Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Plant Cell ; 34(1): 679-697, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34599338

RESUMO

Immune responses are triggered when pattern recognition receptors recognize microbial molecular patterns. The Arabidopsis (Arabidopsis thaliana) receptor-like cytoplasmic kinase BOTRYTIS-INDUCED KINASE1 (BIK1) acts as a signaling hub of plant immunity. BIK1 homeostasis is maintained by a regulatory module in which CALCIUM-DEPENDENT PROTEIN KINASE28 (CPK28) regulates BIK1 turnover via the activities of two E3 ligases. Immune-induced alternative splicing of CPK28 attenuates CPK28 function. However, it remained unknown whether CPK28 is under proteasomal control. Here, we demonstrate that CPK28 undergoes ubiquitination and 26S proteasome-mediated degradation, which is enhanced by flagellin treatment. Two closely related ubiquitin ligases, ARABIDOPSIS TÓXICOS EN LEVADURA31 (ATL31) and ATL6, specifically interact with CPK28 at the plasma membrane; this association is enhanced by flagellin elicitation. ATL31/6 directly ubiquitinate CPK28, resulting in its proteasomal degradation. Furthermore, ATL31/6 promotes the stability of BIK1 by mediating CPK28 degradation. Consequently, ATL31/6 positively regulate BIK1-mediated immunity. Our findings reveal another mechanism for attenuating CPK28 function to maintain BIK1 homeostasis and enhance immune responses.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Imunidade Vegetal/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Quinases/genética , Ubiquitina-Proteína Ligases/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo
2.
Biochem Biophys Res Commun ; 685: 149156, 2023 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-37913694

RESUMO

E3 ubiquitin ligases play critical roles in regulating plant response to salt stress. Arabidopsis Tóxicos En Levadura (ATL) is a subfamily of RING-type E3 ubiquitin ligases widely conserved in plant species. ATL genes have been shown to be involved in regulating plant response to biotic or abiotic stresses. We previously found that a pair of ATL genes, ATL31 and ATL6 positively regulated plant innate immunity. However, whether ATL31/6 are also involved in salt stress response remains to be investigated. Here, we demonstrate that ATL31/6 are induced by salt stress. The atl31 atl6 double mutant exhibits increased salt tolerance compared to the wild-type plants, while transgenic plants overexpressing ATL31 are more salt-sensitive. Notably, ATL31 and ATL6 do not participate in the abscisic acid (ABA) response. Furthermore, NaCl treatment induces the proteasomal degradation of ATL31 proteins. Together, we demonstrate that ATL31/6 positively regulate plant tolerance to salt stress, which is independent of ABA, and our work reveals that ATL31/6 are involved in regulating plant response to both biotic and abiotic stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo , Estresse Salino/genética , Estresse Fisiológico , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
New Phytol ; 237(4): 1270-1284, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36333900

RESUMO

Plant innate immunity is tightly regulated. The Arabidopsis thaliana CALCIUM-DEPENDENT PROTEIN KINASE28 (CPK28) functions as a negative immune regulator. We recently demonstrate that CPK28 undergoes ubiquitination that is mediated by two ubiquitin ligases, ARABIDOPSIS TÓXICOS EN LEVADURA31 (ATL31) and ATL6, which results in its proteasomal degradation. CPK28 undergoes both intermolecular autophosphorylation and BIK1-mediated phosphorylation. However, whether the phosphorylation status of CPK28 dictates its ubiquitination and degradation is unknown yet. We used immune response analysis, transient degradation system, ubiquitination assays, co-immunoprecipitation, and other biochemical and genetic approaches to investigate the effect of the phosphorylation status of CPK28 on its degradation mediated by ATL31/6. We found the mutation of Ser318 (a site of both intermolecular autophosphorylation and BIK1-mediated phosphorylation) or a BIK1 phosphorylation site on CPK28 leads to its compromised association with ATL31 and reduced ubiquitination by ATL31. Moreover, we confirm the previous findings that two CPK28s can interact with each other, which likely promotes the intermolecular autophosphorylation. We also show that the phosphorylation status of CPK28 in turn affects its intermolecular association. We demonstrate that the phosphorylation status of CPK28 affects its degradation mediated by ATL31. Our findings reveal a link between phosphorylation of CPK28 and its ubiquitination and degradation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade Proteica , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
4.
Plant Physiol ; 188(1): 241-254, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34609517

RESUMO

Disulfide bonds play essential roles in the folding of secretory and plasma membrane proteins in the endoplasmic reticulum (ER). In eukaryotes, protein disulfide isomerase (PDI) is an enzyme catalyzing the disulfide bond formation and isomerization in substrates. The Arabidopsis (Arabidopsis thaliana) genome encodes diverse PDIs including structurally distinct subgroups PDI-L and PDI-M/S. It remains unclear how these AtPDIs function to catalyze the correct disulfide formation. We found that one Arabidopsis ER oxidoreductin-1 (Ero1), AtERO1, can interact with multiple PDIs. PDI-L members AtPDI2/5/6 mainly serve as an isomerase, while PDI-M/S members AtPDI9/10/11 are more efficient in accepting oxidizing equivalents from AtERO1 and catalyzing disulfide bond formation. Accordingly, the pdi9/10/11 triple mutant exhibited much stronger inhibition than pdi1/2/5/6 quadruple mutant under dithiothreitol treatment, which caused disruption of disulfide bonds in plant proteins. Furthermore, AtPDI2/5 work synergistically with PDI-M/S members in relaying disulfide bonds from AtERO1 to substrates. Our findings reveal the distinct but overlapping roles played by two structurally different AtPDI subgroups in oxidative protein folding in the ER.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Catálise/efeitos dos fármacos , Dissulfetos/metabolismo , Oxirredução/efeitos dos fármacos , Isomerases de Dissulfetos de Proteínas/metabolismo , Dobramento de Proteína/efeitos dos fármacos , Variação Genética , Genótipo , Mutação , Isomerases de Dissulfetos de Proteínas/genética
5.
Biochem Biophys Res Commun ; 588: 55-60, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34952470

RESUMO

The endoplasmic reticulum (ER) is equipped with protein disulfide isomerases (PDIs), molecular chaperons, and other folding enzymes to ensure that newly synthesized proteins in the ER are properly folded. Molecular chaperons and PDIs can form complex to promote protein folding in the ER of mammalian cells. In plants, many PDIs associate with each other and function cooperatively in oxidative protein folding. As a plant unique protein disulfide isomerase, Arabidopsis thaliana PDI11 (AtPDI11) demonstrates oxidative protein folding activities and works synergistically with AtPDI2/5. However, whether AtPDI11 associates with molecular chaperons or AtPDIs in catalyzing disulfide formation remained unknown. Here, we find that AtPDI11 interacts with ER resident lectin chaperones calreticulin 1 (CRT1) and CRT2. Furthermore, the D domain, but not the a or a' domain of AtPDI11 provides the biding sites for its interaction with CRT1/2. Moreover, the P domain of CRT1 is responsible for its interaction with AtPDI11. Our work implies that Arabidopsis CRT1/2 may specifically recruit AtPDI11 to assist the folding of glycoproteins in the ER.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Lectinas , Chaperonas Moleculares , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Lectinas/metabolismo , Chaperonas Moleculares/metabolismo , Ligação Proteica , Domínios Proteicos , Relação Estrutura-Atividade
6.
Biochem Biophys Res Commun ; 587: 113-118, 2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-34871998

RESUMO

Receptor-like cytoplasmic kinase (RLCK) subfamily VII members are involved in diverse biological processes, like reproduction, immunity, growth and development. Ubiquitination and proteasomal degradation of a RLCK VII member, BOTRYTIS-INDUCED KINASE1 (BIK1) play important roles in regulating immune signaling. It remains largely unknown whether most other RLCK VII members undergo ubiquitination and proteasomal degradation. Here, we select the 6-member RLCK VII-4 to examine the potential proteasomal degradation of its members. We find that three closely related RLCK VII-4 members, PBL38 (AvrPphB SUSCEPTIBLE1-LIKE38), PCRK1 (PTI-COMPROMISED RECEPTOR-LIKE CYTOPLASMIC KINASE1), and PCRK2 are under proteasomal control, while the other members in this group are not. Moreover, we demonstrate that PCRK2 undergoes ubiquitination and proteasomal in a kinase activity-dependent manner. However, the plasma membrane (PM) localization of PCRK2 is not required for its degradation. Our work suggests that many other RLCK VII members may undergo ubiquitination and proteasomal degradation to modulate their homeostasis and cellular functions.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Arabidopsis/enzimologia , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Isoenzimas/genética , Isoenzimas/metabolismo , Fosforilação , Folhas de Planta/enzimologia , Folhas de Planta/genética , Ligação Proteica , Proteólise , Protoplastos/química , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Ubiquitinação
7.
Proc Natl Acad Sci U S A ; 116(9): 3494-3501, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808744

RESUMO

Rice (Oryza sativa L.) is a chilling-sensitive staple crop that originated in subtropical regions of Asia. Introduction of the chilling tolerance trait enables the expansion of rice cultivation to temperate regions. Here we report the cloning and characterization of HAN1, a quantitative trait locus (QTL) that confers chilling tolerance on temperate japonica rice. HAN1 encodes an oxidase that catalyzes the conversion of biologically active jasmonoyl-L-isoleucine (JA-Ile) to the inactive form 12-hydroxy-JA-Ile (12OH-JA-Ile) and fine-tunes the JA-mediated chilling response. Natural variants in HAN1 diverged between indica and japonica rice during domestication. A specific allele from temperate japonica rice, which gained a putative MYB cis-element in the promoter of HAN1 during the divergence of the two japonica ecotypes, enhances the chilling tolerance of temperate japonica rice and allows it to adapt to a temperate climate. The results of this study extend our understanding of the northward expansion of rice cultivation and provide a target gene for the improvement of chilling tolerance in rice.


Assuntos
Adaptação Fisiológica/genética , Oryza/genética , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Clima , Ciclopentanos/metabolismo , Variação Genética , Isoleucina/análogos & derivados , Isoleucina/genética , Isoleucina/metabolismo , Oryza/crescimento & desenvolvimento , Locos de Características Quantitativas/genética
8.
Plant Cell ; 30(11): 2779-2794, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30337428

RESUMO

Innate immunity plays a vital role in protecting plants and animals from pathogen infections. Immunity varies with age in both animals and plants. However, little is known about the ontogeny of plant innate immunity during seedling development. We report here that the Arabidopsis (Arabidopsis thaliana) microRNA miR172b regulates the transcription of the immune receptor gene FLAGELLIN-SENSING2 (FLS2) through TARGET OF EAT1 (TOE1) and TOE2, which directly bind to the FLS2 promoter and inhibit its activity. The level of miR172b is very low in the early stage of seedling development but increases over time, which results in decreased TOE1/2 protein accumulation and, consequently, increased FLS2 transcription and the ontogeny of FLS2-mediated immunity during seedling development. Our study reveals a role for the miR172b-TOE1/2 module in regulating plant innate immunity and elucidates a regulatory mechanism underlying the ontogeny of plant innate immunity.plantcell;30/11/2779/FX1F1fx1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Imunidade Inata/fisiologia , Proteínas Nucleares/metabolismo , Imunidade Vegetal/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Imunidade Inata/genética , MicroRNAs/genética , Proteínas Nucleares/genética , Imunidade Vegetal/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
9.
Proc Natl Acad Sci U S A ; 115(8): E1906-E1915, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29432171

RESUMO

Plants largely rely on plasma membrane (PM)-resident receptor-like kinases (RLKs) to sense extracellular and intracellular stimuli and coordinate cell differentiation, growth, and immunity. Several RLKs have been shown to undergo internalization through the endocytic pathway with a poorly understood mechanism. Here, we show that endocytosis and protein abundance of the Arabidopsis brassinosteroid (BR) receptor, BR INSENSITIVE1 (BRI1), are regulated by plant U-box (PUB) E3 ubiquitin ligase PUB12- and PUB13-mediated ubiquitination. BR perception promotes BRI1 ubiquitination and association with PUB12 and PUB13 through phosphorylation at serine 344 residue. Loss of PUB12 and PUB13 results in reduced BRI1 ubiquitination and internalization accompanied with a prolonged BRI1 PM-residence time, indicating that ubiquitination of BRI1 by PUB12 and PUB13 is a key step in BRI1 endocytosis. Our studies provide a molecular link between BRI1 ubiquitination and internalization and reveal a unique mechanism of E3 ligase-substrate association regulated by phosphorylation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Endocitose , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Brassinosteroides/metabolismo , Proteínas Quinases/genética , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
10.
Biochem Biophys Res Commun ; 533(3): 481-485, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32977945

RESUMO

N-glycosylation is an important protein modification that generally occurs at the Asn residue in an Asn-X-Ser/Thr sequon. Ero1 and its homologs play key roles in catalyzing the oxidative folding in the endoplasmic reticulum (ER). Recently, we found that Arabidopsis (Arabidopsis thaliana) ERO1 and AtERO2 displayed different characteristics in catalyzing oxidative protein folding in the ER. All known Ero1s are glycosylated proteins, including AtERO1 and AtERO2 that were analyzed when they were transiently translated in mammalian cells. However, the exact N-glycosylation sites on AtERO1 and AtERO2 remains to be determined. In this work, using a plant transient expression system, we identified the N-glycosylation sites on both AtERO1 and AtERO2. We found that AtERO1 has one N-glycosylation site, while AtERO2 contains two, all in the N-X-S/T sequons. Interestingly, we found that Ero1 homologs from human, rice, soybean and Arabidopsis, all have a conserved N-glycosylation site near the inner active site that reduces molecular oxygen and provides the oxidizing equivalents. The identification of N-glycosylation sites on AtERO1/2 proteins will help understand the function of N-glycosylation not only in AtERO1/2, but also in other Ero1 homologs.


Assuntos
Proteínas de Arabidopsis/química , Glicoproteínas de Membrana/química , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sequência Conservada , Glicosilação , Glicoproteínas de Membrana/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Alinhamento de Sequência , Análise de Sequência de Proteína
11.
Biochem Biophys Res Commun ; 531(4): 503-507, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32807500

RESUMO

Plant innate immunity varies with age and plant developmental stages. Recently, we reported that Arabidopsis thaliana microRNA miR172b regulates FLS2 transcription through two transcription factors: TARGET OF EAT1 (TOE1) and TOE2. Although the flg22-triggered immune responses were investigated in 2-d-old or even younger toe1/toe2 mutant and miR172b over expression (OE) transgenic plants, the FLS2-mediated immune responses in older plants remain uncharacterized yet. In this work, we analyzed the flg22-triggered immune response in 6-d-old toe1/toe2 and miR172b OE plants. We found that unlike 2-d-old plants, 6-d-old Col-0, toe1/toe2 and miR172b OE plants exhibit comparable flg22-triggered immune responses. Strikingly, miR172b precursor in 6-d-old Col-0 plants upon flg22 treatment reached to a very high level, consequently, the TOE1/2 protein level under this condition was very low or almost undetectable, which explains why 6-d-old WT seedlings are very similar to toe1/toe2 seedlings or miR172b OE plants with respect to the flg22-triggered immune responses. Taken together, our study reveals that miR172b-TOE1/2 module regulates plant innate immunity in an age-dependent manner.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Imunidade Inata/genética , MicroRNAs/imunologia , Imunidade Vegetal/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/imunologia , Flagelina/farmacologia , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Plantas Geneticamente Modificadas , Proteínas Quinases/genética , Pseudomonas syringae/patogenicidade , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Fatores de Tempo
12.
Plant Physiol ; 180(4): 2022-2033, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31138621

RESUMO

Disulfide bonds are essential for the folding of the eukaryotic secretory and membrane proteins in the endoplasmic reticulum (ER), and ER oxidoreductin-1 (Ero1) and its homologs are the major disulfide donors that supply oxidizing equivalents in the ER. Although Ero1 homologs in yeast (Saccharomyces cerevisiae) and mammals have been extensively studied, the mechanisms of plant Ero1 functions are far less understood. Here, we found that both Arabidopsis (Arabidopsis thaliana) ERO1 and its homolog AtERO2 are required for oxidative protein folding in the ER. The outer active site, the inner active site, and a long-range noncatalytic disulfide bond are required for AtERO1's function. Interestingly, AtERO1 and AtERO2 also exhibit significant differences. The ero1 plants are more sensitive to reductive stress than the ero2 plants. In vivo, both AtERO1 and AtERO2 have two distinct oxidized isoforms (Ox1 and Ox2), which are determined by the formation or breakage of the putative regulatory disulfide. AtERO1 is mainly present in the Ox1 redox state, while more AtERO2 exists in the Ox2 state. Furthermore, AtERO1 showed much stronger oxidative protein-folding activity than AtERO2 in vitro. Taken together, both AtERO1 and AtERO2 are required to regulate efficient and faithful oxidative protein folding in the ER, but AtERO1 may serves as the primary sulfhydryl oxidase relative to AtERO2.


Assuntos
Arabidopsis/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Arabidopsis/metabolismo , Oxirredução , Dobramento de Proteína , Isoformas de Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo
13.
New Phytol ; 222(3): 1405-1419, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30685894

RESUMO

The plant hormones brassinosteroids (BRs) modulate plant growth and development. Cysteine (Cys) residues located in the extracellular domain of a protein are of importance for protein structure by forming disulfide bonds. To date, the systematic study of the functional significance of Cys residues in BR-insensitive 1 (BRI1) is still lacking. We used brassinolide-induced exogenous bri1-EMS-Suppressor 1 (BES1) dephosphorylation in Arabidopsis thaliana protoplasts as a readout, took advantage of the dramatic decrease of BRI1 protein levels during protoplast isolation, and of the strong phosphorylation of BES1 by BR-insensitive 2 (BIN2) in protoplasts, and developed a protoplast transient system to identify critical Cys sites in BRI1. Using this system, we identified a set of critical Cys sites in BRI1, as substitution of these Cys residues with alanine residues greatly compromised the function of BRI1. Moreover, we identified two negative regulators of BR signaling, pattern-triggered immunity compromised RLCK1 (PCRK1) and PCRK2, that were previously known to positively regulate innate immunity signaling. This work not only provides insight into the functional importance of critical Cys residues in stabilizing the superhelical conformation of BRI1-leucine-rich-repeat, but also reveals that PCRK1/2 can inversely modulate BR and plant immune signaling pathways.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cisteína/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/química , Brassinosteroides/farmacologia , Proteínas de Ligação a DNA/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Fosforilação/efeitos dos fármacos , Imunidade Vegetal/efeitos dos fármacos , Proteínas Quinases/química , Estrutura Secundária de Proteína , Protoplastos/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos
14.
Plant J ; 91(4): 766-776, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28509348

RESUMO

Ubiquitination modulates nearly all aspects of plant life. Here, we reconstituted the Arabidopsis thaliana ubiquitination cascade in Escherichia coli using a synthetic biology approach. In this system, plant proteins are expressed and then immediately participate in ubiquitination reactions within E. coli cells. Additionally, the purification of individual ubiquitination components prior to setting up the ubiquitination reactions is omitted. To establish the reconstituted system, we co-expressed Arabidopsis ubiquitin (Ub) and ubiquitination substrates with E1, E2 and E3 enzymes in E. coli using the Duet expression vectors. The functionality of the system was evaluated by examining the auto-ubiquitination of a RING (really interesting new gene)-type E3 ligase AIP2 and the ubiquitination of its substrate ABI3. Our results demonstrated the fidelity and specificity of this system. In addition, we applied this system to assess a subset of Arabidopsis E2s in Ub chain formation using E2 conjugation assays. Affinity-tagged Ub allowed efficient purification of Ub conjugates in milligram quantities. Consistent with previous reports, distinct roles of various E2s in Ub chain assembly were also observed in this bacterial system. Therefore, this reconstituted system has multiple advantages, and it can be used to screen for targets of E3 ligases or to study plant ubiquitination in detail.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Biologia Sintética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Fatores de Transcrição/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética
15.
Biochem Biophys Res Commun ; 495(1): 1041-1047, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29162449

RESUMO

Protein disulfide isomerases (PDIs) can catalyze disulfide bond formation in nascent secretory proteins and membrane proteins and can introduce correct disulfide bonds into substrate proteins containing mispaired disulfides. The functions of mammalian PDIs have been extensively studied; however, relative to mammalian PDIs, the systematic characterization of PDIs for their oxidoreductase activity in plants is still lacking. Arabidopsis protein disulfide isomerases-11 (AtPDI11), with the structure of a-a'-D, has no ortholog in animals or yeast. In this study, we demonstrated that AtPDI11 has oxidoreductase activity in vitro using a GSSG/GSH-mediated oxidative protein folding system. Moreover, the active site in the a' domain of AtPDI11 is critical for its oxidative folding activity. AtPDI11 is present in four redox forms in vivo, which are determined by the active site cysteines (Cys52 and Cys55 in the a domain, and Cys171 and Cys174 in the a' domain). Genetic evidence suggests that AtPDI11 is required for plant growth under reducing conditions. Our work provides an example for studying the oxidoreductase function of other plant PDIs.


Assuntos
Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/metabolismo , Dobramento de Proteína , Arabidopsis/genética , Sítios de Ligação , Ativação Enzimática , Oxirredução , Ligação Proteica , Isomerases de Dissulfetos de Proteínas/ultraestrutura , Domínios Proteicos , Relação Estrutura-Atividade
16.
Nano Lett ; 17(3): 1602-1609, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28165750

RESUMO

Li-ion batteries (LIB) have been successfully commercialized after the identification of ethylene-carbonate (EC)-containing electrolyte that can form a stable solid electrolyte interphase (SEI) on carbon anode surface to passivate further side reactions but still enable the transportation of the Li+ cation. These electrolytes are still utilized, with only minor changes, after three decades. However, the long-term cycling of LIB leads to continuous consumption of electrolyte and growth of SEI layer on the electrode surface, which limits the battery's life and performance. Herein, a new anode protection mechanism is reported in which, upon changing of the cell potential, the electrolyte components at the electrode-electrolyte interface reorganize reversibly to form a transient protective surface layers on the anode. This layer will disappear after the applied potential is removed so that no permanent SEI layer is required to protect the carbon anode. This phenomenon minimizes the need for a permanent SEI layer and prevents its continuous growth and therefore may lead to largely improved performance for LIBs.

17.
Proc Natl Acad Sci U S A ; 111(9): 3632-7, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24532660

RESUMO

The sessile plants have evolved a large number of receptor-like kinases (RLKs) and receptor-like cytoplasmic kinases (RLCKs) to modulate diverse biological processes, including plant innate immunity. Phosphorylation of the RLK/RLCK complex constitutes an essential step to initiate immune signaling. Two Arabidopsis plasma membrane-resident RLKs, flagellin-sensing 2 and brassinosteroid insensitive 1-associated kinase 1 (BAK1), interact with RLCK Botrytis-induced kinase 1 (BIK1) to initiate plant immune responses to bacterial flagellin. BAK1 directly phosphorylates BIK1 and positively regulates plant immunity. Classically defined as a serine/threonine kinase, BIK1 is shown here to possess tyrosine kinase activity with mass spectrometry, immunoblot, and genetic analyses. BIK1 is autophosphorylated at multiple tyrosine (Y) residues in addition to serine/threonine residues. Importantly, BAK1 is able to phosphorylate BIK1 at both tyrosine and serine/threonine residues. BIK1Y150 is likely catalytically important as the mutation blocks both tyrosine and serine/threonine kinase activity, whereas Y243 and Y250 are more specifically involved in tyrosine phosphorylation. The BIK1 tyrosine phosphorylation plays a crucial role in BIK1-mediated plant innate immunity as the transgenic plants carrying BIK1Y150F, Y243F, or Y250F (the mutation of tyrosine to phenylalanine) failed to complement the bik1 mutant deficiency in immunity. Our data indicate that plant RLCK BIK1 is a nonreceptor dual-specificity kinase and both tyrosine and serine/threonine kinase activities are required for its functions in plant immune signaling. Together with the previous finding of BAK1 to be autophosphorylated at tyrosine residues, our results unveiled the tyrosine phosphorylation cascade as a common regulatory mechanism that controls membrane-resident receptor signaling in plants and metazoans.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Imunidade Inata/fisiologia , Complexos Multiproteicos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/imunologia , Tirosina/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Sequência de Bases , Primers do DNA/genética , Dimerização , Fluorescência , Imunoprecipitação , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fosforilação , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/genética , Espécies Reativas de Oxigênio/metabolismo , Análise de Sequência de DNA , Espectrometria de Massas em Tandem
18.
Proc Natl Acad Sci U S A ; 110(29): 12114-9, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23818580

RESUMO

Maintaining active growth and effective immune responses is often costly for a living organism to survive. Fine-tuning the shared cross-regulators is crucial for metazoans and plants to make a trade-off between growth and immunity. The Arabidopsis regulatory receptor-like kinase BAK1 complexes with the receptor kinases FLS2 in bacterial flagellin-triggered immunity and BRI1 in brassinosteroid (BR)-mediated growth. BR homeostasis and signaling unidirectionally modulate FLS2-mediated immune responses at multiple levels. We have shown previously that BIK1, a receptor-like cytoplasmic kinase, is directly phosphorylated by BAK1 and associates with FLS2/BAK1 complex in transducing flagellin signaling. In contrast to its positive role in plant immunity, we report here that BIK1 acts as a negative regulator in BR signaling. The bik1 mutant displays various BR hypersensitive phenotypes accompanied with increased accumulation of de-phosphorylated BES1 proteins and transcriptional regulation of BZR1 and BES1 target genes. BIK1 associates with BRI1, and is released from BRI1 receptor upon BR treatment, which is reminiscent of FLS2-BIK1 complex dynamics in flagellin signaling. The ligand-induced release of BIK1 from receptor complexes is associated with BIK1 phosphorylation. However, in contrast to BAK1-dependent FLS2-BIK1 dissociation, BAK1 is dispensable for BRI1-BIK1 dissociation. Unlike FLS2 signaling which depends on BAK1 to phosphorylate BIK1, BRI1 directly phosphorylates BIK1 to transduce BR signaling. Thus, BIK1 relays the signaling in plant immunity and BR-mediated growth via distinct phosphorylation by BAK1 and BRI1, respectively. Our studies indicate that BIK1 mediates inverse functions in plant immunity and development via dynamic association with specific receptor complexes and differential phosphorylation events.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/imunologia , Brassinosteroides/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Western Blotting , Primers do DNA/genética , Fluorescência , Imunoprecipitação , Fosforilação , Plantas Geneticamente Modificadas , Proteínas Quinases/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Nano Lett ; 15(1): 514-22, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25485638

RESUMO

Voltage and capacity fading of layer structured lithium and manganese rich (LMR) transition metal oxide is directly related to the structural and composition evolution of the material during the cycling of the battery. However, understanding such evolution at atomic level remains elusive. On the basis of atomic level structural imaging, elemental mapping of the pristine and cycled samples, and density functional theory calculations, it is found that accompanying the hoping of Li ions is the simultaneous migration of Ni ions toward the surface from the bulk lattice, leading to the gradual depletion of Ni in the bulk lattice and thickening of a Ni enriched surface reconstruction layer (SRL). Furthermore, Ni and Mn also exhibit concentration partitions within the thin layer of SRL in the cycled samples where Ni is almost depleted at the very surface of the SRL, indicating the preferential dissolution of Ni ions in the electrolyte. Accompanying the elemental composition evolution, significant structural evolution is also observed and identified as a sequential phase transition of C2/m → I41 → Spinel. For the first time, it is found that the surface facet terminated with pure cation/anion is more stable than that with a mixture of cation and anion. These findings firmly established how the elemental species in the lattice of LMR cathode transfer from the bulk lattice to surface layer and further into the electrolyte, clarifying the long-standing confusion and debate on the structure and chemistry of the surface layer and their correlation with the voltage fading and capacity decaying of LMR cathode. Therefore, this work provides critical insights for design of cathode materials with both high capacity and voltage stability during cycling.

20.
Nano Lett ; 15(5): 3309-16, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25785550

RESUMO

A fundamental understanding of electrochemical reaction pathways is critical to improving the performance of Li-S batteries, but few techniques can be used to directly identify and quantify the reaction species during disharge/charge cycling processes in real time. Here, an in situ (7)Li NMR technique employing a specially designed cylindrical microbattery was used to probe the transient electrochemical and chemical reactions occurring during the cycling of a Li-S system. In situ NMR provides real time, semiquantitative information related to the temporal evolution of lithium polysulfide allotropes during both discharge/charge processes. This technique uniquely reveals that the polysulfide redox reactions involve charged free radicals as intermediate species that are difficult to detect in ex situ NMR studies. Additionally, it also uncovers vital information about the (7)Li chemical environments during the electrochemical and parasitic reactions on the Li metal anode. These new molecular-level insights about transient species and the associated anode failure mechanism are crucial to delineating effective strategies to accelerate the development of Li-S battery technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA