Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Cancer Cell Int ; 21(1): 109, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593354

RESUMO

N6-methyladenosine (m6A) modification is a dynamic and reversible post-transcriptional modification and the most prevalent internal RNA modification in eukaryotic cells. YT521-B homology domain family 2 (YTHDF2) is a member of m6A "readers" and its role in human diseases remains unclear. Accumulating evidence suggests that YTHDF2 is greatly implicated in many aspects of human cancers and non-cancers through various mechanisms. YTHDF2 takes a great part in multiple biological processes, such as migration, invasion, metastasis, proliferation, apoptosis, cell cycle, cell viability, cell adhesion, differentiation and inflammation, in both human cancers and non-cancers. Additionally, YTHDF2 influences various aspects of RNA metabolism, including mRNA decay and pre-ribosomal RNA (pre-rRNA) processing. Moreover, emerging researches indicate that YTHDF2 predicts the prognosis of different cancers. Herein, we focus on concluding YTHDF2-associated mechanisms and potential biological functions in kinds of cancers and non-cancers, and its prospects as a prognostic biomarker.

2.
Clin Chim Acta ; 490: 17-27, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30553863

RESUMO

Ovarian cancer is one of the most common gynecologic malignancies and has a poor prognosis. Recently, long noncoding RNAs (lncRNAs) have been identified as key regulators of cancer development. Studies have shown that the dysregulation of lncRNAs is frequently observed in ovarian cancer and greatly contributes to malignant phenotypical changes. In this review, we provide perspectives on the involvement of lncRNAs in the proliferation, apoptosis, cell cycle, migration, invasion, metastasis and drug resistance of ovarian cancer based on recent discoveries. Then, we discuss the role of lncRNAs in predicting the prognosis of ovarian cancer. Finally, we provide insight into the potential of lncRNAs for evaluating the diagnosis and prognosis of ovarian cancer.


Assuntos
Neoplasias Ovarianas/genética , RNA Longo não Codificante/genética , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia
3.
Oncol Rep ; 37(4): 2071-2078, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28350139

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. More than 80% of patients with HCC are not good candidates for curative surgical resection due to advanced liver cirrhosis caused by underlying chronic hepatitis virus (B or C) infection. Sorafenib, an oral multikinase inhibitor, is the only approved agent for the treatment of advanced HCC. Although, sorafenib currently sets the new standard for advanced HCC treatment, tumor response rates are usually quite low. An understanding of the underlying mechanisms for sorafenib resistance is critical. In the present study, we found that adenine nucleotide translocator 2 (ANT2) was upregulated in sorafenib­resistant HCC Huh7 cells (Huh7-R) and its overexpression promoted sorafenib resistance. ANT2 induced the formation of cancer-initiating cell (CIC) phenotypes and promoted metastasis-associated traits in the Huh7 cells. Silencing of miR-137 upregulated ANT2 protein expression in the Huh7 cells. miR-137 was downregulated in the Huh7-R cells, compared with that in the Huh7 cells and its restoration reversed sorafenib resistance in the Huh7-R cells. Restoration of miR-137 inhibited formation of CIC traits and attenuated the abilities of migration and invasion in the Huh7-R cells. Moreover, we demonstrated that high-intensity focused ultrasound (HIFU) in unresectable HCC upregulated serum miR-137. Combining HIFU and sorafenib may be a wise option for advanced and unresectable HCC.


Assuntos
Translocador 2 do Nucleotídeo Adenina/genética , Carcinoma Hepatocelular/genética , Resistencia a Medicamentos Antineoplásicos , Neoplasias Hepáticas/genética , MicroRNAs/genética , Niacinamida/análogos & derivados , Compostos de Fenilureia/farmacologia , Regulação para Cima , Regiões 3' não Traduzidas , Carcinoma Hepatocelular/terapia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Ablação por Ultrassom Focalizado de Alta Intensidade , Humanos , Masculino , Células-Tronco Neoplásicas/efeitos dos fármacos , Niacinamida/farmacologia , Sorafenibe
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA