Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928271

RESUMO

Lysosomes are highly dynamic organelles that maintain cellular homeostasis and regulate fundamental cellular processes by integrating multiple metabolic pathways. Lysosomal ion channels such as TRPML1-3, TPC1/2, ClC6/7, CLN7, and TMEM175 mediate the flux of Ca2+, Cl-, Na+, H+, and K+ across lysosomal membranes in response to osmotic stimulus, nutrient-dependent signals, and cellular stresses. These ion channels serve as the crucial transducers of cell signals and are essential for the regulation of lysosomal biogenesis, motility, membrane contact site formation, and lysosomal homeostasis. In terms of pathophysiology, genetic variations in these channel genes have been associated with the development of lysosomal storage diseases, neurodegenerative diseases, inflammation, and cancer. This review aims to discuss the current understanding of the role of these ion channels in the central nervous system and to assess their potential as drug targets.


Assuntos
Sistema Nervoso Central , Canais Iônicos , Lisossomos , Humanos , Lisossomos/metabolismo , Animais , Canais Iônicos/metabolismo , Canais Iônicos/genética , Sistema Nervoso Central/metabolismo , Doenças por Armazenamento dos Lisossomos/metabolismo , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Homeostase
2.
Chemistry ; 29(43): e202301015, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37191050

RESUMO

Here the supramolecular liquid crystalline (LC) phase behavior of a series of fullerene block molecules was investigated regarding spacer length, alkyl tail length and temperature. These compounds exhibit several lamellar LC phases with different packings of self-organized fullerene two-dimensional (2D) crystals. With a short hexamethylene spacer, they form sandwich-like structures with triple or quadruple fullerene layers. By increasing the spacer length to 10 or 12 carbons, a composite layers-in-lamella superlattice structure with alternating soft hydrocarbon single layers and fullerene single or double layers was obtained. As the molecular configurational freedom between incompatible moieties was enhanced by the elongated spacer, the required cross-sectional fullerene-to-hydrocarbon ratio for the superlattice could be achieved despite of different volume fractions of the blocks. The superlattice phase range is efficiently widened by the design principle of constructing LC molecules with a long spacer, which also provides a facile way to tailor novel superstructures.

3.
Chemphyschem ; 24(8): e202200927, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-36594677

RESUMO

Reentrant phenomena in soft matter and biosystems have attracted considerable attention because their properties are closely related to high functionality. Here, we report a combined experimental and computational study on the self-assembly and reentrant behavior of a single-component thermotropic smectic liquid crystal toward the realization of dynamically functional materials. We have designed and synthesized a mesogenic molecule consisting of an alicyclic trans,trans-bicyclohexyl mesogen and a polar cyclic carbonate group connected by a flexible tetra(oxyethylene) spacer. The molecule exhibits an unprecedented sequence of layered smectic phases, in the order: smectic A-smectic B-reentrant smectic A. Electron density profiles and large-scale molecular dynamics simulations indicate that competition between the stacking of bicyclohexyl mesogens and the conformational flexibility of tetra(oxyethylene) chains induces this unusual reentrant behavior. Ion-conductive reentrant liquid-crystalline materials have been developed, which undergo the multistep conductivity changes in response to temperature. The reentrant liquid crystals have potential as new mesogenic materials exhibiting switching functions.

4.
Chemphyschem ; 24(8): e202300192, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37066767

RESUMO

The front cover artwork is provided by Takashi Kato at the University of Tokyo. The image shows three assembled structures of smectic liquid crystals that show reentrant behavior. Read the full text of the Research Article at 10.1002/cphc.202200927.

5.
J Am Chem Soc ; 144(12): 5400-5410, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35306820

RESUMO

In inverted perovskite solar cells (PSCs), the fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) is a widely used electron transport material. However, a high degree of energy disorder and inadequate passivation of PCBM limit the efficiency of devices, and severe self-aggregation and unstable morphology limit the lifespan of devices. Here, we design a series of fullerene dyads FP-Cn (n = 4, 8, 12) to replace PCBM as an electron transport layer, where [60]fullerene is linked with a terpyridine chelating group via a flexible alkyl chain of different lengths as a spacer. Among three fullerene dyads, FP-C8 shows the most enhanced molecule ordering and adhesion with the perovskite surface due to the balanced decoupling between the chelation effect from terpyridine and the self-assembly of fullerene, leading to lower energy disorder and higher morphological stability relative to PCBM. The FP-C8/C60-based devices using Cs0.05FA0.90MA0.05PbI2.85Br0.15 as a light absorber show a power conversion efficiency of 21.69%, higher than that of PCBM/C60 (20.09%), benefiting from improved electron extraction and transport as well as reduced charge recombination loss. When employing FAPbI3 as a light absorber, the FP-C8/C60-based devices exhibit an efficiency of 23.08%, which is the champion value of inverted PSCs with solution-processed fullerene derivatives. Moreover, the FP-C8/C60-based devices show better moisture and thermal stability than PCBM/C60-based devices and maintain 96% of their original efficiency after 1200 h of operation, while their counterpart PCBM/C60 maintains 60% after 670 h.

6.
Mol Pain ; 18: 17448069211053255, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35057644

RESUMO

N-methyl-d-aspartate receptors (NMDARs) dysfunction in the nucleus accumbens (NAc) participates in regulating many neurological and psychiatric disorders such as drug addiction, chronic pain, and depression. NMDARs are heterotetrameric complexes generally composed of two NR1 and two NR2 subunits (NR2A, NR2B, NR2C and NR2D). Much attention has been focused on the role of NR2A and NR2B-containing NMDARs in a variety of neurological disorders; however, the function of NR2C/2D subunits at NAc in chronic pain remains unknown. In this study, spinal nerve ligation (SNL) induced a persistent sensory abnormity and depressive-like behavior. The whole-cell patch clamp recording on medium spiny neurons (MSNs) in the NAc showed that the amplitude of NMDAR-mediated excitatory postsynaptic currents (EPSCs) was significantly increased when membrane potential held at -40 to 0 mV in mice after 14 days of SNL operation. In addition, selective inhibition of NR2C/2D-containing NMDARs with PPDA caused a larger decrease on peak amplitude of NMDAR-EPSCs in SNL than that in sham-operated mice. Appling of selective potentiator of NR2C/2D, CIQ, markedly enhanced the evoked NMDAR-EPSCs in SNL-operated mice, but no change in sham-operated mice. Finally, intra-NAc injection of PPDA significantly attenuated SNL-induced mechanical allodynia and depressive-like behavior. These results for the first time showed that the functional change of NR2C/2D subunits-containing NMDARs in the NAc might contribute to the sensory and affective components in neuropathic pain.


Assuntos
Neuralgia , Traumatismos dos Nervos Periféricos , Animais , Depressão/etiologia , Humanos , Camundongos , Núcleo Accumbens , Traumatismos dos Nervos Periféricos/complicações , Receptores de N-Metil-D-Aspartato/metabolismo
7.
Mol Pain ; 18: 17448069221126078, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-36039405

RESUMO

Ginsenoside Rh2 is one of the major bioactive ginsenosides in Panax ginseng. Although Rh2 is known to enhance immune cells activity for treatment of cancer, its anti-inflammatory and neuroprotective effects have yet to be determined. In this study, we investigated the effects of Rh2 on spared nerve injury (SNI)-induced neuropathic pain and elucidated the potential mechanisms. We found that various doses of Rh2 intrathecal injection dose-dependently attenuated SNI-induced mechanical allodynia and thermal hyperalgesia. Rh2 also inhibited microglia and astrocyte activation in the spinal cord of a murine SNI model. Rh2 treatment inhibited SNI-induced increase of proinflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-1 and IL-6. Expression of miRNA-21, an endogenous ligand of Toll like receptor (TLR)8 was also decreased. Rh2 treatment blocked the mitogen-activated protein kinase (MAPK) signaling pathway by inhibiting of phosphorylated extracellular signal-regulated kinase expression. Finally, intrathecal injection of TLR8 agonist VTX-2337 reversed the analgesic effect of Rh2. These results indicated that Rh2 relieved SNI-induced neuropathic pain via inhibiting the miRNA-21-TLR8-MAPK signaling pathway, thus providing a potential application of Rh2 in pain therapy.


Assuntos
Ginsenosídeos , MicroRNAs , Neuralgia , Fármacos Neuroprotetores , Analgésicos/uso terapêutico , Animais , Anti-Inflamatórios/uso terapêutico , MAP Quinases Reguladas por Sinal Extracelular , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Hiperalgesia/tratamento farmacológico , Interleucina-6 , Ligantes , Camundongos , MicroRNAs/genética , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Ratos , Ratos Sprague-Dawley , Receptor 8 Toll-Like , Fator de Necrose Tumoral alfa/metabolismo
8.
Macromol Rapid Commun ; 43(19): e2200266, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35792024

RESUMO

Side-chain liquid crystalline polymer (SCLCP) usually contains a simple and flexible homopolymer as main chain, while its effect on the self-assembly behavior is often ignored. In this work, in order to increase the structural complexity and investigate the interaction between the main chain and mesogens, perfluorinated segments are introduced into the main chain using a photoinduced Step Transfer-Addition & Radical-Termination polymerization method, producing a novel series of SCLCPs containing 4-methoxyphenyl benzoate mesogens, soft hydrocarbon spacers, and a strictly alternating perfluoroalkyl and alkyl backbone. By adjusting the length of spacers or perfluoroalkyl segments, several mesophases with complex chain packing structures are achieved. This design strategy that constructing highly ordered liquid crystalline (LC) structures from SCLCPs with precise chemical structure provides a facile way toward novel LC nanomaterials.

9.
Nano Lett ; 20(12): 8647-8653, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33164515

RESUMO

Here we reported a hierarchical self-assembly approach toward well-defined superlattices in supramolecular liquid crystals by fullerene-based sphere-cone block molecules. The fullerenes crystallize to form monolayer nanosheets intercalated by the attached soft hydrocarbon cones. The frustration caused by cross-sectional area mismatch between the spheres and the somewhat oversize cones leads to a unique lamellar superlattice whereby each stack of six pairs of alternating sphere-cone sublayers is followed by a cone double layer. While such areal mismatch problems in soft matter are usually solved by interface curvature, the lamellar superlattice solution is best suited to systems with rigid layers. Meanwhile, formation of the superlattice significantly improves the material's transient electron conductivity, with the maximum value being among the highest for π-conjugated organic materials. The design principle of solving steric frustration by forming a superlattice opens a new avenue toward self-assembled optoelectronic materials.

10.
Angew Chem Int Ed Engl ; 58(22): 7375-7379, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-30920713

RESUMO

The first single-diamond cubic phase in a liquid crystal is reported. This skeletal structure with the F d 3 ‾ m space group is formed by self-assembly of bolaamphiphiles with swallow-tailed lateral chains. It consists of bundles of π-conjugated p-terphenyl rods fused into an infinite network by hydrogen-bonded spheres at tetrahedral four-way junctions. We also present a quantitative model relating molecular architecture to the space-filling requirements of six possible bicontinuous cubic phases, that is, the single- and double-network versions of gyroid, diamond, and "plumber's nightmare".

11.
Angew Chem Int Ed Engl ; 57(11): 2835-2840, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29314461

RESUMO

The so-called smectic-Q (SmQ) liquid crystal phase was discovered in 1983 in rod-like molecules, but its structure remain unclear in spite of numerous attempts to solve it. Herein, we report what we believe to be the solution: A unique bicontinuous phase that is non-cubic and is made up of orthogonal twisted columns with planar 4-way junctions. While SmQ had only been observed in chiral compounds, we show that this chiral phase forms also in achiral materials through spontaneous symmetry breaking. The results strongly support the idea of a helical substructure of bicontinuous phases and long-range homochirality being sustained by helicity-matching at network junctions. The model also explains the triangular shape of double-gyroid domains growing within a SmQ environment. SmQ-forming materials hold potential for applications such as circularly polarized light emitters that require no alignment or asymmetric synthesis.

12.
Korean J Physiol Pharmacol ; 19(5): 427-34, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26330755

RESUMO

Significant evidence supports the role of the vestibular system in the regulation of blood pressure during postural movements. In the present study, the role of the vestibulo-spino-adrenal (VSA) axis in the modulation of blood pressure via the vestibulosympathetic reflex was clarified by immunohistochemical and enzyme immunoassay methods in conscious rats with sinoaortic denervation. Expression of c-Fos protein in the intermediolateral cell column of the middle thoracic spinal regions and blood epinephrine levels were investigated, following microinjection of glutamate receptor agonists or antagonists into the medial vestibular nucleus (MVN) and/or sodium nitroprusside (SNP)-induced hypotension. Both microinjection of glutamate receptor agonists (NMDA and AMPA) into the MVN or rostral ventrolateral medullary nucleus (RVLM) and SNP-induced hypotension led to increased number of c-Fos positive neurons in the intermediolateral cell column of the middle thoracic spinal regions and increased blood epinephrine levels. Pretreatment with microinjection of glutamate receptor antagonists (MK-801 and CNQX) into the MVN or RVLM prevented the increased number of c-Fos positive neurons resulting from SNP-induced hypotension, and reversed the increased blood epinephrine levels. These results indicate that the VSA axis may be a key component of the pathway used by the vestibulosympathetic reflex to maintain blood pressure during postural movements.

13.
Korean J Physiol Pharmacol ; 19(2): 159-65, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25729278

RESUMO

Input signals originating from baroreceptors and vestibular receptors are integrated in the rostral ventrolateral medulla (RVLM) to maintain blood pressure during postural movement. The contribution of baroreceptors and vestibular receptors in the maintenance of blood pressure following hypotension were quantitatively analyzed by measuring phosphorylated extracellular regulated protein kinase (pERK) expression and glutamate release in the RVLM. The expression of pERK and glutamate release in the RVLM were measured in conscious rats that had undergone bilateral labyrinthectomy (BL) and/or sinoaortic denervation (SAD) following hypotension induced by a sodium nitroprusside (SNP) infusion. The expression of pERK was significantly increased in the RVLM in the control group following SNP infusion, and expression peaked 10 min after SNP infusion. The number of pERK positive neurons increased following SNP infusion in BL, SAD, and BL+SAD groups, although the increase was smaller than seen in the control group. The SAD group showed a relatively higher reduction in pERK expression when compared with the BL group. The level of glutamate release was significantly increased in the RVLM in control, BL, SAD groups following SNP infusion, and this peaked 10 min after SNP infusion. The SAD group showed a relatively higher reduction in glutamate release when compared with the BL group. These results suggest that the baroreceptors are more powerful in pERK expression and glutamate release in the RVLM following hypotension than the vestibular receptors, but the vestibular receptors still have an important role in the RVLM.

14.
Nat Commun ; 15(1): 903, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291054

RESUMO

Light-harvesting is an indispensable process in photosynthesis, and researchers have been exploring various structural scaffolds to create artificial light-harvesting systems. However, achieving high donor/acceptor ratios for efficient energy transfer remains a challenge as excitons need to travel longer diffusion lengths within the donor matrix to reach the acceptor. Here, we report a polymeric supramolecular column-based light-harvesting platform inspired by the natural light-harvesting of purple photosynthetic bacteria to address this issue. The supramolecular column is designed as a discotic columnar liquid crystalline polymer and acts as the donor, with the acceptor intercalated within it. The modular columnar design enables an ultrahigh donor/acceptor ratio of 20000:1 and an antenna effect exceeding 100. Moreover, the spatial confinement within the supramolecular columns facilitates control over the energy transfer process, enabling dynamic full-color tunable emission for information encryption applications with spatiotemporal regulation security.

15.
ACS Appl Mater Interfaces ; 16(42): 56469-56480, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39382379

RESUMO

The stimulus-responsive polymeric materials have attracted great research interest, especially those remotely manipulated materials with potential applications in actuators and soft robotics. Here we report a photoresponsive main-chain actuator based on azobenzene poly(ether ester) multiblock copolymer (mBCP) thermoplastic elastomers, (PTAD-b-PTMO-b-PTAD)n, which were synthesized by a cascade polycondensation-coupling ring-opening polymerization method using poly(tetramethylene oxide) (PTMO) and azobenzene-containing cyclic oligoesters (COTADs) as monomers. The thermal, mechanical, and microphase separation behaviors of mBCPs could be flexibly tuned by altering the ratios of soft-to-hard segments and block number (n). The oriented azobenzene mBCP fibers were prepared by melt spinning, showing reversible photoresponsive properties with remarkably high strength (∼1000 MPa) and high elongation at break comparable to spider silks. Fast photoinduced bending and contraction were successfully achieved in these fibers with high work and power densities and energy conversion efficiency, enabling it to lift up about 250 times of its own weight. Moreover, it can take out materials inside the tube by UV-light control. These fibers could be applied in light-driven actuators or telecontrolled robot arms.

16.
Appl Spectrosc ; 78(3): 289-295, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38225204

RESUMO

The poor time stability of surface-enhanced Raman scattering (SERS) substrates greatly limits their application potential. Although core-shell structures are commonly used to enhance stability, their complex preparation processes, high costs, and susceptibility under acidic or alkaline conditions result in serious disadvantages for practical applications. Here, we propose a new method of external oxygen barrier to improve spectral stability, in which SERS substrates are stored in an oxygen-free environment. Controlled experiments are carried out under air and vacuum. Raman spectrum intensity is measured 11 times within six months for each group. Using the attenuation formula, the Raman spectrum intensity decay results of each SERS substrate over time are obtained. The effectiveness of the external oxygen barrier method is demonstrated through curve fitting using the corresponding function. The substrate spectral attenuation rates of the vacuum group and the argon group within six months are <20%, proving the effectiveness of the external oxygen barrier method.

17.
Biomed Pharmacother ; 172: 116241, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38330711

RESUMO

OBJECTIVE: Pathologic cardiac hypertrophy (PCH) is a precursor to heart failure. Amydrium sinense (Engl.) H. Li (AS), a traditional Chinese medicinal plant, has been extensively utilized to treat chronic inflammatory diseases. However, the therapeutic effect of ASWE on PCH and its underlying mechanisms are still not fully understood. METHODS: A cardiac hypertrophy model was established by treating C57BL/6 J mice and neonatal rat cardiomyocytes (NRCMs) in vitro with isoprenaline (ISO) in this study. The antihypertrophic effects of AS water extract (ASWE) on cardiac function, histopathologic manifestations, cell surface area and expression levels of hypertrophic biomarkers were examined. Subsequently, the impact of ASWE on inflammatory factors, p65 nuclear translocation and NF-κB activation was investigated to elucidate the underlying mechanisms. RESULTS: In the present study, we observed that oral administration of ASWE effectively improved ISO-induced cardiac hypertrophy in mice, as evidenced by histopathological manifestations and the expression levels of hypertrophic markers. Furthermore, the in vitro experiments demonstrated that ASWE treatment inhibited cardiac hypertrophy and suppressed inflammation response in ISO-treated NRCMs. Mechanically, our findings provided evidence that ASWE suppressed inflammation response by repressing p65 nuclear translocation and NF-κB activation. ASWE was found to possess the capability of inhibiting inflammation response and cardiac hypertrophy induced by ISO. CONCLUSION: To sum up, ASWE treatment was shown to attenuate ISO-induced cardiac hypertrophy by inhibiting cardiac inflammation via preventing the activation of the NF-kB signaling pathway. These findings provided scientific evidence for the development of ASWE as a novel therapeutic drug for PCH treatment.


Assuntos
Araceae , NF-kappa B , Animais , Camundongos , Ratos , Camundongos Endogâmicos C57BL , Isoproterenol/toxicidade , Transdução de Sinais , Íons , Lítio , Artesunato , Cardiomegalia/induzido quimicamente , Cardiomegalia/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico
18.
Neurosci Bull ; 39(3): 425-439, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36376699

RESUMO

Chronic pain is challenging to treat due to the limited therapeutic options and adverse side-effects of therapies. Astrocytes are the most abundant glial cells in the central nervous system and play important roles in different pathological conditions, including chronic pain. Astrocytes regulate nociceptive synaptic transmission and network function via neuron-glia and glia-glia interactions to exaggerate pain signals under chronic pain conditions. It is also becoming clear that astrocytes play active roles in brain regions important for the emotional and memory-related aspects of chronic pain. Therefore, this review presents our current understanding of the roles of astrocytes in chronic pain, how they regulate nociceptive responses, and their cellular and molecular mechanisms of action.


Assuntos
Astrócitos , Dor Crônica , Humanos , Astrócitos/patologia , Dor Crônica/patologia , Neuroglia/fisiologia , Neurônios/fisiologia , Transmissão Sináptica , Doença Crônica
19.
Aging Dis ; 2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-37196131

RESUMO

Tuberculous meningitis (TBM) is the most severe complication of tuberculosis (TB) and is associated with high rates of disability and mortality. Mycobacterium tuberculosis (M. tb), the infectious agent of TB, disseminates from the respiratory epithelium, breaks through the blood-brain barrier, and establishes a primary infection in the meninges. Microglia are the core of the immune network in the central nervous system (CNS) and interact with glial cells and neurons to fight against harmful pathogens and maintain homeostasis in the brain through pleiotropic functions. However, M. tb directly infects microglia and resides in them as the primary host for bacillus infections. Largely, microglial activation slows disease progression. The non-productive inflammatory response that initiates the secretion of pro-inflammatory cytokines and chemokines may be neurotoxic and aggravate tissue injuries based on damages caused by M. tb. Host-directed therapy (HDT) is an emerging strategy for modulating host immune responses against diverse diseases. Recent studies have shown that HDT can control neuroinflammation in TBM and act as an adjunct therapy to antibiotic treatment. In this review, we discuss the diverse roles of microglia in TBM and potential host-directed TB therapies that target microglia to treat TBM. We also discuss the limitations of applying each HDT and suggest a course of action for the near future.

20.
Front Mol Neurosci ; 16: 1239599, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37664239

RESUMO

Cancer-induced bone pain (CIBP) caused by bone metastasis is one of the most prevalent diseases, and current treatments rely primarily on opioids, which have significant side effects. However, recent developments in pharmaceutical science have identified several new mechanisms for CIBP, including the targeted modification of certain ion channels and receptors. Ion channels are transmembrane proteins, which are situated on biological cell membranes, which facilitate passive transport of inorganic ions across membranes. They are involved in various physiological processes, including transmission of pain signals in the nervous system. In recent years, there has been an increasing interest in the role of ion channels in chronic pain, including CIBP. Therefore, in this review, we summarize the current literature on ion channels, related receptors, and drugs and explore the mechanism of CIBP. Targeting ion channels and regulating their activity might be key to treating pain associated with bone cancer and offer new treatment avenues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA