Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(8): e2317796121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38346201

RESUMO

Tremendous attention has been paid to the water-associated side reactions and zinc (Zn) dendrite growth on the electrode-electrolyte interface. However, the Zn pulverization that can cause continuous depletion of active Zn metal and exacerbate hydrogen evolution is severely neglected. Here, we disclose that the excessive Zn feeding that causes incomplete crystallization is responsible for Zn pulverization formation through analyzing the thermodynamic and kinetics process of Zn deposition. On the basis, we introduce 1-ethyl-3-methylimidazolium cations (EMIm+) into the electrolyte to form a Galton-board-like three-dimensional inert-cation (3DIC) region. Modeling test shows that the 3DIC EMIm+ can induce the Zn2+ flux to follow in a Gauss distribution, thus acting as elastic sites to buffer the perpendicular diffusion of Zn2+ and direct the lateral diffusion, thus effectively avoiding the local Zn2+ accumulation and irreversible crystal formation. Consequently, anti-pulverized Zn metal deposition behavior is achieved with an average Coulombic efficiency of 99.6% at 5 mA cm-2 over 2,000 cycles and superb stability in symmetric cell over 1,200 h at -30 °C. Furthermore, the Zn||KVOH pouch cell can stably cycle over 1,200 cycles at 2 A g-1 and maintain a capacity of up to 12 mAh.

2.
Breast Cancer Res ; 26(1): 19, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287441

RESUMO

BACKGROUND: Human epidermal growth factor receptor 2 (HER2)-positive breast cancer accounts for about 20% of all breast cancer cases and is correlated with a high relapse rate and poor prognosis. ADAMTS18 is proposed as an important functional tumor suppressor gene involved in multiple malignancies, including breast cancer. It functions as an extracellular matrix (ECM) modifier. However, it remains unclear whether ADAMTS18 affects mammary tumorigenesis and malignant progression through its essential ECM regulatory function. METHODS: To elucidate the role of ADAMTS18 in HER2-positive mammary tumorigenesis and metastasis in vivo, we compared the incidence of mammary tumor and metastasis between Adamts18-knockout (MMTV)-Her2/ErbB2/Neu+ transgenic mice (i.e., Her2t/w/Adamts18-/-) and Adamts18-wildtype (MMTV)-Her2/ErbB2/Neu+ transgenic mice (i.e., Her2t/w/Adamts18+/+). The underlying mechanisms by which ADAMTS18 regulates HER2-positive tumorigenesis and metastasis were investigated by pathology, cell culture, Western blot and immunochemistry. RESULTS: Adamts18 mRNA is mainly expressed in myoepithelial cells of the mammary duct. ADAMTS18 deficiency leads to a significantly increased incidence of mammary tumors and metastasis, as well as mammary hyperplasia in mice, over 30 months of observation. The proliferation, migration and invasion capacities of primary Her2t/w/Adamts18-/- mammary tumor cells are significantly higher than those of primary Her2t/w/Adamts18+/+ mammary tumor cells in vitro. At 30 months of age, the expression levels of laminin (LNα5), fibronectin (FN) and type I collagen (ColI) in the mammary glands of Her2t/w/Adamts18-/- mice are significantly increased, and the activities of integrin-mediated PI3K/AKT, ERK and JNK signaling pathways are enhanced. CONCLUSIONS: ADAMTS18 deficiency leads to alterations in mammary ECM components (e.g., LNα5, FN, ColI), which are associated with a higher risk of HER2-positive mammary tumorigenesis and metastasis.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Camundongos , Humanos , Animais , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Fosfatidilinositol 3-Quinases , Recidiva Local de Neoplasia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Camundongos Transgênicos , Carcinogênese/genética , Neoplasias Mamárias Animais/metabolismo , Matriz Extracelular/metabolismo , Proteínas ADAMTS/genética
3.
Small ; 20(21): e2309255, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38148298

RESUMO

Many efforts have been devoted to obtaining excellent cathode catalysts for Zinc air batteries (ZABs), but the inevitable use of binder will damage the catalytic activity and weaken long-term stability, inefficient mass transfer of oxygen is also chargable for the limited activity. Herein, in situ grown hydrogen substituted graphdiyne (HGDY) on carbon paper has been prepared and used as cathode catalyst layer in ZABs. Multiple catalytic sites are firmly combined and end with the boosted bifunctional catalytic activity of oxygen reduction and oxygen evolution. Moreover, the specific surface area, sufficient active sites, multilevel pore nanostructure and robust conductivity are fully exposed to establish efficient catalytic interface and skeleton. Cu/Co nanoparticles are uniformly distributed and warped by HGDY network, which can stably exist during the catalytic process. As a result, a current density of 18.75 mA cm-2 and a Tafel slope of 61.06 mV dec-1 for oxygen reduction and a ultralong operation for more than 2300 h in aqueous ZAB have been achieved, which is beyond many reported bifunctional catalysts in ZAB system.

4.
Neurochem Res ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837094

RESUMO

Epilepsy is a common neurological disorder, and the exploration of potential therapeutic drugs for its treatment is still ongoing. Vitamin D has emerged as a promising treatment due to its potential neuroprotective effects and anti-epileptic properties. This study aimed to investigate the effects of vitamin D on epilepsy and neuroinflammation in juvenile mice using network pharmacology and molecular docking, with a focus on the mammalian target of rapamycin (mTOR) signaling pathway. Experimental mouse models of epilepsy were established through intraperitoneal injection of pilocarpine, and in vitro injury models of hippocampal neurons were induced by glutamate (Glu) stimulation. The anti-epileptic effects of vitamin D were evaluated both in vivo and in vitro. Network pharmacology and molecular docking analysis were used to identify potential targets and regulatory pathways of vitamin D in epilepsy. The involvement of the mTOR signaling pathway in the regulation of mouse epilepsy by vitamin D was validated using rapamycin (RAPA). The levels of inflammatory cytokines (TNF-α, IL-1ß, and IL-6) were assessed by enzyme-linked immunosorbent assay (ELISA). Gene and protein expressions were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. The terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling (TUNEL) staining was used to analyze the apoptosis of hippocampal neurons. In in vivo experiments, vitamin D reduced the Racine scores of epileptic mice, prolonged the latency of epilepsy, and inhibited the production of TNF-α, IL-1ß, and IL-6 in the hippocampus. Furthermore, network pharmacology analysis identified RAF1 as a potential target of vitamin D in epilepsy, which was further confirmed by molecular docking analysis. Additionally, the mTOR signaling pathway was found to be involved in the regulation of mouse epilepsy by vitamin D. In in vitro experiments, Glu stimulation upregulated the expressions of RAF1 and LC3II/LC3I, inhibited mTOR phosphorylation, and induced neuronal apoptosis. Mechanistically, vitamin D activated the mTOR signaling pathway and alleviated mouse epilepsy via RAF1, while the use of the pathway inhibitor RAPA reversed this effect. Vitamin D alleviated epilepsy symptoms and neuroinflammation in juvenile mice by activating the mTOR signaling pathway via RAF1. These findings provided new insights into the molecular mechanisms underlying the anti-epileptic effects of vitamin D and further supported its use as an adjunctive therapy for existing anti-epileptic drugs.

5.
Phytochem Anal ; 35(2): 350-368, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37849391

RESUMO

INTRODUCTION: Solanum nigrum L. is a traditional medicinal herb and edible plant. Many studies provide evidence that S. nigrum L. is a nutritious vegetable. Polyphenols and steroidal glycoalkaloids are the main components. OBJECTIVES: This study aimed to systemically evaluate the phytochemical profile, quantification, and bioactivities of polyphenolics and glycoalkaloids in different parts of S. nigrum L. RESULTS: Total polyphenols (TPC) and total glycoalkaloids (TGK) were determined using the Folin-Ciocalteu and acid dye colorimetric methods, respectively. A total of 55 polyphenolic constituents (including 22 phenolic acids and 33 flavonoids) and 24 steroidal glycoalkaloids were identified from different parts using ultrahigh-performance liquid chromatography Q-exactive high-resolution mass spectrometry (UHPLC-QE-HRMS), of which 40 polyphenols (including 15 phenolic acids and 25 flavonoids) and one steroidal glycoalkaloid were characterised for the first time in S. nigrum L. Moreover, typical polyphenols and glycoalkaloids were determined using HPLC-UV and HPLC-evaporative light-scattering detector (ELSD), respectively. In addition, the TPC and TGK and their typical constituents were compared in different anatomical parts. Finally, the antioxidant capacities of polyphenolic extracts from different parts of S. nigrum L. were evaluated by ·OH, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and ferric-reducing antioxidant power (FRAP) assay in vitro. In addition, the antitumour effects of TGK from different parts of S. nigrum L. on the proliferation of PC-3 cells were investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Polyphenolic and glycoalkaloid extracts from different parts of S. nigrum L. showed different antioxidant and cytotoxic capacities in vitro. CONCLUSION: This is the first study to systematically differentiate between polyphenolic and glycoalkaloid profiles from different parts of S. nigrum L.


Assuntos
Antioxidantes , Solanum nigrum , Antioxidantes/farmacologia , Esteroides , Flavonoides/farmacologia , Polifenóis/farmacologia
6.
BMC Nurs ; 23(1): 223, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561761

RESUMO

BACKGROUND: At the onset of their professional journey, novice nurses often undergo a multifaceted psychological experience as they transition from theoretical knowledge to clinical practice, potentially impacting their development of professional identity. However, limited research has been conducted on the psychological aspects pertaining to newly graduated nurses in stomatological hospitals in our country. METHODS: The phenomenological method and semi-structured interviews were used in this study, and the sample size of the interview was purposive sampling method. A semi-structured virtual interview was conducted with 21 new nurses in the department of stomatology. Colaizzi's analysis method was used to analyse the interview data. RESULTS: Based on Kramer's reality shock theoretical framework and analyzing interview data, this study extracted the psychological experiences of novice nurses during their first year of employment across four distinct stages. The four stages include: cheerful period, frustration period, adjustment period and competency period. Six themes and nine sub-themes were derived from the four period. CONCLUSION: Due to the lack of professional knowledge, novice oral nurses will experience a series of complex positive and negative emotions at the beginning of their career. Through the research, the training of oral specialty theory, good psychological counseling and peer support can improve their participation in oral outpatient nursing. At the same time, the establishment of oral care quality assurance system and the improvement of oral care higher education in our country will become the focus of future research.

7.
Angew Chem Int Ed Engl ; : e202407772, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872256

RESUMO

Electrocatalytic conversion of CO2 into formate is recognized an economically-viable route to upgrade CO2, but requires high overpotential to realize the high selectivity owing to high energy barrier for driving the involved proton-coupled electron transfer (PCET) processes and serious ignorance of the second PCET. Herein, we surmount the challenge through sequential regulation of the potential-determining step (PDS) over Te-doped Bi (TeBi) nanotips. Computational studies unravel the incorporation of Te heteroatoms alters the PDS from the first PCET to the second one by substantially lowering the formation barrier for *OCHO intermediate, and the high-curvature nanotips induce enhanced electric field that can steer the formation of asymmetric *HCOOH. In this scenario, the thermodynamic barrier for *OCHO and *HCOOH can be sequentially decreased, thus enabling a high formate selectivity at low overpotential. Experimentally, distinct TeBi nanostructures are obtained via controlling Te content in the precursor and TeBi nanotips achieve >90% of Faradaic efficiency for formate production over a comparatively positive potential window (-0.57 V to -1.08 V). The strong Bi-Te covalent bonds also afford a robust stability. In an optimized membrane electrode assembly device, the formate production rate at 3.2 V reaches 10.1 mmol h-1 cm-2, demonstrating great potential for practical application.

8.
EMBO J ; 38(17): e101051, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31328806

RESUMO

VGLL4 has previously been identified as a negative regulator of YAP. Here we show that VGLL4 regulates muscle regeneration in both YAP-dependent and YAP-independent manners at different stages. Knockout of VGLL4 in mice leads to smaller myofiber size and defective muscle contraction force. Furthermore, our studies reveal that knockout of VGLL4 results in increased muscle satellite cells proliferation and impaired myoblast differentiation, which ultimately leads to delayed muscle regeneration. Mechanistically, the results show that VGLL4 works as a conventional repressor of YAP at the proliferation stage of muscle regeneration. At the differentiation stage, VGLL4 acts as a co-activator of TEAD4 to promote MyoG transactivation and facilitate the initiation of differentiation in a YAP-independent manner. Moreover, VGLL4 stabilizes the protein-protein interactions between MyoD and TEAD4 to achieve efficient MyoG transactivation. Our findings define the dual roles of VGLL4 in regulating muscle regeneration at different stages and may open novel therapeutic perspectives for muscle regeneration.


Assuntos
Músculo Esquelético/fisiologia , Regeneração , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Proteínas Musculares/metabolismo , Proteína MyoD/metabolismo , Miogenina/metabolismo , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Fatores de Transcrição de Domínio TEA , Proteínas de Sinalização YAP
9.
Mar Drugs ; 21(10)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37888437

RESUMO

The prevalence of gout and the adverse effects of current synthetic anti-gout drugs call for new natural and effective xanthine oxidase (XOD) inhibitors to target this disease. Based on our previous finding that an edible seaweed Pterocladiella capillacea extract inhibits XOD, XOD-inhibitory and anti-inflammatory activities were used to evaluate the anti-gout potential of different P. capillacea extract fractions. Through affinity ultrafiltration coupled with liquid chromatography tandem mass spectrometry (LC-MS/MS), feature-based molecular networking (FBMN), and database mining of multiple natural products, the extract's bioactive components were traced and annotated. Through molecular docking and ADMET analysis, the possibility and drug-likeness of the annotated XOD inhibitors were predicted. The results showed that fractions F4, F6, F4-2, and F4-3 exhibited strong XOD inhibition activity, among which F4-3 reached an inhibition ratio of 77.96% ± 4.91% to XOD at a concentration of 0.14 mg/mL. In addition, the P. capillacea extract and fractions also displayed anti-inflammatory activity. Affinity ultrafiltration LC-MS/MS analysis and molecular networking showed that out of the 20 annotated compounds, 8 compounds have been previously directly or indirectly reported from seaweeds, and 4 compounds have been reported to exhibit anti-gout activity. Molecular docking and ADMET showed that six seaweed-derived compounds can dock with the XOD activity pocket and follow the Lipinski drug-like rule. These results support the value of further investigating P. capillacea as part of the development of anti-gout drugs or related functional foods.


Assuntos
Alga Marinha , Xantina Oxidase , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem , Ultrafiltração/métodos , Simulação de Acoplamento Molecular , Inibidores Enzimáticos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Anti-Inflamatórios , Bioensaio
10.
Small ; 18(3): e2106328, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34873841

RESUMO

Reasonable design of electrode materials with specific morphology and structure can efficiently improve the metal ions storage and transmission properties of metal ion batteries. Here the preparation of spirobifluorene-based three-dimensional carbiyne nanosphere (SBFCY-NS) that is composed of spirobifluorene (SBF) and alkyne bonds is reported. Benefiting from the rigid spatial structure of SBF, numerous precursors are coupled through the connection of acetylene bonds, extending to form solid nanospheres. Abundant storage spaces and convenient multi-directional transmission paths for metal ions are available inside the three-dimensional (3D) carbiyne structure. Thus, SBFCY-NS is applied as efficient anode for lithium-ion battery and sodium-ion battery. The good stability of SBFCY-NS-based electrode and its improved Coulombic efficiency can be attributed to the special morphology of nanospheres, which can easily form thin and stable solid electrolyte interface film on the surface. Those results further promote the preparation of spherical carbon-based materials with abundant pores that can be applied in the field of electrodes.

11.
Org Biomol Chem ; 20(36): 7250-7260, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-35838176

RESUMO

L-ido-Deoxynojirimycin (L-ido-DNJ) itself showed no affinity for human lysosomal acid α-glucosidase (GAA), whereas 5-C-methyl-L-ido-DNJ showed a strong affinity for GAA, comparable to the glucose analog DNJ, with a Ki value of 0.060 µM. This excellent affinity for GAA and enzyme stabilization was observed only when methyl and ethyl groups were introduced. Docking simulation analysis revealed that the alkyl chains of 5-C-alkyl-L-ido-DNJs were stored in three different pockets, depending on their length, thereby the molecular orientation was changed. Comparison of the binding poses of DNJ and 5-C-methyl-L-ido-DNJ showed that they formed a common ionic interaction with Asp404, Asp518, and Asp616, but both the binding orientation and the distance between the ligand and each amino acid residue were different. 5-C-Methyl-L-ido-DNJ dose-dependently increased intracellular GAA activity in Pompe patient fibroblasts with the M519V mutation and also promoted enzyme transport to lysosomes. This study provides the first example of a strategy to design high-affinity ligands by introducing alkyl branches into rare sugars and L-sugar-type iminosugars to change the orientation of binding.


Assuntos
1-Desoxinojirimicina , Inibidores de Glicosídeo Hidrolases , Imino Açúcares , alfa-Glucosidases , 1-Desoxinojirimicina/química , 1-Desoxinojirimicina/farmacologia , Aminoácidos , Domínio Catalítico , Glucose/análogos & derivados , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Humanos , Imino Açúcares/química , Imino Açúcares/farmacologia , Ligantes , Ligação Proteica , alfa-Glucosidases/química
12.
Int J Mol Sci ; 23(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36499197

RESUMO

Downy mildew is a major threat to the economic value of spinach. The most effective approach to managing spinach downy mildew is breeding cultivars with resistance genes. The resistance allele RPF2 is effective against races 1-10 and 15 of Peronospora farinosa f. sp. Spinaciae (P. effusa) and is widely used as a resistance gene. However, the gene and the linked marker of RPF2 remain unclear, which limit its utilization. Herein, we located the RPF2 gene in a 0.61 Mb region using a BC1 population derived from Sp39 (rr) and Sp62 (RR) cultivars via kompetitive allele specific PCR (KASP) markers. Within this region, only one R gene, Spo12821, was identified based on annotation information. The amino acid sequence analysis showed that there were large differences in the length of the LRR domain between the parents. Additionally, a molecular marker, RPF2-IN12821, was developed based on the sequence variation in the Spo12821, and the evaluation in the BC1 population produced a 100% match with resistance/susceptibility. The finding of the study could be valuable for improving our understanding of the genetic basis of resistance against the downy mildew pathogen and breeding resistance lines in the future.


Assuntos
Oomicetos , Peronospora , Spinacia oleracea/genética , Doenças das Plantas/genética , Melhoramento Vegetal
13.
Hepatology ; 71(6): 1988-2004, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31538665

RESUMO

BACKGROUND AND AIMS: The conserved Hippo pathway regulates organ size, tissue homeostasis, and tumorigenesis. Interferon regulatory factor 2 binding protein 2 (IRF2BP2) was originally identified as a transcriptional corepressor. However, the association between IRF2BP2 and the Hippo pathway remains largely unknown. In addition, the biological function and regulation mechanism of IRF2BP2 in liver cancer are poorly understood. APPROACH AND RESULTS: In this study, we uncovered the clinical significance of IRF2BP2 in suppressing hepatocellular carcinogenesis. We showed that IRF2BP2, a direct target repressed by the Yes-associated protein (YAP)/TEA domain transcription factor 4 (TEAD4) transcriptional complex, inhibited YAP activity through a feedback loop. IRF2BP2 stabilized vestigial-like family member 4 (VGLL4) and further enhanced VGLL4's inhibitory function on YAP. Moreover, liver-specific IRF2BP2 overexpression suppressed tumor formation induced by Hippo pathway inactivation. CONCLUSIONS: These results revealed the important role of IRF2BP2 in repressing liver cancer progression and highlighted a feedback loop underlying the Hippo pathway in organ-size control and tumorigenesis.


Assuntos
Carcinogênese/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neoplasias Hepáticas , Proteínas Musculares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proliferação de Células , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Via de Sinalização Hippo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Transdução de Sinais , Fatores de Transcrição de Domínio TEA , Proteínas Supressoras de Tumor/metabolismo
14.
Theor Appl Genet ; 134(5): 1319-1328, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33515081

RESUMO

KEY MESSAGE: The Fs gene, which controls spinach fruit spines, was fine mapped to a 0.27 Mb interval encompassing four genes on chromosome 3. There are two types of fruit of spinach (Spinacia oleracea L.), spiny and spineless, which are visually distinguishable by the spines of fruit coat. In spinach breeding, the fruit characteristic is an important agronomic trait that have impacts on "seed" treatment and mechanized sowing. However, the gene(s) controlling the fruit spiny trait have not been characterized and the genetic mechanism of this trait remained unclear. The objectives of the study were to fine map the gene controlling fruit spines and develop molecular markers for marker-assisted selection purpose. Genetic analysis of the spiny trait in segregating populations indicated that fruit spines were controlled by a single dominant gene, designated as Fs. Using a super-BSA method and recombinants analysis in a BC1 population, Fs was mapped to a 1.9-Mb interval on chromosome 3. The Fs gene was further mapped to a 0.27-Mb interval using a recombinant inbred line (RIL) population with 120 lines. From this 0.27 Mb region, four candidate genes were identified in the reference genome. The structure and expression of the four genes were compared between the spiny and spineless parents. A co-dominant marker YC-15 was found to be co-segregating with the fruit spines trait, which produced a 129-bp fragment specific to spiny trait and a 108-bp fragment for spineless fruit. This marker can predict spiny trait with a 94.8% accuracy rate when tested with 100 diverse germplasm, suggesting that this marker would be valuable for marker-assisted selection in spinach breeding.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Frutas/genética , Marcadores Genéticos , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Spinacia oleracea/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes Dominantes , Ligação Genética , Melhoramento Vegetal , Proteínas de Plantas/metabolismo , Spinacia oleracea/crescimento & desenvolvimento , Spinacia oleracea/metabolismo
15.
J Environ Manage ; 297: 113213, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34329914

RESUMO

Anthropogenic driven acid gases emission has caused acid rain in many regions globally. Although efforts have been made to assess the effects of acid rain on terrestrial ecosystems, a systematic assessment of growth-related traits across plant aboveground and belowground is lacking. Hence, we performed a phylogenetically controlled meta-analysis of 755 observations from 69 independent studies to quantify the effects of acid rain on six growth-related traits of plant. We estimated the inhibitory effects of acid rain on plant growth in general and found that aboveground and belowground plant parts responded differently. The acidity of acid rain and acid rain interval had direct modulation effects on plant growth. We also found that there were interactions between acid rain pH and other acid rain characteristics (i.e., acid rain interval, mole ratio of S:N, and acid rain rate) and experimental characteristics (i.e., initial soil pH and plant exposure part), indicating that there were pH-dependent interaction patterns. Thus, an effective approach to evaluate and predict the effects of acid rain on plant growth is to fully consider the direct effects of acid rain pH and the interactions between acid rain pH and other factors.


Assuntos
Chuva Ácida , Ecossistema , Desenvolvimento Vegetal , Plantas , Solo
16.
Biochem Biophys Res Commun ; 521(4): 907-913, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31711643

RESUMO

ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin type I motifs) enzymes play an important role in various morphogenesis processes. To determine the functions of Adamts18 in the early stages of organogenesis, we created Adamts18 deficient zebrafish using morpholino antisense oligonucleotides (MO) to generate exon 3 skipped adamts18 mRNA transcripts. Results showed that Adamts18 deficiency in zebrafish embryos caused developmental defects, including expanded brain ventricle and hindbrain edema, eye defects, and accumulation of blood in the caudal vein. Adamts18 deficiency also led to impaired trunk angiogenesis and formation of the caudal vein plexus (CVP). Consequently, Adamts18 deficient zebrafish embryos exhibited incomplete formation of intersegment vessels (ISVs), disruption of the honeycomb structure of CVP, and reduced CVP area and loop number. Furthermore, Adamts18 deficiency resulted in impaired blood circulation in major trunk, caudal vein (CV), and common cardinal vein (CCV). These aberrant vascular phenotypes in mutant zebrafish embryos were shown to be associated with a decreased expression of multiple angiogenesis-related signaling genes, including slit/robo, dll4/Notch, cox2, and fgfr. These findings indicate the critical role of Adamts18 in the early stages of vascular network development.


Assuntos
Metaloendopeptidases/genética , Neovascularização Fisiológica/genética , Veias/embriologia , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Proteínas ADAMTS , Animais , Animais Geneticamente Modificados , Circulação Sanguínea/genética , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Metaloendopeptidases/metabolismo , Oligonucleotídeos Antissenso/genética , Proteínas de Xenopus/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
17.
Bioorg Med Chem Lett ; 30(24): 127614, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33080352

RESUMO

Congenital disorders of glycosylation (CDG) are a growing group diseases that result from defects in genes involved in glycan biosynthesis pathways. One tetrasaccharide, i.e., Neu5Ac-α2, 6-Gal-ß1, 4-GlcNAc-ß1, 4-GlcNAc, was recently reported as the biomarker of ALG1-CDG, the disease caused by ALG1 deficiency. To develop a novel diagnostic method for ALG1-CDG, chemo-enzymatic synthesis of the tetrasaccharide biomarker linked to phytanyl phosphate and the biomarker's immune stimulation were investigated in this study. The immunization study using liposomes bearing phytanyl-linked tetrasaccharide revealed that they stimulated a moderate immune response. The induced antibody showed strong binding specificity for the ALG1-CDG biomarker, indicating its potential in medical applications.


Assuntos
Anticorpos/imunologia , Formação de Anticorpos , Defeitos Congênitos da Glicosilação/imunologia , Manosiltransferases/imunologia , Oligossacarídeos/imunologia , Animais , Anticorpos/análise , Biomarcadores/química , Defeitos Congênitos da Glicosilação/diagnóstico , Diterpenos/administração & dosagem , Diterpenos/química , Diterpenos/imunologia , Humanos , Imunização , Manosiltransferases/análise , Camundongos , Camundongos Endogâmicos C57BL , Oligossacarídeos/administração & dosagem , Oligossacarídeos/química
18.
Am J Pathol ; 188(2): 461-473, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29169989

RESUMO

Visceral adiposity is of greater risk than obesity in s.c. adipose tissue for diabetes and cardiovascular disease. Its pathogenesis remains unclear, but it is associated with extracellular matrix (ECM) remodeling. A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs) are a family of secreted zinc-dependent metalloproteinases that play crucial roles in development and various diseases because of their ECM remodeling activity. ADAMTS18 is an orphan ADAMTS whose function and substrate remain unclear. Herein, we showed that Adamts18 mRNA was abundantly expressed in visceral (gonadal) white adipose tissue (vWAT) during the early stage of development after birth. Adamts18 knockout (KO) mice showed increased body fat percentage and larger adipocyte size in vWAT relative to wild-type littermates. These findings may be partly attributed to ECM remodeling, especially increased expression of laminin 1 and adipokine thrombospondin 1 in vWAT. Attenuated extracellular signal-regulated kinase 1 and 2 activity, along with increased expression of adipocyte-specific transcription factors peroxisome proliferator-activated receptor-γ, CCAAT/enhancer binding protein ß, and marker gene Fabp4, was detected in vWAT of Adamts18 KO mice. Furthermore, Adamts18 KO mice showed early metabolic syndrome, including hyperlipidemia, blood glucose metabolic disorder, and hypertension. ADAMTS18 deficiency promotes atherosclerosis in apolipoprotein E-deficient mice. These results indicate a novel function of ADAMTS18 in vWAT development and associated metabolic disorders.


Assuntos
Proteínas ADAMTS/fisiologia , Adiposidade/fisiologia , Gordura Intra-Abdominal/metabolismo , Síndrome Metabólica/metabolismo , Proteínas ADAMTS/deficiência , Proteínas ADAMTS/genética , Adipócitos/patologia , Animais , Aterosclerose/metabolismo , Aterosclerose/fisiopatologia , Células Cultivadas , Matriz Extracelular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Gordura Intra-Abdominal/patologia , Lipídeos/sangue , Masculino , Síndrome Metabólica/patologia , Camundongos Knockout , RNA Mensageiro/genética
19.
Biochem Biophys Res Commun ; 496(4): 1362-1368, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29421655

RESUMO

ADAMTS18 is a member of a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs) that are known for their crucial role in development, angiogenesis, inflammation and coagulation. It was previously reported that ADAMTS18 cleaved by thrombin induced platelet fragmentation, through which thrombus were dissolved. However, it remains unclear whether this represents a dominant physiologic mechanism controlling thrombus growth in vivo. Here, we used an established Adamts18 knockout (KO) mouse model to determine its function in thrombus formation. ADAMTS18 deficiency accelerated FeCl3-induced carotid artery thrombosis and aggravated postischemic cerebral infarction in mice. However, this accelerated thrombus phenotype in Adamts18 KO mice was not due to the lack of ADAMTS18-mediated-platelet fragmentation. Moreover, Adamts18 deficiency exerted little effects on mouse platelet functions. The underlying molecular mechanisms could be attributed in part to the abnormal vascular remodeling, including deficiency of carotid body (glomus) and aberrant carotid basal lamina. These results indicate a novel function of ADAMTS18 in vascular remodeling and associated thrombus formation.


Assuntos
Proteínas ADAMTS/metabolismo , Trombose das Artérias Carótidas/metabolismo , Infarto Cerebral/metabolismo , Trombose/metabolismo , Trombose/patologia , Proteínas ADAMTS/genética , Animais , Trombose das Artérias Carótidas/patologia , Infarto Cerebral/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
20.
Biochem Biophys Res Commun ; 492(3): 404-411, 2017 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-28843853

RESUMO

ADAMTS18 is a member of a secreted Zn-metalloproteinase ADAMTS family, and has been implicated in development, hemostasis, and various malignancies. It has thus far proven difficult to resolve its post-translational modification status, cleaved forms, and splice variants in living organisms due to the lack of specific antibodies available to characterize this enzyme. In this study, we develop six murine monoclonal antibodies (mAbs) against different functional regions of ADAMTS18 using hybridoma technology. These mAbs exhibit cross-recognition between ADAMTS18 and the homology domain of its family members. Using the tissues from Adamts18 knockout (KO) mice, we find that two of these mAbs (N-3 and C-5) precisely identify five significantly attenuated bands located at 180, 135, 95, 72, and 45 kDa. These bands represent the forms of ADAMTS18 that potentially exist in the tissues. These mAbs will provide a useful tool to investigate the ADAMTS18's biologic significance in the tissues.


Assuntos
Proteínas ADAMTS/imunologia , Proteínas ADAMTS/metabolismo , Anticorpos Monoclonais/imunologia , Processamento de Proteína Pós-Traducional , Proteínas ADAMTS/química , Proteínas ADAMTS/deficiência , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Moleculares , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA