Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 12(11): e1001985, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25369313

RESUMO

Glial cells are exquisitely sensitive to neuronal injury but mechanisms by which glia establish competence to respond to injury, continuously gauge neuronal health, and rapidly activate reactive responses remain poorly defined. Here, we show glial PI3K signaling in the uninjured brain regulates baseline levels of Draper, a receptor essential for Drosophila glia to sense and respond to axonal injury. After injury, Draper levels are up-regulated through a Stat92E-modulated, injury-responsive enhancer element within the draper gene. Surprisingly, canonical JAK/STAT signaling does not regulate draper expression. Rather, we find injury-induced draper activation is downstream of the Draper/Src42a/Shark/Rac1 engulfment signaling pathway. Thus, PI3K signaling and Stat92E are critical in vivo regulators of glial responsiveness to axonal injury. We provide evidence for a positive auto-regulatory mechanism whereby signaling through the injury-responsive Draper receptor leads to Stat92E-dependent, transcriptional activation of the draper gene. We propose that Drosophila glia use this auto-regulatory loop as a mechanism to adjust their reactive state following injury.


Assuntos
Lesão Axonal Difusa/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Membrana/metabolismo , Neuroglia/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Animais , Axônios/metabolismo , Encéfalo/metabolismo , Drosophila , Proteínas de Drosophila/genética , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Janus Quinases/metabolismo , Proteínas de Membrana/genética , Neurônios Receptores Olfatórios/fisiologia , Transdução de Sinais
2.
Proc Natl Acad Sci U S A ; 111(34): 12544-9, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25099352

RESUMO

Nervous system injury or disease leads to activation of glia, which govern postinjury responses in the nervous system. Axonal injury in Drosophila results in transcriptional up-regulation of the glial engulfment receptor Draper; there is extension of glial membranes to the injury site (termed activation), and then axonal debris is internalized and degraded. Loss of the small GTPase Rac1 from glia completely suppresses glial responses to injury, but upstream activators remain poorly defined. Loss of the Rac guanine nucleotide exchange factor (GEF) Crk/myoblast city (Mbc)/dCed-12 has no effect on glial activation, but blocks internalization and degradation of debris. Here we show that the signaling molecules downstream of receptor kinase (DRK) and daughter of sevenless (DOS) (mammalian homologs, Grb2 and Gab2, respectively) and the GEF son of sevenless (SOS) (mammalian homolog, mSOS) are required for efficient activation of glia after axotomy and internalization/degradation of axonal debris. At the earliest steps of glial activation, DRK/DOS/SOS function in a partially redundant manner with Crk/Mbc/dCed-12, with blockade of both complexes strongly suppressing all glial responses, similar to loss of Rac1. This work identifies DRK/DOS/SOS as the upstream Rac GEF complex required for glial responses to axonal injury, and demonstrates a critical requirement for multiple GEFs in efficient glial activation after injury and internalization/degradation of axonal debris.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Proteínas do Olho/fisiologia , Neuroglia/fisiologia , Proteína Son Of Sevenless de Drosófila/fisiologia , Proteínas rac de Ligação ao GTP/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Animais Geneticamente Modificados , Axônios/fisiologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas do Olho/genética , Genes de Insetos , Mutação , Degeneração Neural , Fagossomos/fisiologia , Proteínas Proto-Oncogênicas c-crk/genética , Proteínas Proto-Oncogênicas c-crk/fisiologia , Proteína Son Of Sevenless de Drosófila/genética , Proteínas rac de Ligação ao GTP/genética , Proteínas ras/genética , Proteínas ras/fisiologia
3.
Nat Neurosci ; 26(10): 1739-1750, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37697112

RESUMO

Oligodendrocytes, the myelinating cells of the central nervous system (CNS), are generated from oligodendrocyte precursor cells (OPCs) that express neurotransmitter receptors. However, the mechanisms that affect OPC activity in vivo and the physiological roles of neurotransmitter signaling in OPCs are unclear. In this study, we generated a transgenic mouse line that expresses membrane-anchored GCaMP6s in OPCs and used longitudinal two-photon microscopy to monitor OPC calcium (Ca2+) dynamics in the cerebral cortex. OPCs exhibit focal and transient Ca2+ increases within their processes that are enhanced during locomotion-induced increases in arousal. The Ca2+ transients occur independently of excitatory neuron activity, rapidly decline when OPCs differentiate and are inhibited by anesthesia, sedative agents or noradrenergic receptor antagonists. Conditional knockout of α1A adrenergic receptors in OPCs suppresses spontaneous and locomotion-induced Ca2+ increases and reduces OPC proliferation. Our results demonstrate that OPCs are directly modulated by norepinephrine in vivo to enhance Ca2+ dynamics and promote population homeostasis.


Assuntos
Células Precursoras de Oligodendrócitos , Camundongos , Animais , Células Precursoras de Oligodendrócitos/fisiologia , Cálcio/farmacologia , Norepinefrina/farmacologia , Camundongos Transgênicos , Oligodendroglia/fisiologia , Córtex Cerebral , Proliferação de Células/fisiologia , Nível de Alerta , Diferenciação Celular/fisiologia
4.
J Virol ; 82(16): 7988-99, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18550675

RESUMO

Vaccinia virus is a large DNA virus that infects many cell cultures in vitro and animal species in vivo. Although it has been used widely as a vaccine, its cell entry pathway remains unclear. In this study, we showed that vaccinia virus intracellular mature virions bound to the filopodia of HeLa cells and moved toward the cell body and entered the cell through an endocytic route that required a dynamin-mediated pathway but not a clathrin- or caveola-mediated pathway. Moreover, virus penetration required a novel cellular protein, vaccinia virus penetration factor (VPEF). VPEF was detected on cell surface lipid rafts and on vesicle-like structures in the cytoplasm. Both vaccinia virus and dextran transiently colocalized with VPEF, and, importantly, knockdown of VPEF expression blocked vaccinia virus penetration as well as intracellular transport of dextran, suggesting that VPEF mediates vaccinia virus entry through a fluid uptake endocytosis process in HeLa cells. Intracellular VPEF-containing vesicles did not colocalize with Rab5a or caveolin but partially colocalized with Rab11, supporting the idea that VPEF plays a role in vesicle trafficking and recycling in HeLa cells. In summary, this study characterized the mechanism by which vaccinia virus enters HeLa cells and identified a cellular factor, VPEF, that is exploited by vaccinia virus for cell entry through fluid phase endocytosis.


Assuntos
Proteínas de Membrana/fisiologia , Vaccinia virus/metabolismo , Actinas/química , Membrana Celular/virologia , DNA Complementar/metabolismo , Endocitose , Biblioteca Gênica , Células HeLa , Humanos , Ligantes , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/química , Microscopia Confocal , Fases de Leitura Aberta , Plasmídeos/metabolismo , Pseudópodes/metabolismo , RNA Interferente Pequeno/metabolismo
5.
Nat Commun ; 8: 14355, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28165006

RESUMO

Draper/Ced-1/MEGF-10 is an engulfment receptor that promotes clearance of cellular debris in C. elegans, Drosophila and mammals. Draper signals through an evolutionarily conserved Src family kinase cascade to drive cytoskeletal rearrangements and target engulfment through Rac1. Glia also alter gene expression patterns in response to axonal injury but pathways mediating these responses are poorly defined. We show Draper is cell autonomously required for glial activation of transcriptional reporters after axonal injury. We identify TNF receptor associated factor 4 (TRAF4) as a novel Draper binding partner that is required for reporter activation and phagocytosis of axonal debris. TRAF4 and misshapen (MSN) act downstream of Draper to activate c-Jun N-terminal kinase (JNK) signalling in glia, resulting in changes in transcriptional reporters that are dependent on Drosophila AP-1 (dAP-1) and STAT92E. Our data argue injury signals received by Draper at the membrane are important regulators of downstream transcriptional responses in reactive glia.


Assuntos
Axônios/patologia , Proteínas de Drosophila/metabolismo , Proteínas de Membrana/metabolismo , Degeneração Neural/metabolismo , Neuroglia/patologia , Transdução de Sinais/fisiologia , Animais , Animais Geneticamente Modificados , Axônios/metabolismo , Membrana Celular/metabolismo , Membrana Celular/patologia , Drosophila melanogaster/metabolismo , Feminino , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Degeneração Neural/patologia , Neuroglia/citologia , Neuroglia/metabolismo , Fagocitose , Fatores de Transcrição STAT/metabolismo , Fator 4 Associado a Receptor de TNF/metabolismo , Fator de Transcrição AP-1/metabolismo
6.
Neuron ; 92(6): 1181-1195, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-27939582

RESUMO

Astrocytes exist throughout the nervous system and are proposed to affect neural circuits and behavior. However, studying astrocytes has proven difficult because of the lack of tools permitting astrocyte-selective genetic manipulations. Here, we report the generation of Aldh1l1-Cre/ERT2 transgenic mice to selectively target astrocytes in vivo. We characterized Aldh1l1-Cre/ERT2 mice using imaging, immunohistochemistry, AAV-FLEX-GFP microinjections, and crosses to RiboTag, Ai95, and new Cre-dependent membrane-tethered Lck-GCaMP6f knockin mice that we also generated. Two to three weeks after tamoxifen induction, Aldh1l1-Cre/ERT2 selectively targeted essentially all adult (P80) brain astrocytes with no detectable neuronal contamination, resulting in expression of cytosolic and Lck-GCaMP6f, and permitting subcellular astrocyte calcium imaging during startle responses in vivo. Crosses with RiboTag mice allowed sequencing of actively translated mRNAs and determination of the adult cortical astrocyte transcriptome. Thus, we provide well-characterized, easy-to-use resources with which to selectively study astrocytes in situ and in vivo in multiple experimental scenarios.


Assuntos
Astrócitos/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , RNA Mensageiro/metabolismo , Aldeído Desidrogenase/genética , Animais , Citosol/metabolismo , Receptor beta de Estrogênio/genética , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Perfilação da Expressão Gênica , Integrases , Camundongos , Camundongos Transgênicos , Modelos Animais , Moduladores Seletivos de Receptor Estrogênico , Tamoxifeno
7.
J Hepatol ; 49(6): 899-907, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18842320

RESUMO

BACKGROUND/AIMS: Patients infected with hepatitis C virus (HCV) genotype 2 or 3 usually respond better to interferon (IFN) treatment than those infected with genotype 1. In this study, we investigated whether the non-structural 5A protein (NS5A) of HCV genotypes 1 and 2 (1b-NS5A and 2a-NS5A, respectively) exerted differential counteractivities against IFN treatment. METHODS: We compared the inhibitory effects of 1b-NS5As and 2a-NS5As on IFN activity. We also investigated the replication inhibition of HCV subgenomic replicons containing 1b-NS5A or 2a-NS5A in response to IFN treatment. RESULTS: 1b-NS5As exerted more profound inhibitory effects on IFN activity than 2a-NS5As. The replication of the 2a-NS5A-containing replicons was more sensitive to IFN treatment than that of the 1b-NS5A-containing replicons. Deletion of the interferon sensitivity-determining region/protein kinase R-binding domain (PKR-BD), the V3 domain, or the C-terminus region of NS5A significantly abrogated its anti-IFN activity. Domain swapping between 1b-NS5A and 2a-NS5A in the V3 domain and/or the C-terminus region resulted in a transfer of their anti-IFN activity. CONCLUSIONS: 1b-NS5As exert higher magnitudes of IFN antagonism than do 2a-NS5As. The V3 and the C-terminus regions are responsible for the differential anti-IFN effects. This phenomenon may partly explain the genotype-linked differences in the response of HCV to IFN treatment.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Hepatite C/virologia , Interferon-alfa/farmacologia , Proteínas não Estruturais Virais/genética , Sequência de Aminoácidos , Animais , Chlorocebus aethiops , Farmacorresistência Viral/genética , Genótipo , Células HeLa , Hepacivirus/genética , Humanos , Dados de Sequência Molecular , Regiões Promotoras Genéticas/fisiologia , Estrutura Terciária de Proteína/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Transfecção , Células Vero , Proteínas não Estruturais Virais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA