Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Nature ; 605(7908): 63-68, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35508778

RESUMO

Moiré superlattices have led to observations of exotic emergent electronic properties such as superconductivity and strong correlated states in small-rotation-angle twisted bilayer graphene (tBLG)1,2. Recently, these findings have inspired the search for new properties in moiré plasmons. Although plasmon propagation in the tBLG basal plane has been studied by near-field nano-imaging techniques3-7, the general electromagnetic character and properties of these plasmons remain elusive. Here we report the direct observation of two new plasmon modes in macroscopic tBLG with a highly ordered moiré superlattice. Using spiral structured nanoribbons of tBLG, we identify signatures of chiral plasmons that arise owing to the uncompensated Berry flux of the electron gas under optical pumping. The salient features of these chiral plasmons are shown through their dependence on optical pumping intensity and electron fillings, in conjunction with distinct resonance splitting and Faraday rotation coinciding with the spectral window of maximal Berry flux. Moreover, we also identify a slow plasmonic mode around 0.4 electronvolts, which stems from the interband transitions between the nested subbands in lattice-relaxed AB-stacked domains. This mode may open up opportunities for strong light-matter interactions within the highly sought after mid-wave infrared spectral window8. Our results unveil the new electromagnetic dynamics of small-angle tBLG and exemplify it as a unique quantum optical platform.

2.
Nano Lett ; 24(6): 2057-2062, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38285001

RESUMO

Hyperbolic polaritons have been attracting increasing interest for applications in optoelectronics, biosensing, and super-resolution imaging. Here, we report the in-plane hyperbolic exciton polaritons in monolayer black-arsenic (B-As), where hyperbolicity arises strikingly from two exciton resonant peaks. Remarkably, the presence of two resonances at different momenta makes overall hyperbolicity highly tunable by strain, as the two exciton peaks can be merged into the same frequency to double the strength of hyperbolicity as well as light absorption under a 1.5% biaxial strain. Moreover, the frequency of the merged hyperbolicity can be further tuned from 1.35 to 0.8 eV by an anisotropic biaxial strain. Furthermore, electromagnetic numerical simulation reveals a strain-induced hyperbolicity, as manifested in a topological transition of iso-frequency contour of exciton polaritons. The good tunability, large exciton binding energy, and strong light absorption exhibited in the hyperbolic monolayer B-As make it highly suitable for nanophotonics applications under ambient conditions.

3.
Small ; : e2402604, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898739

RESUMO

Dzyaloshinskii-Moriya interaction (DMI) is shown to induce a topologically protected chiral spin texture in magnetic/nonmagnetic heterostructures. In the context of van der Waals spintronic devices, graphene emerges as an excellent candidate material. However, due to its negligible spin-orbit interaction, inducing DMI to stabilize topological spins when coupled to 3d-ferromagnets remains challenging. Here, it is demonstrated that, despite these challenges, a sizeable Rashba-type spin splitting followed by significant DMI is induced in graphene/Fe3GeTe2. This is made possible due to an interfacial electric field driven by charge asymmetry together with the broken inversion symmetry of the heterostructure. These findings reveal that the enhanced DMI energy parameter, resulting from a large effective electron mass in Fe3GeTe2, remarkably contributes to stabilizing non-collinear spins below the Curie temperature, overcoming the magnetic anisotropy energy. These results are supported by the topological Hall effect, which coexists with the non-trivial breakdown of Fermi liquid behavior, confirming the interplay between spins and non-trivial topology. This work paves the way toward the design and control of interface-driven skyrmion-based devices.

4.
Opt Lett ; 49(4): 826-829, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359192

RESUMO

Directionally molding the near-field and far-field radiation lies at the heart of nanophotonics and is crucial for applications such as on-chip information processing and chiral quantum networks. The most fundamental model for radiating structures is a dipolar source located inside homogeneous matter. However, the influence of matter on the directionality of dipolar radiation is oftentimes overlooked, especially for the near-field radiation. As background, the dipole-matter interaction is intrinsically asymmetric and does not fulfill the duality principle, originating from the inherent asymmetry of Maxwell's equations, i.e., electric charge and current density are ubiquitous but their magnetic counterparts are non-existent to elusive. We find that the asymmetric dipole-matter interaction could offer an enticing route to reshape the directionality of not only the near-field radiation but also the far-field radiation. As an example, both the near-field and far-field radiation directionality of the Huygens dipole (located close to a dielectric-metal interface) would be reversed if the dipolar position is changed from the dielectric region to the metal region.

5.
Phys Rev Lett ; 132(5): 056303, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38364168

RESUMO

Employing flux-grown single crystal WSe_{2}, we report charge-carrier scattering behaviors measured in h-BN encapsulated monolayer field effect transistors. We observe a nonmonotonic change of transport mobility as a function of hole density in the degenerately doped sample, which can be explained by energy dependent scattering amplitude of strong defects calculated using the T-matrix approximation. Utilizing long mean-free path (>500 nm), we also demonstrate the high quality of our electronic devices by showing quantized conductance steps from an electrostatically defined quantum point contact, showing the potential for creating ultrahigh quality quantum optoelectronic devices based on atomically thin semiconductors.

6.
Nano Lett ; 22(2): 622-629, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-34982564

RESUMO

Perpendicular magnetic tunnel junctions (p-MTJs) switched utilizing bipolar electric fields have extensive applications in energy-efficient memory and logic devices. Voltage-controlled magnetic anisotropy linearly lowers the energy barrier of the ferromagnetic layer via the electric field effect and efficiently switches p-MTJs only with a unipolar behavior. Here, we demonstrate a bipolar electric field effect switching of 100 nm p-MTJs with a synthetic antiferromagnetic free layer through voltage-controlled exchange coupling (VCEC). The switching current density, ∼1.1 × 105 A/cm2, is 1 order of magnitude lower than that of the best-reported spin-transfer torque devices. Theoretical results suggest that the electric field induces a ferromagnetic-antiferromagnetic exchange coupling transition of the synthetic antiferromagnetic free layer and generates a fieldlike interlayer exchange coupling torque, which causes the bidirectional magnetization switching of p-MTJs. These results could eliminate the major obstacle in the development of spin memory devices beyond their embedded applications.

7.
Phys Rev Lett ; 128(19): 193902, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35622026

RESUMO

The ability to control the light polarization state is critically important for diverse applications in information processing, telecommunications, and spectroscopy. Here, we propose that a stack of anisotropic van der Waals materials can facilitate the building of optical elements with Jones matrices of unitary, Hermitian, non-normal, singular, degenerate, and defective classes. We show that the twisted stack with electrostatic control can function as arbitrary-birefringent wave-plate or arbitrary polarizer with tunable degree of non-normality, which in turn give access to plethora of polarization transformers including rotators, pseudorotators, symmetric and ambidextrous polarizers. Moreover, we discuss an electrostatic-reconfigurable stack which can be tuned to operate as four different polarizers and be used for Stokes polarimetry.

8.
Phys Rev Lett ; 128(19): 197601, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35622027

RESUMO

While nature provides a plethora of perovskite materials, only a few exhibit large ferroelectricity and possibly multiferroicity. The majority of perovskite materials have the nonpolar CaTiO_{3}(CTO) structure, limiting the scope of their applications. Based on the effective Hamiltonian model as well as first-principles calculations, we propose a general thin-film design method to stabilize the functional BiFeO_{3}(BFO)-type structure, which is a common metastable structure in widespread CTO-type perovskite oxides. It is found that the improper antiferroelectricity in CTO-type perovskite and ferroelectricity in BFO-type perovskite have distinct dependences on mechanical and electric boundary conditions, both of which involve oxygen octahedral rotation and tilt. The above difference can be used to stabilize the highly polar BFO-type structure in many CTO-type perovskite materials.

9.
Nano Lett ; 21(21): 9256-9261, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34709832

RESUMO

Topological spin textures are field arrangements that cannot be continuously deformed to a fully polarized state. In particular, merons are topological textures characterized by half-integer topological charge ±1/2 and vortex-like swirling patterns at large distances. Merons have been studied previously in the context of cosmology, fluid dynamics, condensed matter physics and plasmonics. Here, we visualized optical spin angular momentum of phonon polaritons that resembles nanoscale meron spin textures. Phonon polaritons, hybrids of infrared photons and phonons in hexagonal boron nitride, were excited by circularly polarized light incident on a ring-shaped antenna and imaged using infrared near-field techniques. The polariton field reveals a half-integer topological charge determined by the handedness of the incident beam. Our phonon polaritonic platform opens up new pathways to create, control, and visualize topological textures.


Assuntos
Fônons , Fótons , Simulação por Computador
10.
Small ; 17(14): e2100079, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33710768

RESUMO

Current graphene-based plasmonic devices are restricted to 2D patterns defined on planar substrates; thus, they suffer from spatially limited 2D plasmon fields. Here, 3D graphene forming freestanding nanocylinders realized by a plasma-triggered self-assembly process are introduced. The graphene-based nanocylinders induce hybridized edge (in-plane) and radial (out-of-plane) coupled 3D plasmon modes stemming from their curvature, resulting in a four orders of magnitude stronger field at the openings of the cylinders than in rectangular 2D graphene ribbons. For the characterization of the 3D plasmon modes, synchrotron nanospectroscopy measurements are performed, which provides the evidence of preservation of the hybridized 3D graphene plasmons in the high precision curved nanocylinders. The distinct 3D modes introduced in this paper, provide an insight into geometry-dependent 3D coupled plasmon modes and their ability to achieve non-surface-limited (volumetric) field enhancements.

11.
Opt Express ; 29(9): 13852-13863, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33985113

RESUMO

The extreme field confinement and electro-optic tunability of plasmons in graphene make it an ideal platform for compact waveguide modulators, with device footprints aggressively scaling orders of magnitude below the diffraction limit. The miniaturization of modulators based on graphene plasmon resonances is however inherently constrained by the plasmon wavelength, while their performance is bounded by material loss in graphene. In this report, we propose to overcome these limitations using a graphene-covered λ/1000 plasmonic nanogap waveguide that concentrates light on length scales more than an order of magnitude smaller than the graphene plasmon wavelength. The modulation mechanism relies on interference between the non-resonant background transmission and the transmission mediated by the gate-tunable nanogap mode, enabling modulation depths over 20 dB. Since the operation of the device does not rely on graphene plasmons, the switching behavior is robust against low graphene carrier mobility even under 1000 cm2/Vs, which is desirable for practical applications.

12.
Phys Rev Lett ; 126(10): 106601, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33784124

RESUMO

We propose a novel approach to achieve a giant anomalous Hall effect (AHE) in materials with flat bands (FBs). FBs are accompanied by small electronic bandwidths, which consequently increases the momentum separation (K) within pair of Weyl points and, thus, the integrated Berry curvature. Starting from a simple model with a single pair of Weyl nodes, we demonstrated the increase of K and the AHE by decreasing the bandwidth. It is further expanded to a realistic pyrochlore lattice model with characteristic double-degenerated FBs, where we discovered a giant AHE while maximizing the K with nearly vanishing band dispersion of FBs. We identify that such a model system can be realized and modulated through strain engineering in both pyrochlore and spinel compounds based on first-principles calculations, validating our theoretical model and providing a feasible platform for experimental exploration.

13.
Nano Lett ; 20(12): 8711-8718, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33237775

RESUMO

It is shown that chiral plasmons, characterized by a longitudinal magnetic moment accompanying the longitudinal charge plasmon, lead to electromagnetic near-fields that are also chiral. For twisted bilayer graphene, we estimate that the near-field chirality of screened plasmons can be several orders of magnitude larger than that of the related circularly polarized light. The chirality also manifests itself in a deflection angle that is formed between the direction of the plasmon propagation and its Poynting vector. Twisted van der Waals heterostructures might thus provide a novel platform to promote enantiomer-selective physio-chemical processes in chiral molecules without the application of a magnetic field or external nanopatterning that break time-reversal, mirror plane, or inversion symmetry, respectively.

14.
Nano Lett ; 20(3): 1959-1966, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32078326

RESUMO

Topological properties of the Lieb lattice, i.e., the edge-centered square lattice, have been extensively studied and are, however, mostly based on theoretical models without identifying real material systems. Here, based on tight-binding and first-principles calculations, we demonstrate the Lieb-lattice features of the experimentally synthesized phthalocyanine-based metal-organic framework (MPc-MOF), which holds various intriguing topological phase transitions through band engineering. First, we show that the MPc-MOFs indeed have a peculiar Lieb band structure with 1/3 filling, which has been overlooked because of its unconventional band structure deviating from the ideal Lieb band. The intrinsic MPc-MOF presents a trivial insulating state, with its gap size determined by the on-site energy difference (ΔE) between the corner and edge-center sites. Through either chemical substitution or physical strain engineering, one can tune ΔE to close the gap and achieve a topological phase transition. Specifically, upon closing the gap, topological semimetallic/insulating states emerge from nonmagnetic MPc-MOFs, while magnetic semimetal/Chern insulator states arise from magnetic MPc-MOFs, respectively. Our discovery greatly enriches our understanding of the Lieb lattice and provides a guideline for experimental observation of the Lieb-lattice-based topological states.

15.
Nano Lett ; 20(5): 3651-3655, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32286837

RESUMO

We demonstrate a mid-infrared light-emitting diode based on the 2D semiconductor black phosphorus (BP). The device is composed of a mechanically exfoliated BP/molybdenum disulfide heterojunction. Under forward bias, it emits polarized electroluminescence at λ = 3.68 µm, with room-temperature internal and external quantum efficiencies of ∼1% and ∼0.03%, respectively. In our structure, outcoupling losses are dominated by radiation toward the high refractive index substrate. The ability to tune the bandgap of BP and consequently its emission wavelength with layer number, strain, and electric field make these LEDs particularly attractive for heterointegration into mid-infrared photonic platforms.

16.
Nano Lett ; 20(12): 8682-8688, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33226819

RESUMO

Electrostatically defined quantum dots (QDs) in Bernal stacked bilayer graphene (BLG) are a promising quantum information platform because of their long spin decoherence times, high sample quality, and tunability. Importantly, the shape of QD states determines the electron energy spectrum, the interactions between electrons, and the coupling of electrons to their environment, all of which are relevant for quantum information processing. Despite its importance, the shape of BLG QD states remains experimentally unexamined. Here we report direct visualization of BLG QD states by using a scanning tunneling microscope. Strikingly, we find these states exhibit a robust broken rotational symmetry. By using a numerical tight-binding model, we determine that the observed broken rotational symmetry can be attributed to low energy anisotropic bands. We then compare confined holes and electrons and demonstrate the influence of BLG's nontrivial band topology. Our study distinguishes BLG QDs from prior QD platforms with trivial band topology.

17.
Phys Rev Lett ; 125(7): 077401, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32857562

RESUMO

van der Waals heterostructures of atomically thin layers with rotational misalignments, such as twisted bilayer graphene, feature interesting structural moiré superlattices. Because of the quantum coupling between the twisted atomic layers, light-matter interaction is inherently chiral; as such, they provide a promising platform for chiral plasmons in the extreme nanoscale. However, while the interlayer quantum coupling can be significant, its influence on chiral plasmons still remains elusive. Here we present the general solutions from full Maxwell equations of chiral plasmons in twisted atomic bilayers, with the consideration of interlayer quantum coupling. We find twisted atomic bilayers have a direct correspondence to the chiral metasurface, which simultaneously possesses chiral and magnetic surface conductivities, besides the common electric surface conductivity. In other words, the interlayer quantum coupling in twisted van der Waals heterostructures may facilitate the construction of various (e.g., bi-anisotropic) atomically-thin metasurfaces. Moreover, the chiral surface conductivity, determined by the interlayer quantum coupling, determines the existence of chiral plasmons and leads to a unique phase relationship (i.e., ±π/2 phase difference) between their transverse-electric (TE) and transverse-magnetic (TM) wave components. Importantly, such a unique phase relationship for chiral plasmons can be exploited to construct the missing longitudinal spin of plasmons, besides the common transverse spin of plasmons.

18.
Nano Lett ; 19(8): 4852-4860, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31268726

RESUMO

Transition metal dichalcogenides (TMDCs) and two-dimensional organic and inorganic hybrid lead halide perovskites (2DPVSKs) have emerged as highly promising materials for ultralight and ultrathin optoelectronics application. They both exhibit tunability of electronic properties such as band structure, and they can form heterostructures with various types of two-dimensional materials for novel physical properties not observed in single components. However, TMDCs exhibit poor emission efficiency due to defect states and direct-to-indirect interband transition, and 2DPVSKs suffer from poor stability in ambient atmosphere. Here we report that fabrication of TMDC-on-2DPVSK heterostructures using a solvent-free process leads to novel optical transitions unique to the heterostructure which arise from the hybrid interface and exhibit a strong photoluminescence. Moreover, a two orders of magnitude enhancement of the photoluminescence as compared to WS2 emission is observed. The TMDC on top of 2DPVSK also significantly improves the stability as compared to bare 2DPVSK. Enhanced emission can be explained by electronic structure modification of TMDC by novel interfacial interactions between TMDC and 2DPVSK materials, which shows promise of the heterostructure for high efficiency and stable optoelectronic devices.

19.
Nat Mater ; 17(9): 800-807, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30061733

RESUMO

The spin-orbit torque (SOT) that arises from materials with large spin-orbit coupling promises a path for ultralow power and fast magnetic-based storage and computational devices. We investigated the SOT from magnetron-sputtered BixSe(1-x) thin films in BixSe(1-x)/Co20Fe60B20 heterostructures by using d.c. planar Hall and spin-torque ferromagnetic resonance (ST-FMR) methods. Remarkably, the spin torque efficiency (θS) was determined to be as large as 18.62 ± 0.13 and 8.67 ± 1.08 using the d.c. planar Hall and ST-FMR methods, respectively. Moreover, switching of the perpendicular CoFeB multilayers using the SOT from the BixSe(1-x) was observed at room temperature with a low critical magnetization switching current density of 4.3 × 105 A cm-2. Quantum transport simulations using a realistic sp3 tight-binding model suggests that the high SOT in sputtered BixSe(1-x) is due to the quantum confinement effect with a charge-to-spin conversion efficiency that enhances with reduced size and dimensionality. The demonstrated θS, ease of growth of the films on a silicon substrate and successful growth and switching of perpendicular CoFeB multilayers on BixSe(1-x) films provide an avenue for the use of BixSe(1-x) as a spin density generator in SOT-based memory and logic devices.

20.
Nano Lett ; 18(1): 26-31, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29207233

RESUMO

Metal-semiconductor contact has been the performance limiting problem for electronic devices and also dictates the scaling potential for future generation devices based on novel channel materials. Two-dimensional semiconductors beyond graphene, particularly few layer black phosphorus, have attracted much attention due to their exceptional electronic properties such as anisotropy and high mobility. However, due to its ultrathin body nature, few layer black phosphorus-metal contact behaves differently than conventional Schottky barrier (SB) junctions, and the mechanisms of its carrier transport across such a barrier remain elusive. In this work, we examine the transport characteristic of metal-black phosphorus contact under varying temperature. We elucidated the origin of apparent negative SB heights extracted from classical thermionic emission model and also the phenomenon of metal-insulator transition observed in the current-temperature transistor characteristic. In essence, we found that the SB height can be modulated by the back-gate voltage, which beyond a certain critical point becomes so low that the injected carrier can no longer be described by the conventional thermionic emission theory. The transition from transport dominated by a Maxwell-Boltzmann distribution for the high energy tail states, to that of a Fermi distribution by low energy Fermi sea electrons, is the physical origin of the observed metal-insulator transition. We identified two distinctive tunneling limited transport regimes in the contact: vertical and longitudinal tunneling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA