, which is often provided with palliative intent. Unfortunately, there are no robust biomarkers to guide treatment selection or monitor treatment response. This is concerning given the increasing incidence of this cancer. We and others have generated organoid models to explore the biology underlying PDAC with the goal of identifying new therapeutic targets. Here we provide protocols to generate a preclinical PDAC organoid model and methods to use these to define the proteomic landscape of this cancer.


Assuntos
Carcinoma Ductal Pancreático , Organoides , Neoplasias Pancreáticas , Proteômica , Organoides/metabolismo , Proteômica/métodos , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Animais , Proteoma , Biomarcadores Tumorais/metabolismo , Camundongos
4.
Cell Death Differ ; 30(5): 1155-1165, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36828915

RESUMO

Epithelial-mesenchymal transition (EMT) is a continuum that includes epithelial, partial EMT, and mesenchymal states, each of which is associated with cancer progression, invasive capabilities, and ultimately, metastasis. We used a lineage-traced sporadic model of pancreatic cancer to generate a murine organoid biobank from primary and secondary tumors, including sublines that underwent partial EMT and complete EMT. Using an unbiased proteomics approach, we found that organoid morphology predicts the EMT state, and the solid organoids are associated with a partial EMT signature. We also observed that exogenous TGFß1 induces solid organoid morphology that is associated with changes in the S100 family, complete EMT, and the formation of high-grade tumors. S100A4 may be a useful biomarker for predicting EMT state, disease progression, and outcome in patients with pancreatic cancer.


Assuntos
Neoplasias Pancreáticas , Proteínas S100 , Humanos , Animais , Camundongos , Proteínas S100/genética , Proteínas S100/metabolismo , Transição Epitelial-Mesenquimal , Neoplasias Pancreáticas/patologia , Linhagem Celular Tumoral , Neoplasias Pancreáticas
5.
Nat Commun ; 13(1): 2321, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484149

RESUMO

Coatomer complex I (COPI) mediates retrograde vesicular trafficking from Golgi to the endoplasmic reticulum (ER) and within Golgi compartments. Deficiency in subunit alpha causes COPA syndrome and is associated with type I IFN signalling, although the upstream innate immune sensor involved was unknown. Using in vitro models we find aberrant activation of the STING pathway due to deficient retrograde but probably not intra-Golgi transport. Further we find the upstream cytosolic DNA sensor cGAS as essentially required to drive type I IFN signalling. Genetic deletion of COPI subunits COPG1 or COPD similarly induces type I IFN activation in vitro, which suggests that inflammatory diseases associated with mutations in other COPI subunit genes may exist. Finally, we demonstrate that inflammation in COPA syndrome patient peripheral blood mononuclear cells and COPI-deficient cell lines is ameliorated by treatment with the small molecule STING inhibitor H-151, suggesting targeted inhibition of the cGAS/STING pathway as a promising therapeutic approach.


Assuntos
Leucócitos Mononucleares , Nucleotidiltransferases , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Complexo I de Proteína do Envoltório/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Transdução de Sinais
6.
Cancers (Basel) ; 13(19)2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34638463

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid malignancies. While immortalized cancer cell lines and genetically engineered murine models have increased our understanding of PDAC tumorigenesis, they do not recapitulate inter- and intra-patient heterogeneity. PDAC patient derived organoid (PDO) biobanks have overcome this hurdle, and provide an opportunity for the high throughput screening of potential new therapies. This review provides a summary of the PDAC PDO biobanks established to date, and discusses how they have advanced our understanding of PDAC biology. Looking forward, the development of coculturing techniques for specific immune or stromal cell populations will enable a better understanding of the crosstalk that occurs within the tumor microenvironment, and the impact of this crosstalk on treatment response.

7.
Cell Death Differ ; 27(2): 742-757, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31296963

RESUMO

Gastrointestinal epithelial cells provide a selective barrier that segregates the host immune system from luminal microorganisms, thereby contributing directly to the regulation of homeostasis. We have shown that from early embryonic development Bcl-G, a Bcl-2 protein family member with unknown function, was highly expressed in gastrointestinal epithelial cells. While Bcl-G was dispensable for normal growth and development in mice, the loss of Bcl-G resulted in accelerated progression of colitis-associated cancer. A label-free quantitative proteomics approach revealed that Bcl-G may contribute to the stability of a mucin network, which when disrupted, is linked to colon tumorigenesis. Consistent with this, we observed a significant reduction in Bcl-G expression in human colorectal tumors. Our study identifies an unappreciated role for Bcl-G in colon cancer.


Assuntos
Neoplasias Colorretais/metabolismo , Inflamação/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Colite/metabolismo , Colite/patologia , Neoplasias Colorretais/patologia , Humanos , Inflamação/patologia , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-bcl-2/deficiência , Proteínas Proto-Oncogênicas c-bcl-2/genética
8.
Nat Commun ; 10(1): 4224, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530811

RESUMO

Mitotic catastrophe is a broad descriptor encompassing unclear mechanisms of cell death. Here we investigate replication stress-driven mitotic catastrophe in human cells and identify that replication stress principally induces mitotic death signalled through two independent pathways. In p53-compromised cells we find that lethal replication stress confers WAPL-dependent centromere cohesion defects that maintain spindle assembly checkpoint-dependent mitotic arrest in the same cell cycle. Mitotic arrest then drives cohesion fatigue and triggers mitotic death through a primary pathway of BAX/BAK-dependent apoptosis. Simultaneously, a secondary mitotic death pathway is engaged through non-canonical telomere deprotection, regulated by TRF2, Aurora B and ATM. Additionally, we find that suppressing mitotic death in replication stressed cells results in distinct cellular outcomes depending upon how cell death is averted. These data demonstrate how replication stress-induced mitotic catastrophe signals cell death with implications for cancer treatment and cancer genome evolution.


Assuntos
Apoptose , Proteínas de Transporte/metabolismo , Replicação do DNA , Mitose , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Telômero/metabolismo , Morte Celular , Linhagem Celular Tumoral , Humanos , Neoplasias/genética , Neoplasias/fisiopatologia , Telômero/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA