Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 565(7741): 631-635, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30700869

RESUMO

Proton-exchange-membrane fuel cells (PEMFCs) are attractive next-generation power sources for use in vehicles and other applications1, with development efforts focusing on improving the catalyst system of the fuel cell. One problem is catalyst poisoning by impurity gases such as carbon monoxide (CO), which typically comprises about one per cent of hydrogen fuel2-4. A possible solution is on-board hydrogen purification, which involves preferential oxidation of CO in hydrogen (PROX)3-7. However, this approach is challenging8-15 because the catalyst needs to be active and selective towards CO oxidation over a broad range of low temperatures so that CO is efficiently removed (to below 50 parts per million) during continuous PEMFC operation (at about 353 kelvin) and, in the case of automotive fuel cells, during frequent cold-start periods. Here we show that atomically dispersed iron hydroxide, selectively deposited on silica-supported platinum (Pt) nanoparticles, enables complete and 100 per cent selective CO removal through the PROX reaction over the broad temperature range of 198 to 380 kelvin. We find that the mass-specific activity of this system is about 30 times higher than that of more conventional catalysts consisting of Pt on iron oxide supports. In situ X-ray absorption fine-structure measurements reveal that most of the iron hydroxide exists as Fe1(OH)x clusters anchored on the Pt nanoparticles, with density functional theory calculations indicating that Fe1(OH)x-Pt single interfacial sites can readily react with CO and facilitate oxygen activation. These findings suggest that in addition to strategies that target oxide-supported precious-metal nanoparticles or isolated metal atoms, the deposition of isolated transition-metal complexes offers new ways of designing highly active metal catalysts.

2.
Angew Chem Int Ed Engl ; 63(28): e202404398, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38698730

RESUMO

Catalyst deactivation by sintering and coking is a long-standing issue in metal-catalyzed harsh high-temperature hydrocarbon reactions. Ultrathin oxide coatings of metal nanocatalysts have recently appeared attractive to address this issue, while the porosity of the overlayer is difficult to control to preserve the accessibility of embedded metal nanoparticles, thus often leading to a large decrease in activity. Here, we report that a nanometer-thick alumina coating of MgAl2O4-supported metal catalysts followed by high-temperature reduction can transform a nonporous amorphous alumina overlayer into a porous Mg1-xAl2Oy crystalline spinel structure with a pore size of 2-3 nm and weakened acidity. The high porosity stems from the restrained Mg migration from the MgAl2O4 support to the alumina overlayer through solid-state reactions at high temperatures. The resulting Ni/MgAl2O4 and Pt/MgAl2O4 catalysts with a porous crystalline Mg1-xAl2Oy overlayer achieved remarkably high stability while preserving much higher activity than the corresponding alumina-coated Ni and Pt catalysts on MgO and Al2O3 supports in the reactions of dry reforming of methane and propane dehydrogenation, respectively.

3.
Angew Chem Int Ed Engl ; : e202406262, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787604

RESUMO

Single-atom catalysts (SACs) have recently become highly attractive for selective hydrogenation reactions owing to their remarkably high selectivity. However, compared to their nanoparticle counterparts, atomically dispersed metal atoms in SACs often show inferior activity and are prone to aggregate under reaction conditions. Here, by theoretical calculations, we show that tuning the local electronic structures of metal anchor sites on g-C3N4 by doping B atoms (BCN) with relatively lower electronegativity allows achieving zero-valence Pd SACs with reinforced metal-support orbital hybridizations for high stability and upshifted Pd 4d orbitals for high activity in H2 activation. The precise synthesis of Pd SACs on BCN supports with varied B contents substantiated the theoretical prediction. A zero-valence Pd1/BCN SAC was achieved on a BCN support with a relatively low B content. It exhibited much higher stability in a H2 reducing environment, and more strikingly, a hydrogenation activity, approximately 10 and 34 times greater than those high-valence Pd1/g-C3N4 and Pd1/BCN with a high B content, respectively.

4.
J Am Chem Soc ; 145(12): 6702-6709, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36920448

RESUMO

Reactive metal-support interactions (RMSIs) induce the formation of bimetallic alloys and offer an effective way to tune the electronic and geometric properties of metal sites for advanced catalysis. However, RMSIs often require high-temperature reductions (>500 °C), which significantly limits the tuning of bimetallic compositional varieties. Here, we report that an atomically thick Ga2O3 coating of Pd nanoparticles enables the initiation of RMSIs at a much lower temperature of ∼250 °C. State-of-the-art microscopic and in situ spectroscopic studies disclose that low-temperature RMSIs initiate the formation of rarely reported Ga-rich PdGa alloy phases, distinct from the Pd2Ga phase formed in traditional Pd/Ga2O3 catalysts after high-temperature reduction. In the CO2 hydrogenation reaction, the Ga-rich alloy phases impressively boost the formation of methanol and dimethyl ether ∼5 times higher than that of Pd/Ga2O3. In situ infrared spectroscopy reveals that the Ga-rich phases greatly favor formate formation as well as its subsequent hydrogenation, thus leading to high productivity.

5.
Angew Chem Int Ed Engl ; 62(23): e202300110, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37026370

RESUMO

Increasing selectivity without the expense of activity is desired but challenging in heterogeneous catalysis. By revealing the molecule saturation and adsorption sensitivity on overlayer thickness, strain, and coordination of Pd-based catalysts from first-principles calculations, we designed a stable Pd monolayer (ML) catalyst on a Ru terrace to boost both activity and selectivity of acetylene semihydrogenation. The least saturated molecule is most sensitive to the change in catalyst electronic and geometric properties. By simultaneously compressing the Pd ML and exposing the high coordination sites, the adsorption of more saturated ethylene is considerably weakened to facilitate the desorption for high selectivity. The even stronger weakening to the least saturated acetylene drives its hydrogenation such that it is more exothermic, thereby boosting the activity. Tailoring the molecule saturation and its sensitivity to structure and composition provides a tool for rational design of efficient catalysts.

6.
Angew Chem Int Ed Engl ; 62(8): e202218167, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36573769

RESUMO

Tuning the coordination environments of metal single atoms (M1 ) in single-atom catalysts has shown large impacts on catalytic activity and stability but often barely on selectivity in thermocatalysis. Here, we report that simultaneously regulating both Rh1 atoms and ZrO2 support with alkali ions (e.g., Na) enables efficient switching of the reaction products from nearly 100 % CH4 to above 99 % CO in CO2 hydrogenation in a wide temperature range (240-440 °C) along with a record high activity of 9.4 molCO gRh -1 h-1 at 300 °C and long-term stability. In situ spectroscopic characterization and theoretical calculations unveil that alkali ions on ZrO2 change the surface intermediate from formate to carboxy species during CO2 activation, thus leading to exclusive CO formation. Meanwhile, alkali ions also reinforce the electronic Rh1 -support interactions, endowing the Rh1 atoms more electron deficient, which improves the stability against sintering and inhibits deep hydrogenation of CO to CH4 .

7.
Angew Chem Int Ed Engl ; 61(23): e202202330, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35322514

RESUMO

The active site of the industrial Cu/ZnO/Al2 O3 catalyst used in CO2 hydrogenation to methanol has been debated for decades. Grand challenges remain in the characterization of structure, composition, and chemical state, both microscopically and spectroscopically, and complete theoretical calculations are limited when it comes to describing the intrinsic activity of the catalyst over the diverse range of structures that emerge under realistic conditions. Here a series of inverse model catalysts of ZnO on copper hydroxide were prepared where the size of ZnO was precisely tuned from atomically dispersed species to nanoparticles using atomic layer deposition. ZnO decoration boosted methanol formation to a rate of 877 gMeOH kgcat -1 h-1 with ≈80 % selectivity at 493 K. High pressure in situ X-ray absorption spectroscopy demonstrated that the atomically dispersed ZnO species are prone to aggregate at oxygen-deficient ZnO ensembles instead of forming CuZn metal alloys. By modeling various potential active structures, density functional theory calculations and microkinetic simulations revealed that ZnO/Cu interfaces with oxygen vacancies, rather than stoichiometric interfaces, Cu and CuZn alloys were essential to catalytic activation.

8.
Angew Chem Int Ed Engl ; 61(41): e202211919, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35981974

RESUMO

Regulation of the atom-atom interspaces of dual-atom catalysts is essential to optimize the dual-atom synergy to achieve high activity but remains challenging. Herein, we report an effective strategy to regulate the Pt1 -Ni1 interspace to achieve Pt1 Ni1 dimers and Pt1 +Ni1 heteronuclear dual-single-atom catalysts (HDSACs) by tailoring steric hindrance between metal precursors during synthesis. Spectroscopic characterization reveals obvious electron transfers in Pt1 Ni1 oxo dimers but not in Pt1 +Ni1 HDSAC. In the hydrolysis of ammonia borane (AB), the H2 formation rates show an inverse proportion to the Pt1 -Ni1 interspace. The rate of Pt1 Ni1 dimers is ≈13 and 2 times higher than those of Pt1 and Pt1 +Ni1 HDSAC, manifesting the interspace-dependent synergy. Theoretical calculations reveal that the bridging OH group in Pt1 Ni1 dimers promotes water dissociation, while Pt1 facilitates the cleavage of B-H bonds in AB, which boosts a bifunctional synergy to accelerate H2 production cooperatively.

9.
J Am Chem Soc ; 143(45): 18854-18858, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34730347

RESUMO

Controlling the chemical environments of the active metal atom including both coordination number (CN) and local composition (LC) is vital to achieve active and stable single-atom catalysts (SACs), but remains challenging. Here we synthesized a series of supported Pt1 SACs by depositing Pt atoms onto the pretuned anchoring sites on nitrogen-doped carbon using atomic layer deposition. In hydrogenation of para-chloronitrobenzene, the Pt1 SAC with a higher CN about four but less pyridinic nitrogen (Npyri) content exhibits a remarkably high activity along with superior recyclability compared to those with lower CNs and more Npyri. Theoretical calculations reveal that the four-coordinated Pt1 atoms with about 1 eV lower formation energy are more resistant to agglomerations than the three-coordinated ones. Composition-wise decrease of the Pt-Npyri bond upshifts gradually the Pt-5d center, and minimal one Pt-Npyri bond features a high-lying Pt-5d state that largely facilitates H2 dissociation, boosting hydrogenation activity remarkably.

10.
Angew Chem Int Ed Engl ; 60(35): 19324-19330, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34184379

RESUMO

Semi-hydrogenation of acetylene to ethylene is an important process to purify ethylene streams in industry. However, among current approaches reported in the literature, high ethylene selectivity has been generally achieved at the expense of activity. Herein, we show that a Ga2 O3 coating of Ag@Pd core-shell bimetallic nanoparticle catalysts, allows improvement of the ethylene selectivity to a much greater extent than the coating of monometallic Pd nanoparticles, while preserving a remarkable intrinsic activity, approximately 50 times higher than the benchmark catalyst of Pd1 Ag single-atom alloys (SAAs). Importantly, the resulting catalyst also shows excellent long-term stability, by suppressing coke formation efficiently. Spectroscopic characterization reveals that weakened ethylene adsorption by bimetallic electronic synergy, and oxide site isolation are both essential for the high ethylene selectivity and high-coking resistance. H-D exchange measurements further show that the Ga2 O3 -coated Ag@Pd catalyst possesses a much higher activity of H2 activation than that of Pd1 Ag SAAs, thus boosting the hydrogenation activity at the same time.

11.
Small ; 16(52): e2005571, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33258310

RESUMO

Planar metal clusters possess high metal utilization, distinct electronic properties, and catalytic functions from their 3D counterparts. However, synthesis of these materials is challenging due to much elevated surface free energies. Here it is reported that silica supported planar bilayer Pt-CoOx subnano clusters, consisting of approximately one atomic layer of Pt and one CoOx layer on top, can be achieved by employing strong-electrostatic interactions during impregnation and precisely-controlled CoOx coating using atomic layer deposition. Such bilayer structure is unambiguously confirmed by electron microscopy and in situ X-ray absorption fine spectroscopy which is never reported before. This synthetic approach can be extended to another eight permutations of planar metal-oxide subnano clusters. The resulting bilayer catalysts, owing to unique electronic properties and the abundant metal-oxide interfaces created, exhibit excellent catalytic performances in the reactions of preferential oxidation of CO in H2 and selective hydrogenation of acetylene, by showing much higher selectivity and intrinsic activities at least 8 and 48 times greater than those conventional oxide coated 3D metal clusters/nanoparticles, highlighting the advances of bilayer interfacial structure. These findings open a new avenue to design abundant and highly active metal-oxide interfaces for advanced metal catalysis.

12.
J Am Chem Soc ; 141(37): 14515-14519, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31476119

RESUMO

Developing an active and stable metal single-atom catalyst (SAC) is challenging due to the high surface free energy of metal atoms. In this work, we report that tailoring of the 5d state of Pt1 single atoms on Co3O4 through strong electronic metal-support interactions (EMSIs) boosts the activity up to 68-fold higher than those on other supports in dehydrogenation of ammonia borane for room-temperature hydrogen generation. More importantly, this catalyst also exhibits excellent stability against sintering and leaching, in sharp contrast to the rapid deactivation observed on other Pt single-atom and nanoparticle catalysts. Detailed spectroscopic characterization and theoretical calculations revealed that the EMSI tailors the unoccupied 5d state of Pt1 single atoms, which modulates the adsorption of ammonia borane and facilities hydrogen desorption, thus leading to the high activity. Such extraordinary electronic promotion was further demonstrated on Pd1/Co3O4 and in hydrogenation reactions, providing a new promising way to design advanced SACs with high activity and stability.

13.
J Environ Sci (China) ; 66: 113-124, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29628077

RESUMO

Effluents from wastewater treatment plants (WWTPs) containing microorganisms and residual nutrients can influence the biofilm formation. Although the process and mechanism of bacterial biofilm formation have been well characterized, little is known about the characteristics and interaction of bacteria, archaea and eukaryotes in the early colonization, especially under the influence of WWTP effluent. The aim of this study was to characterize the important bacterial, archaeal and eukaryotic species in the early stage of biofilm formation downstream of the WWTP outlet. Water and biofilm samples were collected 24 and 48hr after the deposition of bio-cords in the stream. Illumina Miseq sequencing of the 16S and 18S rDNA showed that, among the three domains, the bacterial biofilm community had the largest alpha and beta diversity. The early bacterial colonizers appeared to be "biofilm-specific", with only a few dominant operational taxonomic units (OTUs) shared between the biofilm and the ambient water environment. Alpha-proteobacteria and Ciliophora tended to dominate the bacterial and eukaryotic communities, respectively, of the early biofilm already at 24hr, whereas archaea played only a minor role during the early stage of colonization. The network analysis showed that the three domains of microbial community connected highly during the early colonization and it might be a characteristic of the microbial communities in the biofilm formation process where co-occurrence relationships could drive coexistence and diversity maintenance within the microbial communities.


Assuntos
Biofilmes/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Eliminação de Resíduos Líquidos , Águas Residuárias/microbiologia , Archaea/genética , Bactérias/genética
14.
J Am Chem Soc ; 139(5): 2035-2044, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28103670

RESUMO

The selectivity control toward aldehyde in the aromatic alcohol oxidation remains a grand challenge using molecular oxygen under mild conditions. In this work, we designed and synthesized Pt/PCN-224(M) composites by integration of Pt nanocrystals and porphyrinic metal-organic frameworks (MOFs), PCN-224(M). The composites exhibit excellent catalytic performance in the photo-oxidation of aromatic alcohols by 1 atm O2 at ambient temperature, based on a synergetic photothermal effect and singlet oxygen production. Additionally, in opposition to the function of the Schottky junction, injection of hot electrons from plasmonic Pt into PCN-224(M) would lower the electron density of the Pt surface, which thus is tailorable for the optimized catalytic performance via the competition between the Schottky junction and the plasmonic effect by altering the light intensity. To the best of our knowledge, this is not only an unprecedented report on singlet oxygen-engaged selective oxidation of aromatic alcohols to aldehydes but also the first report on photothermal effect of MOFs.

15.
Angew Chem Int Ed Engl ; 56(40): 12191-12196, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28782165

RESUMO

Knowledge of the photocatalytic H2 evolution mechanism is of great importance for designing active catalysts toward a sustainable energy supply. An atomic-level insight, design, and fabrication of single-site Co1 -N4 composite as a prototypical photocatalyst for efficient H2 production is reported. Correlated atomic characterizations verify that atomically dispersed Co atoms are successfully grafted by covalently forming a Co1 -N4 structure on g-C3 N4 nanosheets by atomic layer deposition. Different from the conventional homolytic or heterolytic pathway, theoretical investigations reveal that the coordinated donor nitrogen increases the electron density and lowers the formation barrier of key Co hydride intermediate, thereby accelerating H-H coupling to facilitate H2 generation. As a result, the composite photocatalyst exhibits a robust H2 production activity up to 10.8 µmol h-1 , 11 times higher than that of pristine counterpart.

16.
Inorg Chem ; 55(5): 2037-47, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26894272

RESUMO

Novel high-nuclearity lanthanide clusters (Ln17) are generated in situ in the coordination-driven self-assembly. A metal-cluster-directed symmetry strategy for building metal coordination cages is successfully applied to a lanthanide system for the first time. A new family of octagonal-prismatic lanthanide coordination cages UJN-Ln, formulated as [Ln(µ3-OH)8][Ln16(µ4-O)(µ4-OH)(µ3-OH)8(H2O)8(µ4-dcd)8][(µ3-dcd)8]·22H2O (Ln = Gd, Tb, Dy, Ho, and Er; dcd = 3,3-dimethylcyclopropane-1,2-dicarboxylate dianion), have been assembled from the unique Ln17 clusters and simple cliplike ligand H2dcd. Apart from featuring aesthetically charming structures, all of the compounds present predominantly antiferromagnetic coupling between the corresponding lanthanide ions. Additionally, the intense-green photoluminescence for UJN-Tb and magnetic relaxation behavior for UJN-Dy have been observed. Remarkably, UJN-Gd shows a large magnetocaloric effect (MCE) with an impressive entropy change value of 42.3 J kg(-1) K(-1) for ΔH = 7.0 T at 2.0 K due to the high-nuclearity cluster and the lightweight ligand. The studies highlight the structural diversity of multigonal-prismatic metal coordination cages and provide a new direction in the design of cagelike multifunctional materials by the introduction of lanthanide clusters and other suitable cliplike ligands.

17.
J Am Chem Soc ; 137(33): 10484-7, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26268551

RESUMO

We reported that atomically dispersed Pd on graphene can be fabricated using the atomic layer deposition technique. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and X-ray absorption fine structure spectroscopy both confirmed that isolated Pd single atoms dominantly existed on the graphene support. In selective hydrogenation of 1,3-butadiene, the single-atom Pd1/graphene catalyst showed about 100% butenes selectivity at 95% conversion at a mild reaction condition of about 50 °C, which is likely due to the changes of 1,3-butadiene adsorption mode and enhanced steric effect on the isolated Pd atoms. More importantly, excellent durability against deactivation via either aggregation of metal atoms or carbonaceous deposits during a total 100 h of reaction time on stream was achieved. Therefore, the single-atom catalysts may open up more opportunities to optimize the activity, selectivity, and durability in selective hydrogenation reactions.

18.
Phys Chem Chem Phys ; 17(9): 6470-7, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25657070

RESUMO

The adsorption of palladium hexafluoracetylacetone (Pd(hfac)2) and nucleation of Pd nanoparticles on TiO2(110) surface were observed using scanning tunneling microscopy (STM). Surface species of Pd(hfac)* and Ti(hfac)* uniformly adsorbed on TiO2(110) upon exposure of Pd(hfac)2. No preferential nucleation was observed for the surface species. Atomic resolution STM images revealed that both Pd(hfac)* and Ti(hfac)* appeared on the metastable Ti(5c) sites. After annealing at 700 K, sub-nm Pd nanoparticles were observed across the TiO2(110) without preferential nucleation. The adsorption preferences of Pd(hfac), hfac, and atomic Pd on TiO2(110) surface were studied using density functional theory (DFT), and possible decomposition pathways of Pd(hfac)2 leading to the formation of Pd nucleation sites were presented.

19.
Angew Chem Int Ed Engl ; 54(49): 14810-4, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26463828

RESUMO

Platinum is a commonly used cocatalyst for improved charge separation and surface reactions in photocatalytic water splitting. It is envisioned that its practical applications can be facilitated by further reducing the material cost and improving the efficacy of Pt cocatalysts. In this direction, the use of atomically controlled Pd@Pt quasi-core-shell cocatalysts in combination with TiO2 as a model semiconductor is described. As demonstrated experimentally, the electron trapping necessary for charge separation is substantially promoted by combining a Schottky junction with interfacial charge polarization, enabled by the three-atom-thick Pt shell. Meanwhile, the increase in electron density and lattice strain would significantly enhance the adsorption of H2O onto Pt surface. Taken together, the improved charge separation and molecular activation dramatically boost the overall efficiency of photocatalytic water splitting.

20.
J Am Chem Soc ; 136(26): 9320-6, 2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-24919812

RESUMO

We investigated changes in the Pt-Pt bond distance, particle size, crystallinity, and coordination of Pt nanoparticles as a function of particle size (1-3 nm) and adsorbate (H2, CO) using synchrotron radiation pair distribution function (PDF) and X-ray absorption spectroscopy (XAS) measurements. The ∼1 nm Pt nanoparticles showed a Pt-Pt bond distance contraction of ∼1.4%. The adsorption of H2 and CO at room temperature relaxed the Pt-Pt bond distance contraction to a value close to that of bulk fcc Pt. The adsorption of H2 improved the crystallinity of the small Pt nanoparticles. However, CO adsorption generated a more disordered fcc structure for the 1-3 nm Pt nanoparticles compared to the H2 adsorption Pt nanoparticles. In situ XANES measurements revealed that this disorder results from the electron back-donation of the Pt nanoparticles to CO, leading to a higher degree of rehybridization of the metal orbitals in the Pt-adsorbate system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA