Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(22): 6585-6591, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38785400

RESUMO

The gallium-doped hafnium oxide (Ga-HfO2) films with different Ga doping concentrations were prepared by adjusting the HfO2/Ga2O3 atomic layer deposition cycle ratio for high-speed and low-voltage operation in HfO2-based ferroelectric memory. The Ga-HfO2 ferroelectric films reveal a finely modulated coercive field (Ec) from 1.1 (HfO2/Ga2O3 = 32:1) to an exceptionally low 0.6 MV/cm (HfO2/Ga2O3 = 11:1). This modulation arises from the competition between domain nucleation and propagation speed during polarization switching, influenced by the intrinsic domain density and phase dispersion in the film with specific Ga doping concentrations. Higher Ec samples exhibit a nucleation-dominant switching mechanism, while lower Ec samples undergo a transition from a nucleation-dominant to a propagation-dominant reversal mechanism as the electric field increases. This work introduces Ga as a viable dopant for low Ec and offers insights into material design strategies for HfO2-based ferroelectric memory applications.

2.
Hum Brain Mapp ; 45(1): e26559, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38083976

RESUMO

BACKGROUND: Executive function enhancement is considered necessary for improving the quality of life of patients with neurological or psychiatric disorders, such as attention-deficit/hyperactivity disorder, obsessive-compulsive disorder and Alzheimer's disease. Transcranial electrical stimulation (tES) has been shown to have some beneficial effects on executive functioning, but the quantification of these improvements remains controversial. We aimed to explore the potential beneficial effects on executive functioning induced by the use of transcranial alternating current stimulation (tACS)/transcranial direct current stimulation (tDCS) on the right inferior frontal gyrus (IFG) and the accompanying brain function variations in the resting state. METHODS: We recruited 229 healthy adults to participate in Experiments 1 (105 participants) and 2 (124 participants). The participants in each experiment were randomly divided into tACS, tDCS, and sham groups. The participants completed cognitive tasks to assess behavior related to three core components of executive functions. Functional near-infrared spectroscopy (fNIRS) was used to monitor the hemodynamic changes in crucial cortical regions in the resting state. RESULTS: Inhibition and cognitive flexibility (excluding working memory) were significantly increased after tACS/tDCS, but there were no significant behavioral differences between the tACS and tDCS groups. fNIRS revealed that tDCS induced decreases in the functional connectivity (increased neural efficiency) of the relevant cortices. CONCLUSIONS: Enhancement of executive function was observed after tES, and the beneficial effects of tACS/tDCS may need to be precisely evaluated via brain imaging indicators at rest. tDCS revealed better neural benefits than tACS during the stimulation phase. These findings might provide new insights for selecting intervention methods in future studies and for evaluating the clinical efficacy of tES.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Adulto , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Função Executiva , Qualidade de Vida , Encéfalo , Memória de Curto Prazo/fisiologia
3.
Opt Express ; 32(12): 21671-21680, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38859516

RESUMO

Solid-state spin systems with nitrogen-vacancy (NV) centers in diamonds constitute an increasingly popular platform for quantum sensing. However, most existing platforms designed with ensemble NV centers exhibit a sensitivity that is significantly less than the theoretical maximum. This low sensitivity limits the expansion of the experimental results and application areas. In this study, the sensitivity is improved by increasing the pumping depth of the excitation beam to increase the number of particles involved in spin polarization at a given laser intensity. Compared with the proposed Airy beam with a long focal depth (25.46 λ) and the widely utilized Gauss beam pumping ensemble NV centers, the spin resonance factor fSR can be improved by 10.02%. This sensitivity-optimized approach enhances the functionality of sensors with NV centers.

4.
Arch Microbiol ; 206(4): 163, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483624

RESUMO

To enhance the quality of tobacco leaves and optimize the smoking experience, diverse strains of functional bacteria and their associated metabolites have been used in tobacco aging. Exogenous cellulase additives are frequently employed to facilitate the degradation of cellulose and other macromolecular matrices and enhance the quality of the tobacco product. However, little is known about how microbial metabolites present in exogenous enzyme additives affect tobacco quality. In this study, crude cellulase solutions, produced by a tobacco-originating bacterium Bacillus subtilis FX-1 were employed on flue-cured tobacco. The incorporation of cellulase solutions resulted in the reduction of cellulose crystallinity in tobacco and the enhancement of the overall sensory quality of tobacco. Notably, tobacco treated with cellulase obtained from laboratory flask fermentation demonstrated superior scent and flavor attributes in comparison to tobacco treated with enzymes derived from industrial bioreactor fermentation. The targeted and untargeted metabolomic analysis revealed the presence of diverse flavor-related precursors and components in the cellulase additives, encompassing sugars, alcohols, amino acids, organic acids, and others. The majority of these metabolites exhibited significantly higher levels in the flask group compared to the bioreactor group, probably contributing to a pronounced enhancement in the sensory quality of tobacco. Our findings suggest that the utilization of metabolic products derived from B. subtilis FX-1 as additives in flue-cured tobacco holds promise as a viable approach for enhancing sensory attributes, establishing a solid theoretical foundation for the potential development of innovative tobacco aging additives.


Assuntos
Bacillus subtilis , Celulase , Bacillus subtilis/metabolismo , Celulase/metabolismo , Celulose/metabolismo
5.
Conserv Biol ; 38(4): e14266, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38578127

RESUMO

Survival of the immobile embryo in response to rising temperature is important to determine a species' vulnerability to climate change. However, the collective effects of 2 key thermal characteristics associated with climate change (i.e., rising average temperature and acute heat events) on embryonic survival remain largely unexplored. We used empirical measurements and niche modeling to investigate how chronic and acute heat stress independently and collectively influence the embryonic survival of lizards across latitudes. We collected and bred lizards from 5 latitudes and incubated their eggs across a range of temperatures to quantify population-specific responses to chronic and acute heat stress. Using an embryonic development model parameterized with measured embryonic heat tolerances, we further identified a collective impact of embryonic chronic and acute heat tolerances on embryonic survival. We also incorporated embryonic chronic and acute heat tolerance in hybrid species distribution models to determine species' range shifts under climate change. Embryos' tolerance of chronic heat (T-chronic) remained consistent across latitudes, whereas their tolerance of acute heat (T-acute) was higher at high latitudes than at low latitudes. Tolerance of acute heat exerted a more pronounced influence than tolerance of chronic heat. In species distribution models, climate change led to the most significant habitat loss for each population and species in its low-latitude distribution. Consequently, habitat for populations across all latitudes will shift toward high latitudes. Our study also highlights the importance of considering embryonic survival under chronic and acute heat stresses to predict species' vulnerability to climate change.


Efectos colectivos del aumento de las temperaturas promedio y los eventos de calor en embriones ovíparos Resumen La supervivencia de los embriones inmóviles en respuesta al incremento de temperatura es importante para determinar la vulnerabilidad de las especies al cambio climático. Sin embargo, los efectos colectivos de dos características térmicas claves asociadas con el cambio climático (i. e., aumento de temperatura promedio y eventos de calor agudo) sobre la supervivencia embrionaria permanecen en gran parte inexplorados. Utilizamos mediciones empíricas y modelos de nicho para investigar cómo el estrés térmico crónico y agudo influye de forma independiente y colectiva en la supervivencia embrionaria de los lagartos en todas las latitudes. Recolectamos y criamos lagartos de cinco latitudes e incubamos sus huevos en un rango de temperaturas para cuantificar las respuestas específicas de la población al estrés por calor crónico y agudo. Posteriormente, mediante un modelo de desarrollo embrionario parametrizado con mediciones de tolerancia embrionaria al calor, identificamos un impacto colectivo de las tolerancias embrionarias al calor agudo y crónico en la supervivencia embrionaria. También incorporamos la tolerancia embrionaria crónica y aguda al calor en modelos de distribución de especies híbridas para determinar los cambios de distribución de las especies bajo el cambio climático. La tolerancia embrionaria al calor crónico (T­crónico) permaneció constante, mientras que la tolerancia al calor agudo (T­agudo) fue mayor en latitudes altas que en latitudes bajas. La tolerancia al calor agudo ejerció una influencia más pronunciada que la tolerancia al calor crónico. En los modelos de distribución de especies, el cambio climático provocó la pérdida de hábitat más significativa para cada población y especie en su distribución de latitudes bajas. En consecuencia, el hábitat para poblaciones en todas las latitudes se desplazará a latitudes altas. Nuestro estudio también resalta la importancia de considerar la supervivencia embrionaria bajo estrés térmico crónico y agudo para predecir la vulnerabilidad de las especies al cambio climático.


Assuntos
Mudança Climática , Embrião não Mamífero , Temperatura Alta , Lagartos , Animais , Lagartos/fisiologia , Lagartos/embriologia , Embrião não Mamífero/fisiologia , Oviparidade , Feminino , Modelos Biológicos , Desenvolvimento Embrionário , Termotolerância
6.
Nanotechnology ; 35(15)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38176077

RESUMO

Aluminum-doped Ga2O3(AGO) thin films were prepared by plasma-enhanced atomic layer deposition (PE-ALD). The growth mechanism, surface morphology, chemical composition, and optical properties of AGO films were systematically investigated. The bandgap of AGO films can be theoretically set between 4.65 and 6.8 eV. Based on typical AGO films, metal-semiconductor-metal photodetectors (PDs) were created, and their photoelectric response was examined. The preliminary results show that PE-ALD grown AGO films have high quality and tunable bandgap, and AGO PDs possess superior characterizations to undoped films. The AGO realized using PE-ALD is expected to be an important route for the development of a new generation of gallium oxide-based photodetectors into the deep-ultraviolet.

7.
Nanotechnology ; 35(19)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38316045

RESUMO

Molybdenum sulfide (MoS2) as an emerging optoelectronic material, shows great potential for phototransistors owing to its atomic thickness, adjustable band gap, and low cost. However, the phototransistors based on MoS2have been shown to have some issues such as large gate leakage current, and interfacial scattering, resulting in suboptimal optoelectronic performance. Thus, Al-doped hafnium oxide (Hf1-xAlx) is proposed to be a dielectric layer of the MoS2-based phototransistor to solve this problem because of the relatively higher crystallization temperature and dielectric constant. Here, a high-performance MoS2phototransistor with Hf1-xAlxO gate dielectric layer grown by plasma-enhanced atomic layer deposition has been fabricated and studied. The results show that the phototransistor exhibits a high responsivity of 2.2 × 104A W-1, a large detectivity of 1.7 × 1017Jones, a great photo-to-dark current ratio of 2.2 × 106%, and a high external quantum efficiency of 4.4 × 106%. The energy band alignment and operating mechanism were further used to clarify the reason for the enhanced MoS2phototransistor. The suggested MoS2phototransistors could provide promising strategies in further optoelectronic applications.

8.
Nanotechnology ; 35(22)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38387089

RESUMO

Low-cost, small-sized, and easy integrated high-performance photodetectors for photonics are still the bottleneck of photonic integrated circuits applications and have attracted increasing attention. The tunable narrow bandgap of two-dimensional (2D) layered molybdenum ditelluride (MoTe2) from ∼0.83 to ∼1.1 eV makes it one of the ideal candidates for near-infrared (NIR) photodetectors. Herein, we demonstrate an excellent waveguide-integrated NIR photodetector by transferring mechanically exfoliated 2D MoTe2onto a silicon nitride (Si3N4) waveguide. The photoconductive photodetector exhibits excellent responsivity (R), detectivity (D*), and external quantum efficiency at 1550 nm and 50 mV, which are 41.9 A W-1, 16.2 × 1010Jones, and 3360%, respectively. These optoelectronic performances are 10.2 times higher than those of the free-space device, revealing that the photoresponse of photodetectors can be enhanced due to the presence of waveguide. Moreover, the photodetector also exhibits competitive performances over a broad wavelength range from 800 to 1000 nm with a highRof 15.4 A W-1and a largeD* of 59.6 × 109Jones. Overall, these results provide an alternative and prospective strategy for high-performance on-chip broadband NIR photodetectors.

9.
Environ Res ; 247: 118173, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38224935

RESUMO

The rapid development of the phosphorus chemical industry has caused serious pollution problems in the regional eco-environment. However, understanding of their ecotoxic effects remains limited. This study aimed to investigate the developmental toxicity of a stream polluted by a phosphorus chemical plant (PCP) on zebrafish embryos. For this, zebrafish embryos were exposed to stream water (0, 25, 50, and 100% v/v) for 96 h, and developmental toxicity, oxidative stress, apoptosis, and DNA damage were assessed. Stream water-treated embryos exhibited decreased hatching rates, heart rates, and body lengths, as well as increased mortality and malformation rates. The general morphology score system indicated that the swim bladder and pigmentation were the main abnormal morphological endpoints. Stream water promoted antioxidant enzymes (superoxide dismutase (SOD), peroxidase (POD), and glutathione peroxidase (GPx)), lipid peroxidation, and DNA damage. It also triggered apoptosis in the embryos' heads, hearts, and spines by activating apoptotic enzymes (Caspase-3 and Caspase-9). Additionally, stream water influenced growth, oxidative stress, and apoptosis-related 19 gene expression. Notably, tyr, sod (Mn), and caspase9 were the most sensitive indicators of growth, oxidative stress, and apoptosis, respectively. The current trial concluded that PCP-polluted stream water exhibited significant developmental toxicity to zebrafish embryos, which was regulated by the oxidative stress-mediated activation of endogenous apoptotic signaling pathways.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Rios , Embrião não Mamífero , Poluentes Químicos da Água/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo
10.
Ecotoxicol Environ Saf ; 279: 116488, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38776782

RESUMO

Organophosphorus flame retardants, such as triphenyl phosphate (TPhP), exist ubiquitously in various environments owing to their widespread usage. Potential toxic effects of residual flame retardants on cultured non-fish species are not concerned commonly. TPhP-induced physiological and biochemical effects in an aquatic turtle were evaluated here by systematically investigating the changes in growth and locomotor performance, hepatic antioxidant ability and metabolite, and intestinal microbiota composition of turtle hatchlings after exposure to different TPhP concentrations. Reduced locomotor ability and antioxidant activity were only observed in the highest concentration group. Several metabolic perturbations that involved in amino acid, energy and nucleotide metabolism, in exposed turtles were revealed by metabolite profiles. No significant among-group difference in intestinal bacterial diversity was observed, but the composition was changed markedly in exposed turtles. Increased relative abundances of some bacterial genera (e.g., Staphylococcus, Vogesella and Lawsonella) probably indicated adverse outcomes of TPhP exposure. Despite having only limited impacts of exposure at environmentally relevant levels, our results revealed potential ecotoxicological risks of residual TPhP for aquatic turtles considering TPhP-induced metabolic perturbations and intestinal bacterial changes.


Assuntos
Retardadores de Chama , Microbioma Gastrointestinal , Fígado , Organofosfatos , Tartarugas , Poluentes Químicos da Água , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Poluentes Químicos da Água/toxicidade , Retardadores de Chama/toxicidade , Organofosfatos/toxicidade , Bactérias/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Antioxidantes/metabolismo
11.
Int J Mol Sci ; 25(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000059

RESUMO

There is growing concern about the potential ecological risks posed by pharmaceutical residues in the aquatic environment. However, our understanding of the toxic effects of antiepileptic pharmaceuticals, such as carbamazepine (CBZ), on aquatic animal larvae is still limited. In this study, the tadpoles of the black-spotted pond frog (Pelophylax nigromaculatus) were exposed to environmentally relevant concentrations of CBZ (0.3 and 3.0 µg/L) for 30 days, and their growth, intestinal microbial composition, and metabolites were investigated to assess the potential toxic effects of CBZ in non-targeted aquatic organisms. Some tadpoles died during exposure, but there was no significant among-group difference in the survival and growth rates. CBZ exposure significantly altered the composition of tadpole intestinal microbiota. Relative abundances of some bacterial genera (e.g., Blautia, Prevotella, Bacillus, Microbacterium, etc.) decreased, while others (e.g., Paucibacter, etc.) increased in CBZ-exposed tadpoles. Interestingly, CBZ-induced alterations in some bacteria might not necessarily lead to adverse outcomes for animals. Meanwhile, small molecular intestinal metabolites related to energy metabolism, and antioxidant and anti-inflammatory activities were also altered after exposure. Taken together, environmentally relevant levels of CBZ might alter the metabolic and immune performances of amphibian larvae by modifying the abundance of some specific bacteria and the level of metabolites in their intestines, thereby potentially causing a long-term effect on their fitness.


Assuntos
Anticonvulsivantes , Carbamazepina , Microbioma Gastrointestinal , Larva , Poluentes Químicos da Água , Animais , Larva/efeitos dos fármacos , Carbamazepina/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Anticonvulsivantes/farmacologia , Poluentes Químicos da Água/toxicidade , Bactérias/efeitos dos fármacos
12.
Molecules ; 29(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38611936

RESUMO

Efficient sensors for toluene detecting are urgently needed to meet people's growing demands for both environment and personal health. Metal oxide semiconductor (MOS)-based sensors have become brilliant candidates for the detection of toluene because of their superior performance over gas sensing. However, gas sensors based on pure MOS have certain limitations in selectivity, operating temperature, and long-term stability, which hinders their further practical applications. Noble metals (including Ag, Au, Pt, Pd, etc.) have the ability to enhance the performance of MOS-based sensors via surface functionalization. Herein, ZnO nanoflowers (ZNFs) modified with bimetallic AuPt are prepared for toluene detection through hydrothermal method. The response of a AuPt@ZNF-based gas sensor can reach 69.7 at 175 °C, which is 30 times, 9 times, and 10 times higher than that of the original ZNFs, Au@ZNFs, and Pt@ZNFs, respectively. Furthermore, the sensor also has a lower optimal operating temperature (175 °C), good stability (94% of previous response after one month), and high selectivity towards toluene, which is the result of the combined influence of the electronic and chemical sensitization of noble metals, as well as the unique synergistic effect of the AuPt alloy. In summary, AuPt@ZNF-based sensors can be further applied in toluene detection in practical applications.

13.
Neuroimage ; 282: 120385, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37832708

RESUMO

Coordination is crucial for individuals to achieve common goals; however, the causal relationship between coordination behavior and neural activity has not yet been explored. Interbrain synchronization (IBS) and neural efficiency in cortical areas associated with the mirror neuron system (MNS) are considered two potential brain mechanisms. In the present study, we attempted to clarify how the two mechanisms facilitate coordination using hypertranscranial electrical stimulation (hyper-tES). A total of 124 healthy young adults were randomly divided into three groups (the hyper-tACS, hyper-tDCS and sham groups) and underwent modulation of the right inferior frontal gyrus (IFG) during functional near-infrared spectroscopy (fNIRS). Increased IBS of the PFC or neural efficiency of the right IFG (related to the MNS) was accompanied by greater coordination behavior; IBS had longer-lasting effects on behavior. Our findings highlight the importance of IBS and neural efficiency of the frontal cortex for coordination and suggest potential interventions to improve coordination in different temporal windows.


Assuntos
Encéfalo , Espectroscopia de Luz Próxima ao Infravermelho , Adulto Jovem , Humanos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Encéfalo/fisiologia , Córtex Pré-Frontal/fisiologia , Mapeamento Encefálico/métodos , Tálamo
14.
Nanotechnology ; 34(23)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36877995

RESUMO

In this work, ultrafast carrier dynamics of mechanically exfoliated 1T-TiSe2flakes from the high-quality single crystals with self-intercalated Ti atoms are investigated by femtosecond transient absorption spectroscopy. The observed coherent acoustic and optical phonon oscillations after ultrafast photoexcitation reveal the strong electron-phonon coupling in 1T-TiSe2. The ultrafast carrier dynamics probed in both visible and mid-infrared regions indicate that some photogenerated carriers localize near the intercalated Ti atoms and form small polarons rapidly within several picoseconds after photoexcitation due to the strong and short-range electron-phonon coupling. The formation of polarons leads to a reduction of carrier mobility and a long-time relaxation process of photoexcited carriers for several nanoseconds. The formation and dissociation rates of the photoinduced polarons are dependent on both the pump fluence and the thickness of TiSe2sample. This work offers new insights into the photogenerated carrier dynamics of 1T-TiSe2, and emphasizes the effects of intercalated atoms on the electron and lattice dynamics after photoexcitation.

15.
Nanotechnology ; 34(21)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36745920

RESUMO

X-ray microscope as an important nanoprobing tool plays a prevailing role in nano-inspections of materials. Despite the fast advances of high resolution focusing/imaging reported, the efficiency of existing high-resolution zone plates is mostly around 5% in soft x-ray and rapidly goes down to 1%-2% when the resolution approaches 10 nm. It is well known that the rectangular zone shape, beamstop, limited height/width ratios, material absorption of light and structural defects are likely responsible for the limited efficiency. Although zone plates with Kinoform profile are supposed to be efficient, progress for achieving both high resolution (<30 nm) and high efficiency (>5%) have hardly been addressed in soft x-ray. In this work, we propose a compound Kinoform/Fresnel zone plate (CKZP) by combing a dielectric Kinoform zone plate with a 15 nm resolution zone plate. Greyscale electron beam lithography was applied to form the 3D Kinoform zone plate and atomic layer deposition was carried out to form the binary zone plate. Optical characterizations demonstrated 15 nm resolution focusing/imaging with over 7.8% efficiency in soft x-ray. The origin of the efficiency improvement behind the proposed compound lens is theoretically analyzed and discussed.

16.
Ecotoxicol Environ Saf ; 260: 115095, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37267781

RESUMO

The extensive use of organophosphorus insecticides poses a threat to the survival of non-target organisms. Ecotoxicological outcomes of embryonic exposure to insecticides are rarely evaluated in various oviparous species. In this study, soft-shelled turtle (Pelodiscus sinensis) eggs were incubated in moist substrate containing different levels (0, 2, 20 and 200 µg/kg) of chlorpyrifos to investigate its toxic effects on embryonic development and survival, and hatchling physiological performance. Chlorpyrifos exposure had no significant impacts on embryonic development rate and egg survival in P. sinensis. Similarly, embryonic chlorpyrifos exposure neither obviously affected the size and locomotor performance of hatchlings, nor changed the activities of superoxide dismutase and catalase, and content of malondialdehyde in their erythrocytes. Based on liquid chromatography-mass spectrometry analysis, minor metabolic perturbations related to amino acid, lipid and energy metabolism in hatchlings after embryonic chlorpyrifos exposure were revealed by hepatic metabolite profiling. Overall, our results suggested that embryonic exposure to environmentally relevant levels of chlorpyrifos had only a limited impact on physiological performances of hatchlings, although it would result in a potential risk of hepatotoxicity in P. sinensis.


Assuntos
Clorpirifos , Inseticidas , Tartarugas , Animais , Clorpirifos/metabolismo , Tartarugas/fisiologia , Inseticidas/metabolismo , Desenvolvimento Embrionário , Metaboloma
17.
Ecotoxicol Environ Saf ; 267: 115617, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37866109

RESUMO

The antidiabetic pharmaceutical metformin (MET) is largely unmetabolized by the human body. Its residues are readily detectable in various aquatic environments and may have adverse impacts on the growth and survival of aquatic species. To date, its toxicological effects have scarcely been explored in non-fish species. Here, we exposed the tadpoles of black-spotted pond frog (Pelophylax nigromaculatus) to different concentrations (0, 1, 10 and 100 µg/L) of MET for 30 days and measured the body size, intestinal microbiota and metabolites to evaluate potential effects of MET exposure in amphibian larvae. MET exposure did not affect the growth and intestinal microbial diversity of tadpoles. However, intestinal microbial composition changed significantly, with some pathogenic bacteria (e.g., bacterial genera Salmonella, Comamonas, Stenotrophomonas, Trichococcus) increasing and some beneficial bacteria (e.g., Blautia, Prevotella) decreasing in MET-exposed tadpoles. The levels of some intestinal metabolites associated with growth and immune performance also changed significantly following MET exposure. Overall, our results indicated that exposure to MET, even at environmentally relevant concentrations, would cause intestinal microbiota dysbiosis and metabolite alteration, thereby influencing the health status of non-target aquatic organisms, such as amphibians.


Assuntos
Microbioma Gastrointestinal , Metformina , Humanos , Animais , Metformina/toxicidade , Anuros , Hipoglicemiantes , Disbiose , Larva
18.
Nano Lett ; 22(5): 1889-1896, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35171620

RESUMO

Mysteries about the origin of friction have remained for centuries. Especially, how friction is tuned by an electric field is still unclear. Present tuning mechanisms mainly focus on the atomic configurations and electrostatic force, yet the role of interfacial electronic properties is not fully understood. Here, we investigate a unique friction tuning effect induced by an electric current in a conductive atomic force microscopy experiment and uncover two main tuning mechanisms of friction by the fluctuation of electronic properties during sliding: (1) electric-field-induced electron density redistribution and (2) current-induced electron transfer. We put forward an electronic level friction model unraveling the relationship between the friction tuning and the electronic property fluctuation (EPF) under electric field/current, which is applicable to tribosystems ranging from conductors to semiconductors and insulators, including two-dimensional material interfaces. This model provides theoretical guidance for tribosystem design and friction control, proposing a new perspective in understanding the origin of friction.

19.
Small ; 18(50): e2204828, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36310138

RESUMO

Highly selective and sensitive H2 S sensors are in high demand in various fields closely related to human life. However, metal oxide semiconductors (MOSs) suffer from poor selectivity and single MOS@metal organic framework (MOF) core-shell nanocomposites are greatly limited due to the intrinsic low sensitivity of MOF shells. To simultaneously improve both selectivity and sensitivity, heterostructured α-Fe2 O3 @ZnO@ZIF-8 core-shell nanowires (NWs) are meticulously synthesized with the assistance of atomic layer deposition. The ZIF-8 shell with regular pores and special surface functional groups is attractive for excellent selectivity and the heterostructured α-Fe2 O3 @ZnO core with an additional electron depletion layer is promising with enhanced sensitivity compared to a single MOS core. As a result, the heterostructured α-Fe2 O3 @ZnO@ZIF-8 core-shell NWs achieve remarkable H2 S sensing performance with a high response (Rair /Rgas  = 32.2 to 10 ppm H2 S), superior selectivity, fast response/recovery speed (18.0/31.8 s), excellent long-term stability (at least over 3 months), and relatively low limit of detection (down to 200 ppb) at low operating temperature of 200 °C, far beyond α-Fe2 O3 @ZIF-8 or α-Fe2 O3 @ZnO core-shell NWs. Furthermore, a micro-electromechanical system-based H2 S gas sensor system with low power consumption is developed, holding great application potential in smart cities.

20.
Phys Rev Lett ; 128(2): 026401, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35089748

RESUMO

TiSe_{2} is a layered material exhibiting a commensurate (2×2×2) charge density wave (CDW) with a transition temperature of ∼200 K. Recently, incommensurate CDW in bulk TiSe_{2} draws great interest due to its close relationship with the emergence of superconductivity. Here, we report an incommensurate superstructure in monolayer TiSe_{2}/CuSe/Cu(111) heterostructure. Characterizations by low-energy electron diffraction and scanning tunneling microscopy show that the main wave vector of the superstructure is ∼0.41a^{*} or ∼0.59a^{*} (here a^{*} is in-plane reciprocal lattice constant of TiSe_{2}). After ruling out the possibility of moiré superlattices, according to the correlation of the wave vectors of the superstructure and the large indirect band gap below the Fermi level, we propose that the incommensurate superstructure is associated with an incommensurate charge density wave (I-CDW). It is noteworthy that the I-CDW is robust with a transition temperature over 600 K, much higher than that of commensurate CDW in pristine TiSe_{2}. Based on our data and analysis, we present that interface effect may play a key role in the formation of the I-CDW state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA