Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 42(10): 1244-1253, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36073351

RESUMO

BACKGROUND: MT1-MMP (membrane-type 1 matrix metalloproteinase, MMP-14) is a transmembrane-anchored protein with an extracellular proteinase domain and a cytoplasmic tail devoid of proteolytic functions but capable of mediating intracellular signaling that regulates tissue homeostasis. MT1-MMP extracellular proteolytic activity has been shown to regulate pathological remodeling in aortic aneurysm and atherosclerosis. However, the role of the nonproteolytic intracellular domain of MT1-MMP in vascular remodeling in abdominal aortic aneurysms (AAA) is unknown. METHODS: We generated a mutant mouse that harbors a point mutation (Y573D) in the MT1-MMP cytoplasmic domain that abrogates the MT1-MMP signaling function without affecting its proteolytic activity. These mice and their control wild-type littermates were subjected to experimental AAA modeled by angiotensin II infusion combined with PCSK9 (proprotein convertase subtilisin/kexin type 9) overexpression and high-cholesterol feeding. RESULTS: The mutant mice developed more severe AAA than the control mice, with concomitant generation of intraaneurysmal atherosclerotic lesions and dramatically increased macrophage infiltration and elastin degradation. Aortic lesion-associated and bone marrow-derived macrophages from the mutant mice exhibited an enhanced inflammatory state and expressed elevated levels of proinflammatory Netrin-1, a protein previously demonstrated to promote both atherosclerosis and AAA. CONCLUSIONS: Our findings show that the cytoplasmic domain of MT1-MMP safeguards from AAA and atherosclerotic plaque development through a proteolysis-independent signaling mechanism associated with Netrin-1 expression. This unexpected function of MT1-MMP unveils a novel mechanism of synchronous onset of AAA and atherogenesis and highlights its importance in the control of vascular wall homeostasis.


Assuntos
Aneurisma da Aorta Abdominal , Aterosclerose , Angiotensina II , Animais , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Aterosclerose/genética , Colesterol , Elastina/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Camundongos , Netrina-1 , Pró-Proteína Convertase 9 , Subtilisinas
2.
Clin Exp Pharmacol Physiol ; 48(12): 1621-1632, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34370882

RESUMO

This study was presented to observe the therapeutic effects of azathioprine (AZA) pretreatment on myocardial ischaemia reperfusion (I/R) damage in diabetic rats. All rats were randomly separated into control + sham operation; control +I/R; diabetes mellitus (DM) +I/R and DM +I/R + AZA groups. Diabetic rat models were established by intraperitoneally injecting 60 mg/kg streptozotocin (STZ). Diabetic rats were given 3 mg/kg AZA daily by gavage for 5 days. Then, myocardial I/R rat models were constructed. Myocardial infarction size and myocardial damage were respectively detected by TTC and H&E staining. Cardiac injury markers (CK-MB and MPO) and oxidative stress factors (SOD and MDA) were measured via ELISA. The protein expression of apoptotic markers (Caspase8, Caspase3, BAX and Bcl2), inflammatory factors (TLR4 and TNF-α) and AKT1/GSK3ß in myocardial tissues was measured by western blot, immunohistochemistry or immunofluorescence. Data showed that AZA pretreatment could lessen myocardial infarction size and myocardial damage, and could down-regulate serum CK-MB, MPO, SOD and MDA levels in diabetic rats under I/R. Furthermore, AZA pretreatment decreased Caspase8, Caspase3, BAX, TLR4 and TNF-α expression, and increased Bcl2 expression in myocardial tissues of diabetic rats following I/R. Also, AZA pretreatment lowered AKT1, p-AKT1, GSK3ß and p-GSK3ß expression in diabetic heart after I/R. This study found that AZA may reduce myocardial injury in diabetic rats following I/R via reducing oxidative stress, cardiomyocyte apoptosis, and inflammatory response, which could be related to AKT1/GSK3ß pathway inactivation.


Assuntos
Traumatismo por Reperfusão Miocárdica
3.
iScience ; 23(12): 101789, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33294797

RESUMO

Membrane-type 1 matrix metalloproteinase (MT1-MMP, MMP-14), a transmembrane proteinase with a short cytoplasmic tail, is a major effector of extracellular matrix remodeling. Genetic silencing of MT1-MMP in mouse (Mmp14 -/- ) and man causes dwarfism, osteopenia, arthritis, and lipodystrophy, abnormalities ascribed to defective collagen turnover. We have previously shown non-proteolytic functions of MT1-MMP mediated by its cytoplasmic tail, where the unique tyrosine (Y573) controls intracellular signaling. The Y573D mutation blocks TIMP-2/MT1-MMP-induced Erk1/2 and Akt signaling without affecting proteolytic activity. Here, we report that a mouse with the MT1-MMP Y573D mutation (Mmp14 Y573D/Y573D ) shows abnormalities similar to but also different from those of Mmp14 -/- mice. Skeletal stem cells (SSC) of Mmp14 Y573D/Y573D mice show defective differentiation consistent with the mouse phenotype, which is rescued by wild-type SSC transplant. These results provide the first in vivo demonstration that MT1-MMP modulates bone, cartilage, and fat homeostasis by controlling SSC differentiation through a mechanism independent of proteolysis.

4.
Sci Rep ; 9(1): 4995, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30899051

RESUMO

Head and neck squamous cell carcinoma (HNSCC) presents a major public health concern because of delayed diagnosis and poor prognosis. Malignant cells often reprogram their metabolism in order to promote their survival and proliferation. Aberrant glutaminase 1 (GLS1) expression enables malignant cells to undergo increased glutaminolysis and utilization of glutamine as an alternative nutrient. In this study, we found a significantly elevated GLS1 expression in HNSCC, and patients with high expression levels of GLS1 experienced shorter disease-free periods after therapy. We hypothesized that the GLS1 selective inhibitor, bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES), which curtails cells' glutamine consumption, may inhibit HNSCC cell growth. Our results support the idea that BPTES inhibits HNSCC growth by inducing apoptosis and cell cycle arrest. Considering that metformin can reduce glucose consumption, we speculated that metformin would enhance the anti-neoplasia effect of BPTES by suppressing malignant cells' glucose utilization. The combination of both compounds exhibited an additive inhibitory effect on cancer cell survival and proliferation. All of our data suggest that GLS1 is a promising therapeutic target for HNSCC treatment. Combining BPTES with metformin might achieve improved anti-cancer effects in HNSSC, which sheds light on using novel therapeutic strategies by dually targeting cellular metabolism.


Assuntos
Proliferação de Células/efeitos dos fármacos , Glutaminase/genética , Glutamina/metabolismo , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Intervalo Livre de Doença , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glutaminase/antagonistas & inibidores , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Metformina/farmacologia , Sulfetos/farmacologia , Tiadiazóis/farmacologia
5.
Oncogene ; 38(24): 4700-4714, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30742095

RESUMO

Prostate cancer (PCa) initiation and progression requires activation of numerous oncogenic signaling pathways. Nuclear-cytoplasmic transport of oncogenic factors is mediated by Karyopherin proteins during cell transformation. However, the role of nuclear transporter proteins in PCa progression has not been well defined. Here, we report that the KPNB1, a key member of Karyopherin beta subunits, is highly expressed in advanced prostate cancers. Further study showed that targeting KPNB1 suppressed the proliferation of prostate cancer cells. The knockdown of KPNB1 reduced nuclear translocation of c-Myc, the expression of downstream cell cycle modulators, and phosphorylation of regulator of chromatin condensation 1 (RCC1), a key protein for spindle assembly during mitosis. Meanwhile, CHIP assay demonstrated the binding of c-Myc to KPNB1 promoter region, which indicated a positive feedback regulation of KPNB1 expression mediated by the c-Myc. In addition, NF-κB subunit p50 translocation to nuclei was blocked by KPNB1 inhibition, which led to an increase in apoptosis and a decrease in tumor sphere formation of PCa cells. Furthermore, subcutaneous xenograft tumor models with a stable knockdown of KPNB1 in C42B PCa cells validated that the inhibition of KPNB1 could suppress the growth of prostate tumor in vivo. Moreover, the intravenously administration of importazole, a specific inhibitor for KPNB1, effectively reduced PCa tumor size and weight in mice inoculated with PC3 PCa cells. In summary, our data established the functional link between KPNB1 and PCa prone c-Myc, NF-kB, and cell cycle modulators. More importantly, inhibition of KPNB1 could be a new therapeutic target for PCa treatment.


Assuntos
Proliferação de Células/efeitos dos fármacos , Neoplasias da Próstata/patologia , Quinazolinas/farmacologia , RNA Interferente Pequeno/farmacologia , beta Carioferinas/antagonistas & inibidores , beta Carioferinas/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Nus , Células PC-3 , Neoplasias da Próstata/genética , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Pathol Res Pract ; 213(9): 1191-1199, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28698101

RESUMO

The purpose of this study is to investigate the effect of coenzyme Q10 (CoQ10) on focal cerebral ischemia/reperfusion (I/R) injury in hyperglycemic rats and the possible involved mechanisms. In this study, we established the transient middle cerebral artery occlusion (MCAO) for 30min in the rats with diabetic hyperglycemia. The neurological deficit score, 2,3,5-triphenyltetrazolium chloride (TTC) staining and pathohistology are applied to detect the extent of the damage. The expression of Fis1, Mfn2 and Lc3 in the brain is investigated by immunohistochemical and Western blotting techniques. The results showed that the streptozotocin-induced diabetic hyperglycemia and MCAO-induced focal cerebral ischemia were successfully prepared in rats. In the hyperglycemic group, the neurological deficit scores, infarct volumes, and number of pyknotic cells were higher than that in the normalglycemic group at 24h and/or 72h reperfusion. Pretreated with CoQ10 (10mg/kg) for four weeks could significantly reduce the neurological scores, infarct volume, and pyknotic cells at 24h and/or 72h reperfusion of the hyperglycemic rats compared with non-CoQ10 pretreated hyperglycemic animals. Immunohistochemistry and Western blotting showed that pretreatment with CoQ10 or insulin could significantly reduce the expression of Fis1 protein in the brain at 24h and 72h reperfusion. Inversely, a significantly increased expression of Mfn2 was observed in the rats CoQ10 or insulin pretreated at 24h and/or 72h reperfusion when compared with matched hyperglycemic rats. These results demonstrated that hyperglycemia could aggravate ischemic brain injury. Pretreatment with CoQ10 might ameliorate the diabetic hyperglycemia aggravated I/R brain damage in the MCAO rats by maintain the balance between mitochondrial fission and fusion.


Assuntos
Isquemia Encefálica/patologia , Encéfalo/efeitos dos fármacos , Diabetes Mellitus Experimental/complicações , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/patologia , Ubiquinona/análogos & derivados , Animais , Encéfalo/patologia , Isquemia Encefálica/complicações , Hiperglicemia/complicações , Masculino , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/complicações , Ubiquinona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA