RESUMO
In animals undergoing metamorphosis, the appearance of the nervous system is coincidently transformed by the morphogenesis of neurons. Such morphogenic alterations are exemplified in three types of intrinsic neurons in the Drosophila memory center. In contrast to the well-characterized remodeling of γ neurons, the morphogenesis of α/ß and α'/ß' neurons has not been adequately explored. Here, we show that mamo, a BTB-zinc finger transcription factor that acts as a terminal selector for α'/ß' neurons, controls the formation of the correct axonal pattern of α'/ß' neurons. Intriguingly, specific Mamo isoforms are preferentially expressed in α'/ß' neurons to regulate the expression of axon guidance molecule Semaphorin-1a. This action directs proper axon guidance in α'/ß' neurons, which is also crucial for wiring of α'/ß' neurons with downstream neurons. Taken together, our results provide molecular insights into how neurons establish correct axonal patterns in circuitry assembly during adult memory center construction.
Assuntos
Orientação de Axônios , Proteínas de Drosophila , Memória , Isoformas de Proteínas , Semaforinas , Animais , Axônios/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Memória/fisiologia , Metamorfose Biológica/fisiologia , Neurônios/metabolismo , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Semaforinas/metabolismo , Semaforinas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genéticaRESUMO
The evolution of the nervous system has been a topic of great interest. To gain more insight into the evolution of the peripheral sensory system, we used the cephalochordate amphioxus. Amphioxus is a basal chordate that has a dorsal central nervous system (CNS) and a peripheral nervous system (PNS) comprising several types of epidermal sensory neurons (ESNs). Here, we show that a proneural basic helix-loop-helix gene (Ash) is co-expressed with the Delta ligand in ESN progenitor cells. Using pharmacological treatments, we demonstrate that Delta/Notch signaling is likely to be involved in the specification of amphioxus ESNs from their neighboring epidermal cells. We also show that BMP signaling functions upstream of Delta/Notch signaling to induce a ventral neurogenic domain. This patterning mechanism is highly similar to that of the peripheral sensory neurons in the protostome and vertebrate model animals, suggesting that they might share the same ancestry. Interestingly, when BMP signaling is globally elevated in amphioxus embryos, the distribution of ESNs expands to the entire epidermal ectoderm. These results suggest that by manipulating BMP signaling levels, a conserved neurogenesis circuit can be initiated at various locations in the epidermal ectoderm to generate peripheral sensory neurons in amphioxus embryos. We hypothesize that during chordate evolution, PNS progenitors might have been polarized to different positions in various chordate lineages owing to differential regulation of BMP signaling in the ectoderm.
Assuntos
Evolução Biológica , Cordados não Vertebrados/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neurogênese/fisiologia , Sistema Nervoso Periférico/embriologia , Células Receptoras Sensoriais/fisiologia , Transdução de Sinais/fisiologia , Região do Genoma do Complexo Achaete-Scute/genética , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Clonagem Molecular , Primers do DNA/genética , Epiderme/embriologia , Florida , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Sistema Nervoso Periférico/metabolismo , Receptores Notch/metabolismo , Células Receptoras Sensoriais/metabolismoRESUMO
How animal embryos determine their early cell fates is an important question in developmental biology. In various model animals asymmetrically localized maternal transcripts play important roles in axial patterning and cell fate specification. Cephalochordates (amphioxus), which have three living genera (Asymmetron, Epigonichthys, Branchiostoma), are an early branching chordate lineage and thus occupy a key phylogenetic position for understanding the evolution of chordate developmental mechanisms. It has been shown that in the zygote of Brachiostoma amphioxus, which possess bilateral gonads flanking both sides of their trunk region, maternal transcripts of germline determinants form a compact granule. During early embryogenesis this granule is inherited by a single blastomere that subsequently gives rise to a cluster of cells displaying typical characteristics of primordial germ cells (PGC). These PGCs then come to lie in the tailbud region and proliferate during posterior elongation of the larva to join in the gonad anlagen at the ventral tip of the developing myomeres in amphioxus larvae. However, in Asymmetron and Epigonichthys amphioxus, whose gonads are present only on the right side of their body, nothing is known about their PGC development or the cellular/morphogenetic processes resulting in the asymmetric distribution of gonads. Using conserved germline determinants as markers, we show that similarly to Brachiostoma amphioxus, Asymmetron also employ a preformation mechanism to specify their PGCs, suggesting that this mechanism represents an ancient trait dating back to the common ancestor of Cephalochordates. Surprisingly, we found that Asymmetron PGCs are initially deposited on both sides of the body during early larval development; however, the left side PGCs cease to exist in young juveniles, suggesting that PGCs are eliminated from the left body side during larval development or following metamorphosis. This is reminiscent of the PGC development in the sea urchin embryo, and we discuss the implications of this observation for the evolution of developmental mechanisms.
RESUMO
Recent developments in sequencing technologies have greatly improved our knowledge of phylogenetic relationships and genomic architectures throughout the tree of life. Spiralia, a diverse clade within Protostomia, is essential for understanding the evolutionary history of parasitism, gene conversion, nervous systems and animal body plans. In this review, we focus on the current hypotheses of spiralian phylogeny and investigate the impact of long-read sequencing on the quality of genome assemblies. We examine chromosome-level assemblies to highlight key genomic features that have driven spiralian evolution, including karyotype, synteny and the Hox gene organization. In addition, we show how chromosome rearrangement has influenced spiralian genomic structures. Although spiralian genomes have undergone substantial changes, they exhibit both conserved and lineage-specific features. We recommend increasing sequencing efforts and expanding functional genomics research to deepen insights into spiralian biology.
Assuntos
Genômica , Animais , FilogeniaRESUMO
BACKGROUND: Toll-like receptors (TLRs) play a crucial role in immunity and development. They contain leucine-rich repeat domains, one transmembrane domain, and one Toll/IL-1 receptor domain. TLRs have been classified into V-type/scc and P-type/mcc TLRs, based on differences in the leucine-rich repeat domain region. Although TLRs are widespread in animals, detailed phylogenetic studies of this gene family are lacking. Here we aim to uncover TLR evolution by conducting a survey and a phylogenetic analysis in species across Bilateria. To discriminate between their role in development and immunity we furthermore analyzed stage-specific transcriptomes of the ecdysozoans Priapulus caudatus and Hypsibius exemplaris, and the spiralians Crassostrea gigas and Terebratalia transversa. RESULTS: We detected a low number of TLRs in ecdysozoan species, and multiple independent radiations within the Spiralia. V-type/scc and P-type/mcc type-receptors are present in cnidarians, protostomes and deuterostomes, and therefore they emerged early in TLR evolution, followed by a loss in xenacoelomorphs. Our phylogenetic analysis shows that TLRs cluster into three major clades: clade α is present in cnidarians, ecdysozoans, and spiralians; clade ß in deuterostomes, ecdysozoans, and spiralians; and clade γ is only found in spiralians. Our stage-specific transcriptome and in situ hybridization analyses show that TLRs are expressed during development in all species analyzed, which indicates a broad role of TLRs during animal development. CONCLUSIONS: Our findings suggest that a clade α TLR gene (TLR-Ca) and a clade ß/γ TLR gene (TLR-Cß/γ) were already present in the cnidarian-bilaterian common ancestor. However, although TLR-Ca was conserved in cnidarians, TLR-Cß/γ was lost during the early evolution of these taxa. Moreover, TLR-Cß/γ duplicated to generate TLR-Cß and TLR-Cγ in the lineage to the last common protostome-deuterostome ancestor. TLR-Ca, TLR-Cß and TLR-Cγ further expanded generating the three major TLR clades. While all three clades radiated in several spiralian lineages, specific TLRs clades have been presumably lost in other lineages. Furthermore, the expression of the majority of these genes during protostome ontogeny suggests a likely role in development.
Assuntos
Evolução Molecular , Invertebrados , Receptores Toll-Like , Animais , Filogenia , Receptores Toll-Like/genéticaRESUMO
A comprehensive knowledge of relationships between coral and coral-associated organisms is essential for the conservation studies of the coral reef community, yet the biodiversity database of coral-inhabiting copepods remains incomplete. Here we surveyed in a widely distributed scleractinian coral, Psammocora columna Dana, 1846, and newly discovered two endoparasitic copepod species, Xarifiayanliaoensis sp. nov. and Xarifia magnifica sp. nov. These two new species are described based on specimens collected in Taiwan, and they share several common morphological characters of Xarifia copepods, i.e., region dorsal to fifth legs having three posteriorly directed processes unequally. However, X. yanliaoensis sp. nov. is distinguishable from other species by the morphology of the endopods of legs, antenna, maxilla, and maxilliped (in both genders). The morphological characters of X. magnifica sp. nov. are the endopods of legs, leg 5, and maxilliped in the male. Including the two new species described in the present work, the genus Xarifia Humes, 1960 belongs to the cyclopoid family Xarifiidae Humes, 1960 currently consists of 94 species, and eight of them live in association with the Psammocora coral. A comparison table and a key to the species of Xarifia from Psammocora corals are given herein.
RESUMO
Mineralized skeletal tissues of vertebrates are an evolutionary novelty within the chordate lineage. While the progenitor cells that contribute to vertebrate skeletal tissues are known to have two embryonic origins, the mesoderm and neural crest, the evolutionary origin of their developmental process remains unclear. Using cephalochordate amphioxus as our model, we found that cells at the lateral wall of the amphioxus somite express SPARC (a crucial gene for tissue mineralization) and various collagen genes. During development, some of these cells expand medially to surround the axial structures, including the neural tube, notochord and gut, while others expand laterally and ventrally to underlie the epidermis. Eventually these cell populations are found closely associated with the collagenous matrix around the neural tube, notochord, and dorsal aorta, and also with the dense collagen sheets underneath the epidermis. Using known genetic markers for distinct vertebrate somite compartments, we showed that the lateral wall of amphioxus somite likely corresponds to the vertebrate dermomyotome and lateral plate mesoderm. Furthermore, we demonstrated a conserved role for BMP signaling pathway in somite patterning of both amphioxus and vertebrates. These results suggest that compartmentalized somites and their contribution to primitive skeletal tissues are ancient traits that date back to the chordate common ancestor. The finding of SPARC-expressing skeletal scaffold in amphioxus further supports previous hypothesis regarding SPARC gene family expansion in the elaboration of the vertebrate mineralized skeleton.
RESUMO
Metazoans have evolved a great variety of life histories in response to environmental conditions. A unique example is encountered in dicyemid mesozoans. In addition to a highly simplified adult body comprising only ~ 30 cells, dicyemids exhibit a parasitic lifestyle that includes nematogens (asexual reproductive adults), rhombogens (sexual reproductive adults), vermiform larvae generated by nematogens, and infusoriform larvae generated by rhombogens. However, due to the difficulties of observing microscopic endoparasites, the complex life cycle and biological functions of life-cycle stages of dicyemids have remained mysterious. Taking advantage of the recently decoded genome of Dicyema japonicum, we examined genes that undergird this lifestyle. Using stage-specific gene expression profiles, we found that biological processes associated with molecular transport, developmental regulation, and sensory response are specified at different stages. Together with the expression of potential neurotransmitters, we further suggest that apical cells in infusoriform larva probably serve sensory functions, although dicyemids have no nervous system. Gene expression profiles show that more genes are expressed in free-living infusoriform larvae than in the other three stages, and that some of these genes are likely involved in locating new hosts. These data provide molecular information about the unique lifestyle of dicyemids and illustrate how an extremely simplified endoparasite adapted and retained gene sets and morphological characters to complete its life cycle. SUPPLEMENTARY INFORMATION: Supplementary information accompanies this paper at 10.1186/s40851-019-0146-y.
RESUMO
Dicyemids, previously called "mesozoans" (intermediates between unicellular protozoans and multicellular metazoans), are an enigmatic animal group. They have a highly simplified adult body, comprising only â¼30 cells, and they have a unique parasitic lifestyle. Recently, dicyemids were shown to be spiralians, with affinities to the Platyhelminthes. In order to understand molecular mechanisms involved in evolution of this odd animal, we sequenced the genome of Dicyema japonicum and a reference transcriptome assembly using mixed-stage samples. The D. japonicum genome features a high proportion of repetitive sequences that account for 49% of the genome. The dicyemid genome is reduced to â¼67.5 Mb with 5,012 protein-coding genes. Only four Hox genes exist in the genome, with no clustering. Gene distribution in KEGG pathways shows that D. japonicum has fewer genes in most pathways. Instead of eliminating entire critical metabolic pathways, parasitic lineages likely simplify pathways by eliminating pathway-specific genes, while genes with fundamental functions may be retained in multiple pathways. In principle, parasites can stand to lose genes that are unnecessary, in order to conserve energy. However, whether retained genes in incomplete pathways serve intermediate functions and how parasites overcome the physiological needs served by lost genes, remain to be investigated in future studies.
Assuntos
Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Invertebrados/genética , Parasitos/genética , Proteínas/genética , Animais , Invertebrados/classificação , Invertebrados/crescimento & desenvolvimento , Filogenia , TranscriptomaRESUMO
The blue coral, Heliopora coerulea, is a reef-building octocoral that prefers shallow water and exhibits optimal growth at a temperature close to that which causes bleaching in scleractinian corals. To better understand the molecular mechanisms underlying its biology and ecology, we generated a reference transcriptome for H. coerulea using next-generation sequencing. Metatranscriptome assembly yielded 90,817 sequences of which 71% (64,610) could be annotated by comparison to public databases. The assembly included transcript sequences from both the coral host and its symbionts, which are related to the thermotolerant C3-Gulf ITS2 type Symbiodinium. Analysis of the blue coral transcriptome revealed enrichment of genes involved in stress response, including heat-shock proteins and antioxidants, as well as genes participating in signal transduction and stimulus response. Furthermore, the blue coral possesses homologs of biomineralization genes found in other corals and may use a biomineralization strategy similar to that of scleractinians to build its massive aragonite skeleton. These findings thus offer insights into the ecology of H. coerulea and suggest gene networks that may govern its interactions with its environment.
Assuntos
Antozoários/genética , Recifes de Corais , Perfilação da Expressão Gênica , Animais , Antozoários/metabolismo , Minerais/metabolismo , Anotação de Sequência Molecular , Análise de Sequência de RNARESUMO
Mammalian gut microbiota are integral to host health. However, how this association began remains unclear. We show that in basal chordates the gut space is radially compartmentalized into a luminal part where food microbes pass and an almost axenic peripheral part, defined by membranous delamination of the gut epithelium. While this membrane, framed with chitin nanofibers, structurally resembles invertebrate peritrophic membranes, proteome supports its affinity to mammalian mucus layers, where gut microbiota colonize. In ray-finned fish, intestines harbor indigenous microbes, but chitinous membranes segregate these luminal microbes from the surrounding mucus layer. These data suggest that chitin-based barrier immunity is an ancient system, the loss of which, at least in mammals, provided mucus layers as a novel niche for microbial colonization. These findings provide a missing link for intestinal immune systems in animals, revealing disparate mucosal environment in model organisms and highlighting the loss of a proven system as innovation.
Assuntos
Quitina/imunologia , Microbioma Gastrointestinal/fisiologia , Muco/microbiologia , Animais , Cordados/imunologia , Cordados/microbiologia , Ciona/imunologia , Ciona/microbiologia , Peixes/imunologia , Peixes/microbiologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NanofibrasRESUMO
BACKGROUND: Obtaining phylogenomic data for enigmatic taxa is essential to achieve a better understanding of animal evolution. Dicyemids have long fascinated biologists because of their highly simplified body organization, but their life-cycles remain poorly known. Based on the discovery of the dicyemid DoxC gene, which encodes a spiralian peptide, it has been proposed that dicyemids are members of the Spiralia. Other studies have suggested that dicyemids may have closer affinities to mollusks and annelids. However, the phylogenetic position of dicyemids has remained a matter of debate, leading to an ambiguous picture of spiralian evolution. RESULTS: In the present study, newly sequenced transcriptomic data from Dicyema japonicum were complemented with published transcriptomic data or predicted gene models from 29 spiralian, ecdysozoan, and deuterostome species, generating a dataset (Dataset 1) for phylogenomic analyses, which contains 348 orthologs and 58,124 amino acids. In addition to this dataset, to eliminate systematic errors, two additional sub-datasets were created by removing compositionally heterogeneous or rapidly evolving sites and orthologs from Dataset 1, which may cause compositional heterogeneity and long-branch attraction artifacts. Maximum likelihood and Bayesian inference analyses both placed Dicyema japonicum (Dicyemida) in a clade with Intoshia linei (Orthonectida) with strong statistical support. Furthermore, maximum likelihood analyses placed the Dicyemida + Orthonectida clade within the Gastrotricha, while in Bayesian inference analyses, this clade is sister group to the clade of Gastrotricha + Platyhelminthes. CONCLUSIONS: Whichever the case, in all analyses, Dicyemida, Orthonectida, Gastrotricha, and Platyhelminthes constitute a monophyletic group that is a sister group to the clade of Mollusca + Annelida. Based on present phylogenomic analyses, dicyemids display close affinity to orthonectids, and they may share a common ancestor with gastrotrichs and platyhelminths, rather than with mollusks and annelids. Regarding spiralian phylogeny, the Gnathifera forms the sister group to the Rouphozoa and Lophotrochozoa, as has been suggested by previous studies; thus our analysis supports the traditional acoeloid-planuloid hypothesis of a nearly microscopic, non-coelomate common ancestor of spiralians.
RESUMO
Despite morphological diversification of chordates over 550 million years of evolution, their shared basic anatomical pattern (or 'bodyplan') remains conserved by unknown mechanisms. The developmental hourglass model attributes this to phylum-wide conserved, constrained organogenesis stages that pattern the bodyplan (the phylotype hypothesis); however, there has been no quantitative testing of this idea with a phylum-wide comparison of species. Here, based on data from early-to-late embryonic transcriptomes collected from eight chordates, we suggest that the phylotype hypothesis would be better applied to vertebrates than chordates. Furthermore, we found that vertebrates' conserved mid-embryonic developmental programmes are intensively recruited to other developmental processes, and the degree of the recruitment positively correlates with their evolutionary conservation and essentiality for normal development. Thus, we propose that the intensively recruited genetic system during vertebrates' organogenesis period imposed constraints on its diversification through pleiotropic constraints, which ultimately led to the common anatomical pattern observed in vertebrates.
Assuntos
Evolução Biológica , Pleiotropia Genética , Vertebrados/genética , Animais , Filogenia , Vertebrados/anatomia & histologia , Vertebrados/crescimento & desenvolvimentoRESUMO
BACKGROUND: Nodal is an important determinant of the left-right (LR) body axis in bilaterians, specifying the right side in protostomes and non-chordate deuterostomes as opposed to the left side in chordates. Amphioxus represents an early-branching chordate group, rendering it especially useful for studying the character states that predate the origin of vertebrates. However, its anatomy, involving offset arrangement of axial structures, marked asymmetry of the oropharyngeal region, and, most notably, a mouth positioned on the left side, contrasts with the symmetric arrangement of the corresponding regions in other chordates. RESULTS: We show that the Nodal signaling pathway acts to specify the LR axis in the cephalochordate amphioxus in a similar way as in vertebrates. At early neurula stages, Nodal switches from initial bilateral to the left-sided expression and subsequently specifies the left embryonic side. Perturbation of Nodal signaling with small chemical inhibitors (SB505124 and SB431542) alters expression of other members of the pathway and of left/right-sided, organ-specific genes. Upon inhibition, larvae display loss of the innate alternation of both somites and axons of peripheral nerves and loss of left-sided pharyngeal structures, such as the mouth, the preoral pit, and the duct of the club-shaped gland. Concomitantly, the left side displays ectopic expression of otherwise right-sided genes, and the larvae exhibit bilaterally symmetrical morphology, with duplicated endostyle and club-shaped gland structures. CONCLUSIONS: We demonstrate that Nodal signaling is necessary for establishing the LR embryonic axis and for developing profound asymmetry in amphioxus. Our data suggest that initial symmetry breaking in amphioxus and propagation of the pathway on the left side correspond with the situation in vertebrates. However, the organs that become targets of the pathway differ between amphioxus and vertebrates, which may explain the pronounced asymmetry of its oropharyngeal and axial structures and the left-sided position of the mouth.
RESUMO
BACKGROUND: The bHLH-PAS transcription factors are found in both protostomes and deuterostomes. They are involved in many developmental and physiological processes, including regional differentiation of the central nervous system, tube-formation, hypoxia signaling, aromatic hydrocarbon sensing, and circadian rhythm regulation. To understand the evolution of these genes in chordates, we analyzed the bHLH-PAS genes of the basal chordate amphioxus (Branchiostoma floridae). RESULTS: From the amphioxus draft genome database, we identified ten bHLH-PAS genes, nine of which could be assigned to known orthologous families. The tenth bHLH-PAS gene could not be assigned confidently to any known bHLH family; however, phylogenetic analysis clustered this gene with arthropod Met family genes and two spiralian bHLH-PAS-containing sequences, suggesting that they may share the same ancestry. We examined temporal and spatial expression patterns of these bHLH-PAS genes in developing amphioxus embryos. We found that BfArnt, BfNcoa, BfSim, and BfHifα were expressed in the central nervous system in patterns similar to those of their vertebrate homologs, suggesting that their functions may be conserved. By contrast, the amphioxus BfAhr and BfNpas4 had expression patterns distinct from those in vertebrates. These results imply that there were changes in gene regulation after the divergence of cephalochordates and vertebrates. CONCLUSIONS: We have identified ten bHLH-PAS genes from the amphioxus genome and determined the embryonic expression profiles for these genes. In addition to the nine currently recognized bHLH-PAS families, our survey suggests that the BfbHLHPAS-orphan gene along with arthropod Met genes and the newly identified spiralian bHLH-PAS-containing sequences represent an ancient group of genes that were lost in the vertebrate lineage. In a comparison with the expression patterns of the vertebrate bHLH-PAS paralogs, which are the result of whole-genome duplication, we found that although several members seem to retain conserved expression patterns during chordate evolution, many duplicated paralogs may have undergone subfunctionalization and neofunctionalization in the vertebrate lineage. In addition, our survey of amphioxus bHLH-PAS gene models from genome browser with experimentally verified cDNA sequences calls into question the accuracy of the current in silico gene annotation of the B. floridae genome.