RESUMO
As a key structural parameter, phase depicts the arrangement of atoms in materials. Normally, a nanomaterial exists in its thermodynamically stable crystal phase. With the development of nanotechnology, nanomaterials with unconventional crystal phases, which rarely exist in their bulk counterparts, or amorphous phase have been prepared using carefully controlled reaction conditions. Together these methods are beginning to enable phase engineering of nanomaterials (PEN), i.e., the synthesis of nanomaterials with unconventional phases and the transformation between different phases, to obtain desired properties and functions. This Review summarizes the research progress in the field of PEN. First, we present representative strategies for the direct synthesis of unconventional phases and modulation of phase transformation in diverse kinds of nanomaterials. We cover the synthesis of nanomaterials ranging from metal nanostructures such as Au, Ag, Cu, Pd, and Ru, and their alloys; metal oxides, borides, and carbides; to transition metal dichalcogenides (TMDs) and 2D layered materials. We review synthesis and growth methods ranging from wet-chemical reduction and seed-mediated epitaxial growth to chemical vapor deposition (CVD), high pressure phase transformation, and electron and ion-beam irradiation. After that, we summarize the significant influence of phase on the various properties of unconventional-phase nanomaterials. We also discuss the potential applications of the developed unconventional-phase nanomaterials in different areas including catalysis, electrochemical energy storage (batteries and supercapacitors), solar cells, optoelectronics, and sensing. Finally, we discuss existing challenges and future research directions in PEN.
RESUMO
Electrocatalytic nitrate (NO3-) reduction reaction (NO3RR) holds great potential for the conversion of NO3- contaminants into valuable NH3 in a sustainable method. Unfortunately, the nonequilibrium adsorption of intermediates and sluggish multielectron transfer have detrimental impacts on the electrocatalytic performance of the NO3RR, posing obstacles to its practical application. Herein, we initially screen the adsorption energies of three key intermediates, i.e., *NO3, *NO, and *H2O, along with the d-band centers on 21 types of transition metal (IIIV and IB)-Sb/Bi-based intermetallic compounds (IMCs) as electrocatalysts. The results reveal that hexagonal CoSb IMCs possess the optimal adsorption equilibrium for key intermediates and exhibit outstanding electrocatalytic NO3RR performance with a Faradaic efficiency of 96.3%, a NH3 selectivity of 89.1%, and excellent stability, surpassing the majority of recently reported NO3RR electrocatalysts. Moreover, the integration of CoSb IMCs/C into a novel Zn-NO3- battery results in a high power density of 11.88 mW cm-2.
RESUMO
Heterophase nanomaterials have sparked significant research interest in catalysis due to their distinctive properties arising from synergistic effects of different components and the formed phase boundary. However, challenges persist in the controlled synthesis of heterophase intermetallic compounds (IMCs), primarily due to the lattice mismatch of distinct crystal phases and the difficulty in achieving precise control of the phase transitions. Herein, orthorhombic/cubic Ru2Ge3/RuGe IMCs with engineered boundary architecture are synthesized and anchored on the reduced graphene oxide. The Ru2Ge3/RuGe IMCs exhibit excellent hydrogen evolution reaction (HER) performance with a high current density of 1000 mA cm-2 at a low overpotential of 135 mV. The presence of phase boundaries enhances charge transfer and improves the kinetics of water dissociation while optimizing the processes of hydrogen adsorption/desorption, thus boosting the HER performance. Moreover, an anion exchange membrane electrolyzer is constructed using Ru2Ge3/RuGe as the cathode electrocatalyst, which achieves a current density of 1000 mA cm-2 at a low voltage of 1.73 V, and the activity remains virtually undiminished over 500 h.
RESUMO
Constructing amorphous/intermetallic (A/IMC) heterophase structures by breaking the highly ordered IMC phase with disordered amorphous phase is an effective way to improve the electrocatalytic performance of noble metal-based IMC electrocatalysts because of the optimized electronic structure and abundant heterophase boundaries as active sites. In this study, we report the synthesis of ultrathin A/IMC PtPbBi nanosheets (NSs) for boosting hydrogen evolution reaction (HER) and alcohol oxidation reactions. The resulting A/IMC PtPbBi NSs exhibit a remarkably low overpotential of only 25â mV at 10â mA cm-2 for the HER in an acidic electrolyte, together with outstanding stability for 100â h. In addition, the PtPbBi NSs show high mass activities for methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR), which are 13.2 and 14.5 times higher than those of commercial Pt/C, respectively. Density functional theory calculations demonstrate that the synergistic effect of amorphous/intermetallic components and multimetallic composition facilitate the electron transfer from the catalyst to key intermediates, thus improving the catalytic activity of MOR. This work establishes a novel pathway for the synthesis of heterophase two-dimensional nanomaterials with high electrocatalytic performance across a wide range of electrochemical applications.
RESUMO
Gallium (Ga) with a low melting point can serve as a unique metallic solvent in the synthesis of intermetallic compounds (IMCs). The negative formation enthalpy of transition metal-Ga IMCs endows them with high catalytic stability. Meanwhile, their tunable crystal structures offer the possibility to tailor the configurations of active sites to meet the requirements for specific catalytic applications. Herein, we present a general method for preparing a range of transition metal-Ga IMCs, including Co-Ga, Ni-Ga, Pt-Ga, Pd-Ga, and Rh-Ga IMCs. The structurally ordered CoGa IMCs with body-centered cubic (bcc) structure are uniformly dispersed on the nitrogen-doped reduced graphene oxide substrate (O-CoGa/NG) and deliver outstanding nitrate reduction reaction (NO3RR) performance, making them excellent catalysts to construct highly efficient rechargeable Zn-NO3- battery. Operando studies and theoretical simulations demonstrate that the electron-rich environments around the Co atoms enhance the adsorption strength of *NO3 intermediate and simultaneously suppress the formation of hydrogen, thus improving the NO3RR activity and selectivity.
RESUMO
Double-crystal monochromators (DCMs) are one of the most critical optical devices in beamlines at synchrotron sources, directly affecting the quality of the beam energy and position. As the performance of synchrotron light sources continues to improve, higher demands are placed on the stability of DCMs. This paper proposes a novel adaptive vibration control method combining variational modal decomposition (VMD) and filter-x normalized least mean squares (FxNLMS), ensuring DCM stability under random engineering disturbance. Firstly, the sample entropy of the vibration signal is selected as the fitness function, and the number of modal components k and the penalty factor α are optimized by a genetic algorithm. Subsequently, the vibration signal is decomposed into band frequencies that do not overlap with each other. Eventually, each band signal is individually governed by the FxNLMS controller. Numerical results have demonstrated that the proposed adaptive vibration control method has high convergence accuracy and excellent vibration suppression performance. Furthermore, the effectiveness of the vibration control method has been verified with actual measured vibration signals of the DCM.
RESUMO
For the X-cube prism three-charge-coupled-device (3CCD) camera, the spectra of the designed dichroic films in the X-cube prism shift with changes in the angle of incident light, producing non-uniformity of color on the image plane. We considered the influence of the incident angle on color performance in filter design and directly optimized the thin film to improve color consistency. An optical model was constructed to calculate the distribution of camera spectral sensitivity and independently correct the non-uniform color on the image plane. Results showed that the optimization and correction methods could significantly improve the color performance of the X-cube prism 3CCD camera.
RESUMO
The direct electrochemical nitric oxide reduction reaction (NORR) is an attractive technique for converting NO into NH3 with low power consumption under ambient conditions. Optimizing the electronic structure of the active sites can greatly improve the performance of electrocatalysts. Herein, we prepare body-centered cubic RuGa intermetallic compounds (i.e., bcc RuGa IMCs) via a substrate-anchored thermal annealing method. The electrocatalyst exhibits a remarkable NH4 + yield rate of 320.6â µmol h-1 mg-1 Ru with the corresponding Faradaic efficiency of 72.3 % at very low potential of -0.2â V vs. reversible hydrogen electrode (RHE) in neutral media. Theoretical calculations reveal that the electron-rich Ru atoms in bcc RuGa IMCs facilitate the adsorption and activation of *HNO intermediate. Hence, the energy barrier of the potential-determining step in NORR could be greatly reduced.
RESUMO
The structural design of photocatalysts is highly related to the separation and transfer of photogenerated carriers, which is essential for the improvement of photocatalytic hydrogen evolution performance. Here, the hybrid photocatalyst M@NCNT@ZIS (M: Fe, Co, Ni; NCNT: nitrogen-doped carbon nanotube; ZIS: ZnIn2 S4 ) with a hierarchical structure is rationally designed and precisely synthesized. The unique hollow structure with a large specific surface area offers abundant reactive sites, thus increasing the adsorption of reactants. Importantly, the properly positioned metal nanoparticles realize the directional charge migration from ZIS to M@NCNT, which significantly improves the efficiency of charge separation. Furthermore, the intimate interface between M@NCNT and ZIS effectively facilitates charge migration by shortening the transfer distance and providing numerous transport channels. As a result, the optimized Co@NCNT@ZIS exhibits a remarkable photocatalytic hydrogen evolution efficiency (43.73 mmol g-1 h-1 ) without Pt as cocatalyst. Experimental characterizations and density functional theory calculations demonstrate that the synergistic effect between hydrogen adsorption and interfacial charge transport is of great significance for improving photocatalytic hydrogen production performance.
RESUMO
Phase engineering of nanomaterials (PEN) enables the preparation of metal nanomaterials with unconventional phases that are different from their thermodynamically stable counterparts. These unconventional-phase nanomaterials can serve as templates to construct precisely controlled metallic heterostructures for wide applications. Nevertheless, how the unconventional phase of templates affects the nucleation and growth of secondary metals still requires systematic explorations. Here, two-dimensional (2D) square-like Au nanosheets with an unconventional 2H/face-centered cubic (fcc) heterophase, composing of two pairs of opposite edges with 2H/fcc heterophase and fcc phase, respectively, and two 2H/fcc heterophase basal planes, are prepared and then used as templates to grow one-dimensional (1D) Rh nanorods. The effect of different phases in different regions of the Au templates on the overgrowth of Rh nanorods has been systematically investigated. By tuning the reaction conditions, three types of 1D/2D Rh-Au heterostructures are prepared. In the type A heterostructure, Rh nanorods only grow on the fcc defects including stacking faults and/or twin boundaries (denoted as fcc-SF/T) and 2H phases in two 2H/fcc edges of the Au nanosheet. In the type B heterostructure, Rh nanorods grow on the fcc-SF/T and 2H phases in two 2H/fcc edges and two 2H/fcc basal planes of the Au nanosheet. In the type C heterostructure, Rh nanorods grow on four edges and two basal planes of the Au nanosheet. Furthermore, the type C heterostructure shows promising performance toward the electrochemical hydrogen evolution reaction (HER) in acidic media, which is among the best reported Rh-based and other noble-metal-based HER electrocatalysts.
RESUMO
Construction of 2D transition metal dichalcogenide (TMD)-based epitaxial heterostructures with different compositions is important for various promising applications, including electronics, photonics, and catalysis. However, the rational design and controlled synthesis of such kind of heterostructures still remain challenge, especially for those consisting of layered TMDs and other non-layered materials. Here, a facile one-pot, wet-chemical method is reported to synthesize Cu2- χ Sy Se1- y -MoS2 heterostructures in which two types of different epitaxial configurations, i.e., vertical and lateral epitaxies, coexist. The chalcogen ratio (S/Se) in Cu2- χ Sy Se1- y and the loading amount of MoS2 in the heterostructures can be tuned. Impressively, the obtained Cu2- χ Sy Se1- y -MoS2 heterostructures can be transformed to CdSy Se1- y -MoS2 without morphological change via cation exchange. As a proof-of-concept application, the obtained CdSy Se1- y -MoS2 heterostructures with controllable compositions are used as photocatalysts, exhibiting distinctive catalytic activities toward the photocatalytic hydrogen evolution under visible light irradiation. The method paves the way for the synthesis of different TMD-based lateral epitaxial heterostructures with unique properties for various applications.
RESUMO
In order to improve the image quality of the aerial optoelectronic sensor over a wide range of temperature changes, high thermal adaptability of the primary mirror as the critical components is considered. Integrated optomechanical analysis and optimization for mounting primary mirrors are carried out. The mirror surface shape error caused by uniform temperature decrease was treated as the objective function, and the fundamental frequency of the mirror assembly and the surface shape error caused by gravity parallel or vertical to the optical axis are taken as the constraints. A detailed size optimization is conducted to optimize its dimension parameters. Sensitivities of the optical system performance with respect to the size parameters are further evaluated. The configuration of the primary mirror and the flexure are obtained. The simulated optimization results show that the size parameters differently affect the optical performance and which factors are the key. The mirror surface shape error under 30 °C uniform temperature decrease effectively decreased from 26.5 nm to 11.6 nm, despite the weight of the primary mirror assembly increases by 0.3 kg. Compared to the initial design, the value of the system's modulation transfer function (0° field angle) is improved from 0.15 to 0.21. Namely, the optical performance of the camera under thermal load has been enhanced and thermal adaptability of the primary mirror has been obviously reinforced after optimization. Based on the optimized results, a prototype of the primary mirror assembly is manufactured and assembled. A ground thermal test was conducted to verify difference in imaging quality at room and low temperature, respectively. The image quality of the camera meets the requirements of the index despite degrading.
RESUMO
Understanding the reaction mechanism for the catalytic process is essential to the rational design and synthesis of highly efficient catalysts. MoS2 has been reported to be an efficient catalyst toward the electrochemical hydrogen evolution reaction (HER), but it still lacks direct experimental evidence to reveal the mechanism for MoS2-catalyzed electrochemical HER process at the atomic level. In this work, we develop a wet-chemical synthetic method to prepare the single-layer MoS2-coated polyhedral Ag core-shell heterostructure (Ag@MoS2) with tunable sizes as efficient catalysts for the electrochemical HER. The Ag@MoS2 core-shell heterostructures are used as ideal platforms for the real-time surface-enhanced Raman spectroscopy (SERS) study owing to the strong electromagnetic field generated in the plasmonic Ag core. The in situ SERS results provide solid Raman spectroscopic evidence proving the S-H bonding formation on the MoS2 surface during the HER process, suggesting that the S atom of MoS2 is the catalytic active site for the electrochemical HER. It paves the way on the design and synthesis of heterostructures for exploring their catalytic mechanism at atomic level based on the in situ SERS measurement.
RESUMO
Ordered intermetallic nanomaterials with a well-defined crystal structure and fixed stoichiometry facilitate the predictable control of their electronic structure and catalytic performance. To obtain the thermodynamically stable intermetallic structures, the conventional approaches with high-temperature annealing are still far from satisfactory, because of annealing-induced aggregation and sintering of nanomaterials. Herein, a general wet-chemical method is developed to synthesize a series of noble metal-based intermetallic nanocrystals, including hexagonal close-packed (hcp) PtBi nanoplates, face-centered cubic (fcc) Pd3 Pb nanocubes, and hcp Pd2.5 Bi1.5 nanoparticles. During the synthetic process, Br- ions play two important roles for the formation of ordered intermetallic structures: i) Br- ions can coordinate with the metal ions to decrease their reduction potentials thus slowing down the reduction kinetics. ii) Br- ions can combine with molecular oxygen to generate an oxidative etching effect, hence reconstructing the atom arrangement, which is beneficial for the formation of the intermetallic structure. As a proof-of-concept application, Pd3 Pb nanocubes are used as electrocatalysts for ethanol and methanol oxidation reactions, which exhibit significantly improved electrochemical performance compared with the commercial Pd black catalyst.
RESUMO
Preparation of a p-n heterojunction with hierarchical structure is of great significance for photocatalysis due to its large specific surface area, abundant active sites and increased charge separation rate. Herein, we designed the novel p-n heterojunction photocatalyst TiO2/SnO microflower (TiO2/F-SnO) with hierarchical architecture by decorating TiO2 nanoparticles on the surface of the SnO microflower via a simple hydrothermal route. Compared to pure TiO2 and TiO2/SnO with a microplate structure (TiO2/P-SnO), TiO2/F-SnO heterojunctions exhibited significantly enhanced photocatalytic performances for organics removal such as toluidine blue O (TBO) and methylene blue (MB) under daylight fluorescent lamp irradiation (350-800 nm). The improved performance was not only ascribed to the promoted charge transfer and separation efficiency induced by the formation of p-n junction, but also attributed to the larger specific surface area, sufficient active sites and stronger redox ability provided by the hierarchical microflowers. Moreover, after three photocatalytic cycles (24 h), the TiO2/SnO heterojunction still exhibited a stable photocatalytic activity. Finally, the photocatalytic enhancement mechanism for the TiO2/SnO heterojunction was proposed based on band alignments calculation and the active species trapping experiments.
RESUMO
Herein, we investigate the mechanism of photocatalytic synthesis of noble metal nanoparticles by reductive photoelectrons generated from semiconductors. To slow down the reaction rate for real-time mechanistic study, oleic acid-capped TiO2 nanorods served as photocatalysts, and chloroauric acid dissolved in oleylamine acted as the gold precursor. Based on the experimental results from the in situ absorption spectrum and corresponding TEM image, we could clarify the photoreduction mechanism: the TiO2 nanorods generate electrons under UV irradiation and provide catalytic centers for the nucleation of gold nanoparticles. Subsequently, the seeded growth of Au nanoparticles is mainly assisted by TiO2 nanorods with continuous reduction of the gold precursor. Interestingly, the separation of Au nanoparticles from TiO2 nanorods could be clearly observed. This proposed reaction mechanism may provide a convenient understanding of the photocatalytic synthesis of noble metal nanoparticles by semiconductors.
RESUMO
Hierarchical metal nanostructures containing 1D nanobuilding blocks have stimulated great interest due to their abundant active sites for catalysis. Herein, hierarchical 4H/face-centered cubic (fcc) Ru nanotubes (NTs) are synthesized by a hard template-mediated method, in which 4H/fcc Au nanowires (NWs) serve as sacrificial templates which are then etched by copper ions (Cu2+ ) in dimethylformamide. The obtained hierarchical 4H/fcc Ru NTs contain ultrathin Ru shells (5-9 atomic layers) and tiny Ru nanorods with length of 4.2 ± 1.1 nm and diameter of 2.2 ± 0.5 nm vertically decorated on the surface of Ru shells. As an electrocatalyst for the hydrogen evolution reaction in alkaline media, the hierarchical 4H/fcc Ru NTs exhibit excellent electrocatalytic performance, which is better than 4H/fcc Au-Ru NWs, commercial Pt/C, Ru/C, and most of the reported electrocatalysts.
RESUMO
Transition-metal dichalcogenides (TMDs) have attracted considerable attention in recent years because of their unique properties and promising applications in electrochemical energy storage and conversion. However, the limited number of active sites as well as blocked ion and mass transport severely impair their electrochemical performance. The construction of three-dimensional (3D) architectures from TMD nanomaterials has been proven to be an effective strategy to solve the aforementioned problems as a result of their large specific surface areas and short ion and mass transport distances. This Review summarizes the commonly used routes to build 3D TMD architectures and highlights their applications in electrochemical energy storage and conversion, including batteries, supercapacitors, and electrocatalytic hydrogen evolution. The challenges and outlook in this research area are also discussed.
RESUMO
Rational design and synthesis of heterostructures based on transition metal dichalcogenides (TMDs) have attracted increasing interests because of their promising applications in electronics, catalysis, etc. However, the construction of epitaxial heterostructures with an interface at the edges of TMD nanosheets (NSs) still remains a great challenge. Here, we report a strategy for controlled synthesis of a new type of heterostructure in which TMD NSs, including MoS2 and MoSe2, vertically grow along the longitudinal direction of one-dimensional (1D) Cu2-xS nanowires (NWs) in an epitaxial manner. The obtained Cu2-xS-TMD heterostructures with tunable loading amount and lateral size of TMD NSs are achieved by the consecutive growth of TMD NSs on Cu2-xS NWs through gradual injection of chalcogen precursors. After cation exchange of Cu in Cu2-xS-TMD heterostructures with Cd, the obtained CdS-MoS2 heterostructures retained their original architectures. Compared to the pure CdS NWs, the CdS-MoS2 heterostructures with 7.7 wt % loading of MoS2 NSs exhibit the best performance in the photocatalytic hydrogen evolution reaction with a H2 production rate up to 4647 µmol·h-1·g-1, about 58 times that catalyzed with pure CdS NWs. Our synthetic strategy opens up a new way for the controlled synthesis of TMD-based heterostructures, which could have various promising applications.
RESUMO
The deterioration of water resources due to oil pollution, arising from oil spills, industrial oily wastewater discharge, etc., urgently requires the development of novel functional materials for highly efficient water remediation. Recently, superhydrophilic and underwater superoleophobic materials have drawn significant attention due to their low oil adhesion and selective oil/water separation. However, it is still a challenge to prepare low-cost, environmentally friendly, and multifunctional materials with superhydrophilicity and underwater superoleophobicity, which can be stably used for oil/water separation under harsh working conditions. Here, the preparation of nanofiber-based meshes derived from waste glass through a green and sustainable route is demonstrated. The resulting meshes exhibit excellent performance in the selective separation of a wide range of oil/water mixtures. Importantly, these meshes can also maintain the superwetting property and high oil/water separation efficiency under various harsh conditions. Furthermore, the as-prepared mesh can remove water-soluble contaminants simultaneously during the oil/water separation process, leading to multifunctional water purification. The low-cost and environmentally friendly fabrication, harsh-environment resistance, and multifunctional characteristics make these nanofiber-based meshes promising toward oil/water separation under practical conditions.