RESUMO
Low-cost Particulate Matter (PM) sensors offer an excellent opportunity to improve our knowledge about this type of pollution. Their size and cost, which support multi-node network deployment, along with their temporal resolution, enable them to report fine spatio-temporal resolution for a given area. These sensors have known issues across performance metrics. Generally, the literature focuses on the PM mass concentration reported by these sensors, but some models of sensors also report Particle Number Concentrations (PNCs) segregated into different PM size ranges. In this study, eight units each of Alphasense OPC-R1, Plantower PMS5003 and Sensirion SPS30 have been exposed, under controlled conditions, to short-lived peaks of PM generated using two different combustion sources of PM, exposing the sensors' to different particle size distributions to quantify and better understand the low-cost sensors performance across a range of relevant environmental ranges. The PNCs reported by the sensors were analysed to characterise sensor-reported particle size distribution, to determine whether sensor-reported PNCs can follow the transient variations of PM observed by the reference instruments and to determine the relative impact of different variables on the performances of the sensors. This study shows that the Alphasense OPC-R1 reported at least five size ranges independently from each other, that the Sensirion SPS30 reported two size ranges independently from each other and that all the size ranges reported by the Plantower PMS5003 were not independent of each other. It demonstrates that all sensors tested here could track the fine temporal variation of PNCs, that the Alphasense OPC-R1 could closely follow the variations of size distribution between the two sources of PM, and it shows that particle size distribution and composition are more impactful on sensor measurements than relative humidity.
RESUMO
Respiratory diseases account for over 5 million deaths yearly and are a huge burden to healthcare systems worldwide. Murine models have been of paramount importance to decode human lung biology in vivo, but their genetic, anatomical, physiological and immunological differences with humans significantly hamper successful translation of research into clinical practice. Thus, to clearly understand human lung physiology, development, homeostasis and mechanistic dysregulation that may lead to disease, it is essential to develop models that accurately recreate the extraordinary complexity of the human pulmonary architecture and biology. Recent advances in micro-engineering technology and tissue engineering have allowed the development of more sophisticated models intending to bridge the gap between the native lung and its replicates in vitro Alongside advanced culture techniques, remarkable technological growth in downstream analyses has significantly increased the predictive power of human biology-based in vitro models by allowing capture and quantification of complex signals. Refined integrated multi-omics readouts could lead to an acceleration of the translational pipeline from in vitro experimental settings to drug development and clinical testing in the future. This review highlights the range and complexity of state-of-the-art lung models for different areas of the respiratory system, from nasal to large airways, small airways and alveoli, with consideration of various aspects of disease states and their potential applications, including pre-clinical drug testing. We explore how development of optimised physiologically relevant in vitro human lung models could accelerate the identification of novel therapeutics with increased potential to translate successfully from the bench to the patient's bedside.
Assuntos
Pulmão , Doenças Respiratórias , Humanos , Animais , Camundongos , Pulmão/fisiologia , Engenharia Tecidual/métodosRESUMO
Airborne particulate matter (PM) exposure has been identified as a key environmental risk factor, associated especially with diseases of the respiratory and cardiovascular system and with almost 9 million premature deaths per year. Low-cost optical sensors for PM measurement are desirable for monitoring exposure closer to the personal level and particularly suited for developing spatiotemporally dense city sensor networks. However, questions remain over the accuracy and reliability of the data they produce, particularly regarding the influence of environmental parameters such as humidity and temperature, and with varying PM sources and concentration profiles. In this study, eight units each of five different models of commercially available low-cost optical PM sensors (40 individual sensors in total) were tested under controlled laboratory conditions, against higher-grade instruments for: lower limit of detection, response time, responses to sharp pollution spikes lasting <1 min , and the impact of differing humidity and PM source. All sensors detected the spikes generated with a varied range of performances depending on the model and presenting different sensitivity mainly to sources of pollution and to size distributions with a lesser impact of humidity. The sensitivity to particle size distribution indicates that the sensors may provide additional information to PM mass concentrations. It is concluded that improved performance in field monitoring campaigns, including tracking sources of pollution, could be achieved by using a combination of some of the different models to take advantage of the additional information made available by their differential response.
RESUMO
BACKGROUND: Exposure to ambient airborne particulate matter is a major risk factor for mortality and morbidity, associated with asthma, lung cancer, heart disease, myocardial infarction, and stroke, and more recently type 2 diabetes, dementia and loss of cognitive function. Less is understood about differential effects of particulate matter from different sources. Underground railways are used by millions of people on a daily basis in many cities. Poor air exchange with the outside environment means that underground railways often have an unusually high concentration of airborne particulate matter, while a high degree of railway-associated mechanical activity produces particulate matter which is physicochemically highly distinct from ambient particulate matter. The implications of this for the health of exposed commuters and employees is unclear. MAIN BODY: A literature search found 27 publications directly assessing the potential health effects of underground particulate matter, including in vivo exposure studies, in vitro toxicology studies, and studies of particulate matter which might be similar to that found in underground railways. The methodology, findings, and conclusions of these studies were reviewed in depth, along with further publications directly relevant to the initial search results. In vitro studies suggest that underground particulate matter may be more toxic than exposure to ambient/urban particulate matter, especially in terms of endpoints related to reactive oxygen species generation and oxidative stress. This appears to be predominantly a result of the metal-rich nature of underground particulate matter, which is suggestive of increased health risks. However, while there are measureable effects on a variety of endpoints following exposure in vivo, there is a lack of evidence for these effects being clinically significant as may be implied by the in vitro evidence. CONCLUSION: There is little direct evidence that underground railway particulate matter exposure is more harmful than ambient particulate matter exposure. This may be due to disparities between in vivo exposures and in vitro models, and differences in exposure doses, as well as statistical under powering of in vivo studies of chronic exposure. Future research should focus on outcomes of chronic in vivo exposure, as well as further work to understand mechanisms and potential biomarkers of exposure.
Assuntos
Poluentes Atmosféricos/análise , Exposição por Inalação , Metais/análise , Material Particulado/análise , Ferrovias/normas , Poluentes Atmosféricos/toxicidade , Animais , Linhagem Celular , Humanos , Exposição por Inalação/efeitos adversos , Exposição por Inalação/análise , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/metabolismo , Metais/toxicidade , Tamanho da Partícula , Material Particulado/toxicidade , Medição de Risco , Testes de ToxicidadeRESUMO
Air Quality (AQ) is a very topical issue for many cities and has a direct impact on citizen health. The AQ of a large UK city is being investigated using low-cost Particulate Matter (PM) sensors, and the results obtained by these sensors have been compared with government operated AQ stations. In the first pilot deployment, six AQ Internet of Things (IoT) devices have been designed and built, each with four different low-cost PM sensors, and they have been deployed at two locations within the city. These devices are equipped with LoRaWAN wireless network transceivers to test city scale Low-Power Wide Area Network (LPWAN) coverage. The study concludes that (i) the physical device developed can operate at a city scale; (ii) some low-cost PM sensors are viable for monitoring AQ and for detecting PM trends; (iii) LoRaWAN is suitable for city scale sensor coverage where connectivity is an issue. Based on the findings from this first pilot project, a larger LoRaWAN enabled AQ sensor network is being deployed across the city of Southampton in the UK.
RESUMO
Particle pollution is a global health challenge that is linked to around three million premature deaths per year. There is therefore great interest in the development of sensors capable of precisely quantifying both the number and type of particles. Here, we demonstrate an approach that leverages machine learning in order to identify particulates directly from their scattering patterns. We show the capability for producing a 2D sample map of spherical particles present on a coverslip, and also demonstrate real-time identification of a range of particles including those from diesel combustion.
RESUMO
The bronchial epithelium is continuously exposed to a multitude of noxious challenges in inhaled air. Cellular contact with most damaging agents is reduced by the action of the mucociliary apparatus and by formation of a physical barrier that controls passage of ions and macromolecules. In conjunction with these defensive barrier functions, immunomodulatory cross-talk between the bronchial epithelium and tissue-resident immune cells controls the tissue microenvironment and barrier homeostasis. This is achieved by expression of an array of sensors that detect a wide variety of viral, bacterial, and nonmicrobial (toxins and irritants) agents, resulting in production of many different soluble and cell-surface molecules that signal to cells of the immune system. The ability of the bronchial epithelium to control the balance of inhibitory and activating signals is essential for orchestrating appropriate inflammatory and immune responses and for temporally modulating these responses to limit tissue injury and control the resolution of inflammation during tissue repair. In asthmatic patients abnormalities in many aspects of epithelial barrier function have been identified. We postulate that such abnormalities play a causal role in immune dysregulation in the airways by translating gene-environment interactions that underpin disease pathogenesis and exacerbation.
Assuntos
Asma/genética , Asma/imunologia , Mucosa Respiratória/imunologia , Animais , Predisposição Genética para Doença , Humanos , Fenótipo , Mucosa Respiratória/fisiologiaRESUMO
Therapeutic options to treat virus-induced asthma exacerbations are limited and urgently needed. Therefore, we tested Pim1 kinase as potential therapeutic target in human rhinovirus (HRV) infections. We hypothesised that inhibition of Pim1 kinase reduces HRV replication by augmenting the interferon-induced anti-viral response due to increased activity of the janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway.Air-liquid interface (ALI) cultures of primary bronchial epithelial cells (PBECs) from healthy individuals and moderate-to-severe asthmatic volunteers were infected with HRV-16 with or without a specific Pim1 inhibitor; viral replication and induction of anti-viral responses were measured using RT-qPCR. Viral titres were measured by 50% tissue culture infective dose and release of interferon-γ-induced protein 10 (IP-10) and RANTES protein assessed by ELISA. Phosphorylation of STAT-1 was determined using western blotting.Viral replication was reduced in ALI cultures of healthy and asthmatic PBECs treated with the Pim1 inhibitor. Using cultures from healthy donors, enhanced STAT-1 phosphorylation upon inhibition of Pim1 kinase activity resulted in increased mRNA expression of interferon-ß, interleukin-29, IP-10 and RANTES 12â h after infection and increased protein levels of IP-10 and RANTES 24â h after infection.We have identified Pim1 kinase as novel target to reduce viral replication in ALI cultures of PBECs. This may open new avenues for therapeutic interventions in virus-induced asthma exacerbations.
Assuntos
Asma/virologia , Citocinas/metabolismo , Células Epiteliais/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Rhinovirus/fisiologia , Replicação Viral , Células Cultivadas , Quimiocina CCL5/metabolismo , Progressão da Doença , Humanos , Interferon beta/metabolismo , Interferon gama/metabolismoRESUMO
Underground railway stations are known to have elevated particulate matter (PM) loads compared to ambient air. As these particles are derived from metal-rich sources and transition metals may pose a risk to health by virtue of their ability to catalyze generation of reactive oxygen species (ROS), their potential enrichment in underground environments is a source of concern. Compared to coarse (PM10) and fine (PM2.5) particulate fractions of underground railway airborne PM, little is known about the chemistry of the ultrafine (PM0.1) fraction that may contribute significantly to particulate number and surface area concentrations. This study uses inductively coupled plasma mass spectrometry and ion chromatography to compare the elemental composition of size-fractionated underground PM with woodstove, roadwear generator, and road tunnel PM. Underground PM is notably rich in Fe, accounting for greater than 40% by mass of each fraction, and several other transition metals (Cu, Cr, Mn, and Zn) compared to PM from other sources. Importantly, ultrafine underground PM shows similar metal-rich concentrations as the coarse and fine fractions. Scanning electron microscopy revealed that a component of the coarse fraction of underground PM has a morphology indicative of generation by abrasion, absent for fine and ultrafine particulates, which may be derived from high-temperature processes. Furthermore, underground PM generated ROS in a concentration- and size-dependent manner. This study suggests that the potential health effects of exposure to the ultrafine fraction of underground PM warrant further investigation as a consequence of its greater surface area/volume ratio and high metal content.
Assuntos
Fenômenos Químicos , Material Particulado/química , Meios de Transporte , Ânions/análise , Brônquios/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fluoresceínas , Fluorescência , Humanos , Metais/análise , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Material Particulado/toxicidade , Espécies Reativas de Oxigênio/análiseRESUMO
Particulate Matter (PM) low-cost sensors (LCS) present a cost-effective opportunity to improve the spatiotemporal resolution of airborne PM data. Previous studies focused on PM-LCS-reported hourly data and identified, without fully addressing, their limitations. However, PM-LCS provide measurements at finer temporal resolutions. Furthermore, government bodies have developed certifications to accompany new uses of these sensors, but these certifications have shortcomings. To address these knowledge gaps, PM-LCS of two models, 8 Sensirion SPS30 and 8 Plantower PMS5003, were collocated for one year with a Fidas 200S, MCERTS-certified PM monitor and were characterised at 2 min resolution, enabling replication of certification processes, and highlighting their limitations and improvements. Robust linear models using sensor-reported particle number concentrations and relative humidity, coupled with 2-week biannual calibration campaigns, achieved reference-grade performance, at median PM2.5 background concentration of 5.5 µg/m3, demonstrating that, with careful calibration, PM-LCS may cost-effectively supplement reference equipment in multi-nodes networks with fine spatiotemporality.
RESUMO
In this review, the Basic and Translational Science Assembly of the European Respiratory Society provides an overview of the 2022 International Congress highlights. We discuss the consequences of respiratory events from birth until old age regarding climate change related alterations in air quality due to pollution caused by increased ozone, pollen, wildfires and fuel combustion as well as the increasing presence of microplastic and microfibres. Early life events such as the effect of hyperoxia in the context of bronchopulmonary dysplasia and crucial effects of the intrauterine environment in the context of pre-eclampsia were discussed. The Human Lung Cell Atlas (HLCA) was put forward as a new point of reference for healthy human lungs. The combination of single-cell RNA sequencing and spatial data in the HLCA has enabled the discovery of new cell types/states and niches, and served as a platform that facilitates further investigation of mechanistic perturbations. The role of cell death modalities in regulating the onset and progression of chronic lung diseases and its potential as a therapeutic target was also discussed. Translational studies identified novel therapeutic targets and immunoregulatory mechanisms in asthma. Lastly, it was highlighted that the choice of regenerative therapy depends on disease severity, ranging from transplantation to cell therapies and regenerative pharmacology.
RESUMO
Regulation of cutaneous immunity is severely compromised in inflammatory skin disease. To investigate the molecular crosstalk underpinning tolerance versus inflammation in atopic dermatitis, we utilise a human in vivo allergen challenge study, exposing atopic dermatitis patients to house dust mite. Here we analyse transcriptional programmes at the population and single cell levels in parallel with immunophenotyping of cutaneous immunocytes revealed a distinct dichotomy in atopic dermatitis patient responsiveness to house dust mite challenge. Our study shows that reactivity to house dust mite was associated with high basal levels of TNF-expressing cutaneous Th17 T cells, and documents the presence of hub structures where Langerhans cells and T cells co-localised. Mechanistically, we identify expression of metallothioneins and transcriptional programmes encoding antioxidant defences across all skin cell types, that appear to protect against allergen-induced inflammation. Furthermore, single nucleotide polymorphisms in the MTIX gene are associated with patients who did not react to house dust mite, opening up possibilities for therapeutic interventions modulating metallothionein expression in atopic dermatitis.
Assuntos
Dermatite Atópica , Animais , Humanos , Dermatite Atópica/genética , Alérgenos , Inflamação/genética , Pele , PyroglyphidaeRESUMO
Extracellular matrix (ECM) stiffening with downstream activation of mechanosensitive pathways is strongly implicated in fibrosis. We previously reported that altered collagen nanoarchitecture is a key determinant of pathogenetic ECM structure-function in human fibrosis (Jones et al., 2018). Here, through human tissue, bioinformatic and ex vivo studies we provide evidence that hypoxia-inducible factor (HIF) pathway activation is a critical pathway for this process regardless of the oxygen status (pseudohypoxia). Whilst TGFß increased the rate of fibrillar collagen synthesis, HIF pathway activation was required to dysregulate post-translational modification of fibrillar collagen, promoting pyridinoline cross-linking, altering collagen nanostructure, and increasing tissue stiffness. In vitro, knockdown of Factor Inhibiting HIF (FIH), which modulates HIF activity, or oxidative stress caused pseudohypoxic HIF activation in the normal fibroblasts. By contrast, endogenous FIH activity was reduced in fibroblasts from patients with lung fibrosis in association with significantly increased normoxic HIF pathway activation. In human lung fibrosis tissue, HIF-mediated signalling was increased at sites of active fibrogenesis whilst subpopulations of human lung fibrosis mesenchymal cells had increases in both HIF and oxidative stress scores. Our data demonstrate that oxidative stress can drive pseudohypoxic HIF pathway activation which is a critical regulator of pathogenetic collagen structure-function in fibrosis.
Assuntos
Colágeno/fisiologia , Fibrose Pulmonar/metabolismo , Biomarcadores , Células Cultivadas , Colágeno/química , Fibroblastos/metabolismo , Regulação da Expressão Gênica/fisiologia , Humanos , Fator 1 Induzível por Hipóxia , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Estresse Oxidativo/fisiologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismoRESUMO
Angiotensin-converting enzyme 2 (ACE2) is the main entry point in airway epithelial cells for SARS-CoV-2. ACE2 binding to the SARS-CoV-2 protein spike triggers viral fusion with the cell plasma membrane, resulting in viral RNA genome delivery into the host. Despite ACE2's critical role in SARS-CoV-2 infection, full understanding of ACE2 expression, including in response to viral infection, remains unclear. ACE2 was thought to encode five transcripts and one protein of 805 amino acids. In the present study, we identify a novel short isoform of ACE2 expressed in the airway epithelium, the main site of SARS-CoV-2 infection. Short ACE2 is substantially upregulated in response to interferon stimulation and rhinovirus infection, but not SARS-CoV-2 infection. This short isoform lacks SARS-CoV-2 spike high-affinity binding sites and, altogether, our data are consistent with a model where short ACE2 is unlikely to directly contribute to host susceptibility to SARS-CoV-2 infection.
Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Células Epiteliais/metabolismo , Animais , Sítios de Ligação , Células Cultivadas , Chlorocebus aethiops , Éxons , Células HEK293 , Humanos , Interferons/imunologia , Ligação Proteica , Isoformas de Proteínas/genética , Sítios de Splice de RNA , RNA-Seq , Sistema Respiratório/citologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Transcriptoma , Regulação para Cima , Células VeroRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Airborne particulate matter (PM) is a leading cause of mortality and morbidity. However, understanding of the range and mechanisms of effects of PM components is poor. PM generated in underground railways is rich in metals, especially iron. In the ultrafine (UFPM; <0.1 µm diameter) fraction, the combination of small size and metal enrichment poses an unknown health risk. This study aimed to analyse transcriptomic responses to underground UFPM in primary bronchial epithelial cells (PBECs), a key site of PM deposition. The oxidation state of iron in UFPM from an underground station was determined by X-ray absorption near edge structure (XANES) spectroscopy. Antioxidant response was assayed using a reporter cell line transfected with an antioxidant response element (ARE)-luciferase construct. Differentiated PBECs were exposed to UFPM for 6 h or 24 h for RNA-Seq and RT-qPCR analysis. XANES showed predominance of redox-active Fe3O4, with ROS generation confirmed by induction of ARE-luciferase expression. 6 h exposure of PBECs to UFPM identified 52 differentially expressed genes (DEGs), especially associated with epithelial maintenance, whereas 24 h exposure yielded 23 DEGs, particularly involved with redox homeostasis and metal binding. At both timepoints, there was upregulation of members of the metallothionein family, low molecular weight proteins with antioxidant activity whose main function is binding and homeostasis of zinc and copper ions, but not iron ions. This upregulation was partially inhibited by metal chelation or ROS scavenging. These data suggest differential regulation of responses to metal-rich UFPM depending on exposure period, and highlight novel pathways and markers of PM exposure, with the role of metallothioneins warranting further investigation.
Assuntos
Metalotioneína/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Cobre/metabolismo , Metalotioneína/química , Oxirredução , Material Particulado/química , Espécies Reativas de Oxigênio/metabolismo , Espectroscopia por Absorção de Raios X , Zinco/metabolismoRESUMO
Airborne particulate matter (PM) is a leading driver of premature mortality and cardiopulmonary morbidity, associated with exacerbations of asthma and chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, and lung cancer. The airway epithelium, as the principal site of PM deposition, is critical to the effects of, and initial response to, PM. A key mechanism by which PM exerts its effects is the generation of reactive oxygen species (ROS), inducing antioxidant and inflammatory responses in exposed epithelial cells. However, much of what is known about the effects of PM is based on research using particulates from urban air. PM from underground railways is compositionally highly distinct from urban PM, being rich in metals associated with wheel, rail and brake wear and electrical arcing and component wear, which endows underground PM with potent ROS-generating capacity. In addition, underground PM appears to be more inflammogenic than urban PM in epithelial cells, but there is a lack of research into effects on exposed individuals, especially those with underlying health conditions. This review summarises current knowledge about the effects of PM on the airway epithelium, how the effects of underground PM may be different to urban PM and the potential health consequences and mitigation strategies for commuters and workers in underground railways.
Assuntos
Poluentes Ocupacionais do Ar/efeitos adversos , Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Exposição por Inalação/efeitos adversos , Exposição Ocupacional/efeitos adversos , Material Particulado/efeitos adversos , Ferrovias , Mucosa Respiratória/efeitos dos fármacos , Humanos , Mediadores da Inflamação/metabolismo , Saúde Ocupacional , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Medição de Risco , Fatores de RiscoRESUMO
Exposure to ambient particulate matter (PM) air pollution is a leading risk factor for morbidity and mortality, associated with up to 8.9 million deaths/year worldwide. Measurement of personal exposure to PM is hindered by poor spatial resolution of monitoring networks. Low-cost PM sensors may improve monitoring resolution in a cost-effective manner but there are doubts regarding data reliability. PM sensor boxes were constructed using four low-cost PM micro-sensor models. Three boxes were deployed at each of two schools in Southampton, UK, for around one year and sensor performance was analysed. Comparison of sensor readings with a nearby background station showed moderate to good correlation (0.61 < r < 0.88, p < 0.0001), but indicated that low-cost sensor performance varies with different PM sources and background concentrations, and to a lesser extent relative humidity and temperature. This may have implications for their potential use in different locations. Data also indicates that these sensors can track short-lived events of pollution, especially in conjunction with wind data. We conclude that, with appropriate consideration of potential confounding factors, low-cost PM sensors may be suitable for PM monitoring where reference-standard equipment is not available or feasible, and that they may be useful in studying spatially localised airborne PM concentrations.
RESUMO
INTRODUCTION: The epithelial and endothelial barriers of the airway mucosa are critical for regulation of tissue homeostasis and protection against pathogens or other tissue damaging agents. In response to a viral infection, epithelial cells must signal to the endothelium to initiate immune cell recruitment. This is a highly temporal regulated process; however, the mechanisms of this cross-talk are not fully understood. METHODS: In a close-contact co-culture model of human airway epithelial and endothelial cells, cellular crosstalk was analyzed using transepithelial electrical resistance (TER) measurements, immunofluorescence, electron microscopy, and ELISA. Viral infections were simulated by exposing airway epithelial cells apically to double-stranded RNA (Poly(I:C)). Using a microfluidic culture system, the temporal release of mediators was analyzed in the co-culture model. RESULTS: Within 4 h of challenge, double-stranded RNA induced the release of TNF-α by epithelial cells. This activated endothelial cells by triggering the release of the chemoattractant CX3CL1 (fractalkine) by 8 h post-challenge and expression of adhesion molecules E-selectin and ICAM-1. These responses were significantly reduced by neutralising TNF-α. CONCLUSION: By facilitating kinetic profiling, the microfluidic co-culture system has enabled identification of a key signaling mechanism between the epithelial and endothelial barriers. Better understanding of cell-cell cross-talk and its regulatory mechanisms has the potential to identify new therapeutic strategies to control airway inflammation.