Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(14): e2317492121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547056

RESUMO

Energy metabolism is highly interdependent with adaptive cell migration in vivo. Mechanical confinement is a critical physical cue that induces switchable migration modes of the mesenchymal-to-amoeboid transition (MAT). However, the energy states in distinct migration modes, especially amoeboid-like stable bleb (A2) movement, remain unclear. In this report, we developed multivalent DNA framework-based nanomachines to explore strategical mitochondrial trafficking and differential ATP levels during cell migration in mechanically heterogeneous microenvironments. Through single-particle tracking and metabolomic analysis, we revealed that fast A2-moving cells driven by biomimetic confinement recruited back-end positioning of mitochondria for powering highly polarized cytoskeletal networks, preferentially adopting an energy-saving mode compared with a mesenchymal mode of cell migration. We present a versatile DNA nanotool for cellular energy exploration and highlight that adaptive energy strategies coordinately support switchable migration modes for facilitating efficient metastatic escape, offering a unique perspective for therapeutic interventions in cancer metastasis.


Assuntos
Amoeba , Linhagem Celular Tumoral , Movimento Celular , Fenômenos Físicos
2.
Eur Radiol ; 34(4): 2608-2618, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37840099

RESUMO

OBJECTIVE: To develop a bimodal nomogram to reduce unnecessary biopsies in breast lesions with discordant ultrasound (US) and mammography (MG) Breast Imaging Reporting and Data System (BI-RADS) assessments. METHODS: This retrospective study enrolled 706 women following opportunistic screening or diagnosis with discordant US and MG BI-RADS assessments (where one assessed a lesion as BI-RADS 4 or 5, while the other assessed the same lesion as BI-RADS 0, 2, or 3) from two medical centres between June 2019 and June 2021. Univariable and multivariable logistic regression analyses were used to develop the nomogram. DeLong's and McNemar's tests were used to assess the model's performance. RESULTS: Age, MG features (margin, shape, and density in masses, suspicious calcifications, and architectural distortion), and US features (margin and shape in masses as well as calcifications) were independent risk factors for breast cancer. The nomogram obtained an area under the curve of 0.87 (95% confidence interval (CI), 0.83-0.91), 0.91 (95% CI, 0.87 - 0.96), and 0.92 (95% CI, 0.86-0.98) in the training, internal validation, and external testing samples, respectively, and demonstrated consistency in calibration curves. Coupling the nomogram with US reduced unnecessary biopsies from 74 to 44% and the missed malignancies rate from 13 to 2%. Similarly, coupling with MG reduced missed malignancies from 20 to 6%, and 63% of patients avoided unnecessary biopsies. Interobserver agreement between US and MG increased from - 0.708 (poor agreement) to 0.700 (substantial agreement) with the nomogram. CONCLUSION: When US and MG BI-RADS assessments are discordant, incorporating the nomogram may improve the diagnostic accuracy, avoid unnecessary breast biopsies, and minimise missed diagnoses. CLINICAL RELEVANCE STATEMENT: The nomogram developed in this study could be used as a computer program to assist radiologists with detecting breast cancer and ensuring more precise management and improved treatment decisions for breast lesions with discordant assessments in clinical practice. KEY POINTS: • Coupling the nomogram with US and mammography improves the detection of breast cancers without the risk of unnecessary biopsy or missed malignancies. • The nomogram increases mammography and US interobserver agreement and enhances the consistency of decision-making. • The nomogram has the potential to be a computer program to assist radiologists in identifying breast cancer and making optimal decisions.


Assuntos
Neoplasias da Mama , Nomogramas , Feminino , Humanos , Estudos Retrospectivos , Ultrassom , Mamografia/métodos , Neoplasias da Mama/patologia , Biópsia
3.
Anal Bioanal Chem ; 416(9): 2107-2115, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135761

RESUMO

Cell migration is an essential manner of different cell lines that are involved in embryological development, immune responses, tumorigenesis, and metastasis in vivo. Physical confinement derived from crowded tissue microenvironments has pivotal effects on migratory behaviors. Distinct migration modes under a heterogeneous extracellular matrix (ECM) have been extensively studied, uncovering potential molecular mechanisms involving a series of biological processes. Significantly, multi-omics strategies have been launched to provide multi-angle views of complex biological phenomena, facilitating comprehensive insights into molecular regulatory networks during cell migration. In this review, we describe biomimetic devices developed to explore the migratory behaviors of cells induced by different types of confined microenvironments in vitro. We also discuss the results of multi-omics analysis of intrinsic molecular alterations and critical pathway dysregulations of cell migration under heterogeneous microenvironments, highlighting the significance of physical confinement-triggered intracellular signal transduction in order to regulate cellular behaviors. Finally, we discuss both the challenges and promise of mechanistic analysis in confinement-induced cell migration, promoting the development of early diagnosis and precision therapeutics.


Assuntos
Matriz Extracelular , Multiômica , Humanos , Movimento Celular , Matriz Extracelular/metabolismo , Transdução de Sinais , Transformação Celular Neoplásica , Microambiente Tumoral
4.
J Cell Biochem ; 124(9): 1379-1390, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37565526

RESUMO

Numerous studies have revealed the profound impact of microRNAs on regulating skeletal muscle development and regeneration. However, the biological function and regulation mechanism of miR-222-3p in skeletal muscle remains largely unknown. In this study, miR-222-3p was found to be abundantly expressed in the impaired skeletal muscles, indicating that it might have function in the development and regeneration process of the skeletal muscle. MiR-222-3p overexpression impeded C2C12 myoblast proliferation and myogenic differentiation, whereas inhibition of miR-222-3p got the opposite results. The dual-luciferase reporter assay showed that insulin receptor substrate-1 (IRS-1) was the target gene of miR-222-3p. We next found that knockdown of IRS-1 could obviously suppress C2C12 myoblast proliferation and differentiation. Additionally, miR-222-3p-induced repression of myoblast proliferation and differentiation was verified to be associated with a decrease in phosphoinositide 3-kinase (PI3K)-Akt signaling. Overall, we demonstrated that miR-222-3p inhibited C2C12 cells myogenesis via IRS-1/PI3K/Akt pathway. Therefore, miR-222-3p may be used as a therapeutic target for alleviating muscle loss caused by inherited and nonhereditary diseases.


Assuntos
MicroRNAs , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , Diferenciação Celular/genética , Proliferação de Células/genética , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , MicroRNAs/metabolismo , Desenvolvimento Muscular/genética , Mioblastos/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
5.
Anal Chem ; 95(41): 15276-15285, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37782295

RESUMO

Small extracellular vesicles (sEVs) have emerged as noninvasive biomarkers in liquid biopsy due to their significant function in pathology and physiology. However, the phenotypic heterogeneity of sEVs presents a significant challenge to their study and has significant implications for their applications in liquid biopsies. In this study, anodic aluminum oxide films with different pore sizes (AAO nanoarray) were introduced to enable size-based isolation and downstream proteomics profiling of sEV subpopulations. The adjustable pore size and abundant Al3+ on the framework of AAOs allowed size-dependent isolation of sEV subpopulations through nanoconfined effects and Lewis acid-base interaction between AAOs and sEVs. Benefiting from the strong concerted effect, the simple AAO nanoarray enabled specific isolation of three sEV subpopulations, termed "50", "90", and "150 nm" groups, from 10 µL of complex biological samples within 10 min with high capture efficiencies and purities. Moreover, the nanopores of AAOs also acted as nanoreactors for comprehensive proteomic profiling of the captured sEV subpopulations to reveal their heterogeneity. The AAO nanoarray was first investigated on sEVs from a cell culture medium, where sEV subpopulations could be clearly distinguished, and three traditional sEV-specific proteins (CD81, CD9, and FLOT1) could be identified by proteomic analysis. A total of 3946, 3951, and 3940 proteins were identified from 50, 90, and 150 nm sEV subpopulations, respectively, which is almost twice the number compared to those obtained from the conventional approach. The concept was further applied to complex real-case sample analysis from prostate cancer patients. Machine learning and gene ontology (GO) information analysis of the identified proteins indicate that different-sized sEV subpopulations contain unique protein cargos and have distinct cellular components and molecular functions. Further receiver operating characteristic curve (ROC) analysis of the top five differential proteins from the three sEV subpopulations demonstrated the high accuracy of the proposed approach toward prostate cancer diagnosis (AUC > 0.99). More importantly, several proteins involved in focal adhesion and antigen processing and presentation pathways were found to be upregulated in prostate cancer patients, which may serve as potential biomarkers of prostate cancer. These results suggest that the sEV subpopulation-based AAO nanoarray is of great value in facilitating the early diagnosis and prognosis of cancer and opens a new avenue for sEVs in liquid biopsy.


Assuntos
Vesículas Extracelulares , Neoplasias da Próstata , Masculino , Humanos , Proteômica , Prognóstico , Neoplasias da Próstata/diagnóstico , Biomarcadores
6.
J Med Virol ; 95(8): e29041, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37621182

RESUMO

The emerging outbreak of monkeypox is closely associated with the viral infection and spreading, threatening global public health. Virus-induced cell migration facilitates viral transmission. However, the mechanism underlying this type of cell migration remains unclear. Here we investigate the motility of cells infected by vaccinia virus (VACV), a close relative of monkeypox, through combining multi-omics analyses and high-resolution live-cell imaging. We find that, upon VACV infection, the epithelial cells undergo epithelial-mesenchymal transition-like transformation, during which they lose intercellular junctions and acquire the migratory capacity to promote viral spreading. After transformation, VACV-hijacked RhoA signaling significantly alters cellular morphology and rearranges the actin cytoskeleton involving the depolymerization of robust actin stress fibers, leading-edge protrusion formation, and the rear-edge recontraction, which coordinates VACV-induced cell migration. Our study reveals how poxviruses alter the epithelial phenotype and regulate RhoA signaling to induce fast migration, providing a unique perspective to understand the pathogenesis of poxviruses.


Assuntos
Mpox , Vaccinia virus , Humanos , Movimento Celular , Surtos de Doenças , Células Epiteliais
7.
PLoS Genet ; 16(4): e1008738, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32282804

RESUMO

Nutrient utilization and energy metabolism are critical for the maintenance of cellular homeostasis. A mutation in the C9orf72 gene has been linked to the most common forms of neurodegenerative diseases that include amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we have identified an evolutionarily conserved function of C9orf72 in the regulation of the transcription factor EB (TFEB), a master regulator of autophagic and lysosomal genes that is negatively modulated by mTORC1. Loss of the C. elegans orthologue of C9orf72, ALFA-1, causes the nuclear translocation of HLH-30/TFEB, leading to activation of lipolysis and premature lethality during starvation-induced developmental arrest in C. elegans. A similar conserved pathway exists in human cells, in which C9orf72 regulates mTOR and TFEB signaling. C9orf72 interacts with and dynamically regulates the level of Rag GTPases, which are responsible for the recruitment of mTOR and TFEB on the lysosome upon amino acid signals. These results have revealed previously unknown functions of C9orf72 in nutrient sensing and metabolic pathways and suggest that dysregulation of C9orf72 functions could compromise cellular fitness under conditions of nutrient stress.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteína C9orf72/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Lipólise , Transporte Ativo do Núcleo Celular , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteína C9orf72/genética , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo
8.
Int J Mol Sci ; 24(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37511159

RESUMO

Fgf21 has been identified as playing a regulatory role in muscle growth and function. Although the mechanisms through which endurance training regulates skeletal muscle have been widely studied, the contribution of Fgf21 remains poorly understood. Here, muscle size and function were measured, and markers of fiber type were evaluated using immunohistochemistry, immunoblots, or qPCR in endurance-exercise-trained wild-type and Fgf21 KO mice. We also investigated Fgf21-induced fiber conversion in C2C12 cells, which were incubated with lentivirus and/or pathway inhibitors. We found that endurance exercise training enhanced the Fgf21 levels of liver and GAS muscle and exercise capacity and decreased the distribution of skeletal muscle fiber size, and fast-twitch fibers were observed converting to slow-twitch fibers in the GAS muscle of mice. Fgf21 promoted the markers of fiber-type transition and eMyHC-positive myotubes by inhibiting the TGF-ß1 signaling axis and activating the p38 MAPK signaling pathway without apparent crosstalk. Our findings suggest that the transformation and function of skeletal muscle fiber types in response to endurance training could be mediated by Fgf21 and its downstream signaling pathways. Our results illuminate the mechanisms of Fgf21 in endurance-exercise-induced fiber-type conversion and suggest a potential use of Fgf21 in improving muscle health and combating fatigue.


Assuntos
Fibras Musculares Esqueléticas , Condicionamento Físico Animal , Resistência Física , Fator de Crescimento Transformador beta1 , Animais , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo
9.
Stress ; 24(5): 514-528, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33280472

RESUMO

During pregnancy, uterus undergoes the environment adaptation as part of a program of development. In the world, one in four people worldwide suffer from mental illness, especially pregnant women. ß-Adrenergic receptor (ß-AR) is an important regulator that converts environmental stimuli into intracellular signals in mice uterus. CD-1 (ICR) mice undergone restraint stress, which was a case in model to simulate the psychological stress. The plasma and implantation sites in uterus were obtained and examined. PCR analysis demonstrated that ß2-AR expression levels in embryo day (E) 3, 5 and 7 were kept at a significantly higher level (p < 0.05) under restraint stress and higher than ß1-AR and ß3-AR in different gestation ages. The ß2-AR protein levels were obviously increased (p < 0.05) due to the markedly elevated norepinephrine (NE) concentration (p < 0.05). In our previous study, restraint stress can induce the apoptosis and inflammation. Also, the matrix metalloprotein-9 (MMP-9) was decreased significantly (p < 0.05) under restraint stress. Meanwhile, Caspase3, p-NF-κB p65 and p-ERK1/2 were obviously increased (p < 0.05) in the work. In vitro studies showed that the p-ERK1/2 and Caspase-3 levels were raised (p < 0.05) after ß2-AR was activated. However, they were decreased when PKA was blocked. The protein levels of Caspase-3 were reduced when ERK and NF-κB were blocked (p < 0.05). In conclusion, the ß2-AR/cAMP/PKA pathway promoted apoptosis and affected the development of the uterus through the ERK and NF-κB signaling pathway. The findings of this study may provide evidence for female reproduction under psychological stress.


Assuntos
Receptores Adrenérgicos beta 2 , Restrição Física , Estresse Psicológico , Animais , AMP Cíclico , Proteínas Quinases Dependentes de AMP Cíclico , Feminino , Camundongos , Camundongos Endogâmicos ICR , Gravidez , Receptores Adrenérgicos beta 2/genética , Transdução de Sinais
10.
Endocr J ; 68(4): 485-502, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33408312

RESUMO

Female, especially for pregnant female, are vulnerable to psychological stress. The morphology and metabolism of the maternal intestine are both obviously changed during pregnancy, thus making intestinal health status more fragile under psychological stress. The aim of the present study was to investigate the role of CRH and CRHR1 in the pregnant maternal intestine under psychological stress, thus exploring the mechanism of psychological stress in the pregnant maternal intestine. Bama miniature pigs were divided into the control and restraint stress groups from the first day of pregnancy. After restraint stress treatment for 18 consecutive days (D18), the plasma, duodenum, jejunum, ileum and colon were collected for study. Pregnant Bama miniature pigs subjected to restraint stress had significantly elevated CRH, adrenocorticotropic hormone (ACTH) and cortisol (COR) levels in plasma. Consistent with the increase in CRH levels, we observed enhanced oxidative stress levels in the intestine, which resulted in intestinal mucosal injury, including impaired intestinal morphology, a reduced number of goblet cells and proliferating cell nuclear antigen-positive cells, decreased expression of MUC2 and tight junctions, and elevated expression of CRHR1 and caspase-3. Moreover, exogenous CRH could directly promote IPEC-J2 cell apoptosis and influence its cell cycle (S and G2 phase) through CRHR1, and antalarmin could alleviate this phenomenon. Therefore, our results illustrated that the intestinal dysfunction of pregnant Bama miniature pigs was caused by restraint stress, and these changes were associated with the enhanced expression of CRH and CRHR1 in the intestine.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Mucosa Intestinal/metabolismo , Restrição Física , Estresse Psicológico/metabolismo , Animais , Apoptose/fisiologia , Caspase 3/metabolismo , Sobrevivência Celular/fisiologia , Células Epiteliais/metabolismo , Feminino , Gravidez , Suínos
11.
Int J Mol Sci ; 22(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540675

RESUMO

Restraint stress causes various maternal diseases during pregnancy. ß2-Adrenergic receptor (ß2-AR) and Forkhead transcription factor class O 1 (FOXO1) are critical factors not only in stress, but also in reproduction. However, the role of FOXO1 in restraint stress, causing changes in the ß2-AR pathway in pregnant mice, has been unclear. The aim of this research was to investigate the ß2-AR pathway of restraint stress and its impact on the oxidative stress of the maternal uterus. In the study, maternal mice were treated with restraint stress by being restrained in a transparent and ventilated device before sacrifice on Pregnancy Day 5 (P5), Pregnancy Day 10 (P10), Pregnancy Day 15 (P15), and Pregnancy Day 20 (P20) as well as on Non-Pregnancy Day 5 (NP5). Restraint stress augmented blood corticosterone (CORT), norepinephrine (NE), and blood glucose levels, while oestradiol (E2) levels decreased. Moreover, restraint stress increased the mRNA levels of the FOXO family, ß2-AR, and even the protein levels of FOXO1 and ß2-AR in the uterus and ovaries. Furthermore, restraint stress increased uterine oxidative stress level. In vitro, the protein levels of FOXO1 were also obviously increased when ß2-AR was activated in endometrial stromal cells (ESCs). In addition, phosphorylated-nuclear factor kappa-B p65 (p-NF-κB p65) and its target genes decreased significantly when FOXO1 was inhibited. Overall, it can be said that the ß2-AR/FOXO1/p-NF-κB p65 pathway was activated when pregnant mice were under restraint stress. This study provides a scientific basis for the origin of psychological stress in pregnant women.


Assuntos
Endométrio/metabolismo , Proteína Forkhead Box O1/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Transdução de Sinais , Fator de Transcrição RelA/metabolismo , Animais , Corticosterona/sangue , Endométrio/citologia , Estradiol/sangue , Feminino , Camundongos , Norepinefrina/sangue , Gravidez , Restrição Física/efeitos adversos , Células Estromais/metabolismo
12.
Am J Physiol Gastrointest Liver Physiol ; 316(4): G551-G561, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30735454

RESUMO

Necroptosis, a form of regulated necrosis, has been reported to be involved in numerous pathologies, including sepsis. However, a protective effect of the selective inhibitor of necroptosis, necrostatin-1 (Nec-1), against sepsis remains to be confirmed. Animals (rats and mice) were subjected to cecal ligation and puncture (CLP) to mimic clinical sepsis. Nec-1 or its vehicle (control) was administered 20 min before CLP. Survival time was observed up to 72 h after CLP. Specimens of liver tissue and serum were obtained at 6 h, 12 h, and 18 h. Expression of necroptosis-related proteins [receptor-interacting protein kinase (RIP)1, RIP3, and mixed lineage kinase domain-like (MLKL)] was determined by Western blot analysis. The RIP1/RIP3 interaction and the recruitment of MLKL to RIP3 were also analyzed. Liver function, histopathological changes, serum inflammation cytokines, TUNEL staining, and the expression of apoptosis-related protein, including caspase-3, B-cell lymphoma 2 (Bcl-2), and Bcl-2-associated X (Bax), was determined. As expected, Nec-1 administration reduced the expression of necroptosis-related proteins and the RIP1/RIP3 interaction, indicating inhibited necroptosis. Surprisingly, Nec-1 treatment exacerbated the liver injury and shortened survival time of septic rats with increased TUNEL-positive cells, cleaved caspase-3 protein content, and Bax/Bcl-2 ratio. Collectively, these findings show that Nec-1 administration inhibited the hepatocyte necroptosis pathway but accelerated apoptosis via the apoptotic pathway in CLP-induced sepsis rat. NEW & NOTEWORTHY The present study demonstrated that a chemical inhibitor necrostatin-1 (Nec-1) or receptor-interacting protein kinase(RIP1) knock down targeted at necroptosis inhibition accelerated liver injury of following sepsis. For fundamental research, these results warrant further investigation of the potential link between Nec-1 administration and the cellular apoptosis following sepsis induced liver injury. For applied research, these results suggest the potential harmful effect of Nec-1 on future sepsis treatment.


Assuntos
Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Imidazóis/farmacocinética , Indóis/farmacocinética , Hepatopatias , Necroptose , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Sepse , Animais , Modelos Animais de Doenças , Hepatopatias/etiologia , Hepatopatias/metabolismo , Hepatopatias/patologia , Hepatopatias/fisiopatologia , Camundongos , Necroptose/efeitos dos fármacos , Necroptose/fisiologia , Proteínas Quinases/metabolismo , Ratos , Receptores de Morte Celular/antagonistas & inibidores , Sepse/complicações , Sepse/metabolismo , Fatores de Tempo
13.
Reprod Biol Endocrinol ; 16(1): 80, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30126412

RESUMO

In recent years, the study of oxidative stress (OS) has become increasingly popular. In particular, the role of OS on female fertility is very important and has been focused on closely. The occurrence of OS is due to the excessive production of reactive oxygen species (ROS). ROS are a double-edged sword; they not only play an important role as secondary messengers in many intracellular signaling cascades, but they also exert indispensable effects on pathological processes involving the female genital tract. ROS and antioxidants join in the regulation of reproductive processes in both animals and humans. Imbalances between pro-oxidants and antioxidants could lead to a number of female reproductive diseases. This review focuses on the mechanism of OS and a series of female reproductive processes, explaining the role of OS in female reproduction and female reproductive diseases caused by OS, including polycystic ovary syndrome (PCOS), endometriosis, preeclampsia and so on. Many signaling pathways involved in female reproduction, including the Keap1-Nrf2, NF-κB, FOXO and MAPK pathways, which are affected by OS, are described, providing new ideas for the mechanism of reproductive diseases.


Assuntos
Doenças dos Genitais Femininos/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Reprodução , Animais , Feminino , Humanos , Infertilidade Feminina/metabolismo , Gravidez
14.
PLoS Biol ; 13(4): e1002114, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25837623

RESUMO

Protein quality control is essential for clearing misfolded and aggregated proteins from the cell, and its failure is associated with many neurodegenerative disorders. Here, we identify two genes, ufd-2 and spr-5, that when inactivated, synergistically and robustly suppress neurotoxicity associated with misfolded proteins in Caenorhabditis elegans. Loss of human orthologs ubiquitination factor E4 B (UBE4B) and lysine-specific demethylase 1 (LSD1), respectively encoding a ubiquitin ligase and a lysine-specific demethylase, promotes the clearance of misfolded proteins in mammalian cells by activating both proteasomal and autophagic degradation machineries. An unbiased search in this pathway reveals a downstream effector as the transcription factor p53, a shared substrate of UBE4B and LSD1 that functions as a key regulator of protein quality control to protect against proteotoxicity. These studies identify a new protein quality control pathway via regulation of transcription factors and point to the augmentation of protein quality control as a wide-spectrum antiproteotoxicity strategy.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Controle de Qualidade , Transcrição Gênica/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Animais , Autofagia , Proteínas de Caenorhabditis elegans/genética , Técnicas de Silenciamento de Genes , Mutação , Complexo de Endopeptidases do Proteassoma/metabolismo , Estresse Fisiológico , Superóxido Dismutase/genética , Superóxido Dismutase-1
15.
J Neurosci ; 35(42): 14286-306, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26490867

RESUMO

Misfolded proteins accumulate and aggregate in neurodegenerative disease. The existence of these deposits reflects a derangement in the protein homeostasis machinery. Using a candidate gene screen, we report that loss of RAD-23 protects against the toxicity of proteins known to aggregate in amyotrophic lateral sclerosis. Loss of RAD-23 suppresses the locomotor deficit of Caenorhabditis elegans engineered to express mutTDP-43 or mutSOD1 and also protects against aging and proteotoxic insults. Knockdown of RAD-23 is further neuroprotective against the toxicity of SOD1 and TDP-43 expression in mammalian neurons. Biochemical investigation indicates that RAD-23 modifies mutTDP-43 and mutSOD1 abundance, solubility, and turnover in association with altering the ubiquitination status of these substrates. In human amyotrophic lateral sclerosis spinal cord, we find that RAD-23 abundance is increased and RAD-23 is mislocalized within motor neurons. We propose a novel pathophysiological function for RAD-23 in the stabilization of mutated proteins that cause neurodegeneration. SIGNIFICANCE STATEMENT: In this work, we identify RAD-23, a component of the protein homeostasis network and nucleotide excision repair pathway, as a modifier of the toxicity of two disease-causing, misfolding-prone proteins, SOD1 and TDP-43. Reducing the abundance of RAD-23 accelerates the degradation of mutant SOD1 and TDP-43 and reduces the cellular content of the toxic species. The existence of endogenous proteins that act as "anti-chaperones" uncovers new and general targets for therapeutic intervention.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Doença dos Neurônios Motores/genética , Mutação/genética , Interferência de RNA/fisiologia , Animais , Animais Geneticamente Modificados , Animais Recém-Nascidos , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Genótipo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Masculino , Camundongos , Atividade Motora/genética , Fotodegradação , Ratos , Ratos Sprague-Dawley
16.
Food Sci Technol Int ; 21(5): 392-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24917651

RESUMO

The effect of different sterilization methods (thermal, microwave, and ultrasonic processing) on the main bioactive compounds and antioxidant activity of black mulberry juice during selected storage time (8 days) and temperatures (5, 15, and 25 ℃) was investigated. The antioxidant activity of thermal-treated juice depleted with storage time, whilst both ultrasound- and microwave-treated juices showed transient increase in antioxidant activity during the first 2 days that later decreased with storage time. Lower temperature storage preserved more bioactive compounds and antioxidant activity, especially in ultrasound sterilized samples. The activation energy values were 15.99, 13.07, and 12.81 kJ/mol for ultrasonic, microwave, and thermal pasteurization processes, respectively. In general, ultrasound-sterilized samples showed higher total phenolics, anthocyanin, and antioxidant activity compared to the microwave- and thermal-processed juice during the storage time especially at lower temperatures.


Assuntos
Bebidas/análise , Manipulação de Alimentos/métodos , Frutas/química , Temperatura Alta , Micro-Ondas , Morus/química , Antocianinas/química , Antioxidantes/química , Armazenamento de Alimentos , Polifenóis/química , Temperatura , Ultrassom
17.
Aging (Albany NY) ; 16(5): 4609-4630, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38428405

RESUMO

Muscle satellite cells (SCs) play a crucial role in the regeneration and repair of skeletal muscle injuries. Previous studies have shown that myogenic exosomes can enhance satellite cell proliferation, while the expression of miR-140-5p is significantly reduced during the repair process of mouse skeletal muscle injuries induced by BaCl2. This study aims to investigate the potential of myogenic exosomes carrying miR-140-5p inhibitors to activate SCs and influence the regeneration of injured muscles. Myogenic progenitor cell exosomes (MPC-Exo) and contained miR-140-5p mimics/inhibitors myogenic exosomes (MPC-Exo140+ and MPC-Exo140-) were employed to treat SCs and use the model. The results demonstrate that miR-140-5p regulates SC proliferation by targeting Pax7. Upon the addition of MPC-Exo and MPC-Exo140-, Pax7 expression in SCs significantly increased, leading to the transition of the cell cycle from G1 to S phase and an enhancement in cell proliferation. Furthermore, the therapeutic effect of MPC-Exo140- was validated in animal model, where the expression of muscle growth-related genes substantially increased in the gastrocnemius muscle. Our research demonstrates that MPC-Exo140- can effectively activate dormant muscle satellite cells, initiating their proliferation and differentiation processes, ultimately leading to the formation of new skeletal muscle cells and promoting skeletal muscle repair and remodeling.


Assuntos
Exossomos , MicroRNAs , Células Satélites de Músculo Esquelético , Camundongos , Animais , Células Satélites de Músculo Esquelético/metabolismo , Exossomos/metabolismo , Músculo Esquelético/fisiologia , Proliferação de Células/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Regeneração/fisiologia
18.
FEBS Open Bio ; 14(4): 584-597, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38366735

RESUMO

Oleanolic acid (OA) is a pentacyclic triterpene with reported protective effects against various diseases, including diabetes, hepatitis, and different cancers. However, the effects of OA on obesity-induced muscle atrophy remain largely unknown. This study investigated the effects of OA on skeletal muscle production and proliferation of C2C12 cells. We report that OA significantly increased skeletal muscle mass and improved glucose intolerance and insulin resistance. OA inhibited dexamethasone (Dex)-induced muscle atrophy in C2C12 myoblasts by regulating the PI3K/Akt signaling pathway. In addition, it also inhibited expression of MuRF1 and Atrogin1 genes in skeletal muscle of obese mice suffering from muscle atrophy, and increased the activation of PI3K and Akt, thereby promoting protein synthesis, and eventually alleviating muscle atrophy. Taken together, these findings suggest OA may have potential for the prevention and treatment of muscle atrophy.


Assuntos
Atrofia Muscular , Ácido Oleanólico , Animais , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/metabolismo , Obesidade/complicações , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Ácido Oleanólico/metabolismo , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
19.
Acta Physiol (Oxf) ; 240(3): e14103, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38288566

RESUMO

AIM: Exercise can reduce body weight and promote white fat browning, but the underlying mechanisms remain largely unknown. This study investigated the role of fibronectin type III domain-containing protein 5 (FNDC5)/Irisin, a hormone released from exercising muscle, in the browning of white fat in circulating extracellular vesicles (EVs). METHODS: Mice were subjected to a 4 weeks of running table exercise, and fat browning was analyzed via histology, protein blotting and qPCR. Circulating EVs were extracted by ultrahigh-speed centrifugation, and ELISA was used to measure the irisin concentration in the circulating EVs. Circulating EVs that differentially expressed irisin were applied to adipocytes, and the effect of EV-irisin on adipocyte energy metabolism was analyzed by immunofluorescence, protein blotting, and cellular oxygen consumption rate analysis. RESULTS: During sustained exercise, the mice lost weight and developed fat browning. FNDC5 was induced, cleaved, and secreted into irisin, and irisin levels subsequently increased in the plasma during exercise. Interestingly, irisin was highly expressed in circulating EVs that effectively promoted adipose browning. Mechanistically, the circulating EV-irisin complex is transported intracellularly by the adipocyte membrane receptor integrin αV, which in turn activates the AMPK signaling pathway, which is dependent on mitochondrial uncoupling protein 1 to cause mitochondrial plasmonic leakage and promote heat production. After inhibition of the AMPK signaling pathway, the effects of the EV-irisin on promoting fat browning were minimal. CONCLUSION: Exercise leads to the accumulation of circulating EV-irisin, which enhances adipose energy metabolism and thermogenesis and promotes white fat browning in mice, leading to weight loss.


Assuntos
Vesículas Extracelulares , Fibronectinas , Camundongos , Animais , Fibronectinas/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo Branco , Obesidade/metabolismo , Fatores de Transcrição/metabolismo , Termogênese , Vesículas Extracelulares/metabolismo , Tecido Adiposo Marrom
20.
Biodivers Data J ; 11: e96231, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38327357

RESUMO

To improve the taxonomy and systematics of Porcellanidae within the evolution of Anomura, we describe the complete mitochondrial genomes (mitogenomes) sequence of Pisidiaserratifrons, which is 15,344 bp in size, contains the entire set of 37 genes and has an AT-rich region. Compared with the pancrustacean ground pattern, at least five gene clusters (or genes) are significantly different with the typical genes, involving eleven tRNA genes and four PCGs and the tandem duplication/random loss and recombination models were used to explain the observed large-scale gene re-arrangements. The phylogenetic results showed that all Porcellanidae species clustered together as a group with well nodal support. Most Anomura superfamilies were found to be monophyletic, except Paguroidea. Divergence time estimation implies that the age of Anomura is over 225 MYA, dating back to at least the late Triassic. Most of the extant superfamilies and families arose during the late Cretaceous to early Tertiary. In general, the results obtained in this study will contribute to a better understanding of gene re-arrangements in Porcellanidae mitogenomes and provide new insights into the phylogeny of Anomura.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA