Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Front Physiol ; 15: 1322729, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737833

RESUMO

Introduction: Duchenne muscular dystrophy (DMD) is a fatal striated muscle degenerative disease. DMD is caused by loss of dystrophin protein, which results in sarcolemmal instability and cycles of myofiber degeneration and regeneration. Pathology is exacerbated by overactivation of infiltrating immune cells and fibroblasts, which leads to chronic inflammation and fibrosis. Mineralocorticoid receptors (MR), a type of nuclear steroid hormone receptors, are potential therapeutic targets for DMD. MR antagonists show clinical efficacy on DMD cardiomyopathy and preclinical efficacy on skeletal muscle in DMD models. Methods: We have previously generated myofiber and myeloid MR knockout mouse models to dissect cell-specific functions of MR within dystrophic muscles. Here, we compared skeletal muscle gene expression from both knockouts to further define cell-type specific signaling downstream from MR. Results: Myeloid MR knockout increased proinflammatory and profibrotic signaling, including numerous myofibroblast signature genes. Tenascin C was the most highly upregulated fibrotic gene in myeloid MR-knockout skeletal muscle and is a component of fibrosis in dystrophic skeletal muscle. Surprisingly, lysyl oxidase (Lox), canonically a collagen crosslinker, was increased in both MR knockouts, but did not localize to fibrotic regions of skeletal muscle. Lox localized within myofibers, including only a region of quadriceps muscles. Lysyl oxidase like 1 (Loxl1), another Lox family member, was increased only in myeloid MR knockout muscle and localized specifically to fibrotic regions. Discussion: This study suggests that MR signaling in the dystrophic muscle microenvironment involves communication between contributing cell types and modulates inflammatory and fibrotic pathways in muscle disease.

2.
Neuromuscul Disord ; 36: 1-5, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301403

RESUMO

Duchenne muscular dystrophy (DMD) is a devastating muscle disease caused by the absence of functional dystrophin. There are multiple ongoing clinical trials for DMD that are testing gene therapy treatments consisting of adeno-associated viral (AAV) vectors carrying miniaturized versions of dystrophin optimized for function, termed micro-dystrophins (µDys). Utrophin, the fetal homolog of dystrophin, has repeatedly been reported to be upregulated in human DMD muscle as a compensatory mechanism, but whether µDys displaces full-length utrophin is unknown. In this study, dystrophin/utrophin-deficient mice with transgenic overexpression of full-length utrophin in skeletal muscles were systemically administered low doses of either AAV6-CK8e-Hinge3-µDys (µDysH3) or AAV6-CK8e-µDys5 (µDys5). We used immunofluorescence to qualitatively assess the localization of µDys with transgenic utrophin and neuronal nitric oxide synthase (nNOS) in quadriceps muscles. µDys protein resulting from both gene therapies co-localized at myofiber membranes with transgenic utrophin. We also confirmed the sarcolemmal co-localization of nNOS with µDys5, but not with transgenic utrophin expression or µDysH3. Transgenic utrophin expression and µDys proteins produced from both therapies stabilize the dystrophin-glycoprotein complex as observed by sarcolemmal localization of ß-dystroglycan. This study suggests that µDys gene therapy will likely not inhibit any endogenous compensation by utrophin in DMD muscle.


Assuntos
Distrofina , Fibras Musculares Esqueléticas , Animais , Humanos , Camundongos , Distrofina/genética , Utrofina/genética , Músculo Esquelético , Terapia Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA