RESUMO
Interfering with intratumoral metabolic processes is proven to effectively sensitize different antitumor treatments. Here, a tumor-targeting catalytic nanoplatform (CQ@MIL-GOX@PB) loading with autophagy inhibitor (chloroquine, CQ) and glucose oxidase (GOX) is fabricated to interfere with the metabolisms of tumor cells and tumor-associated macrophages (TAMs), then realizing effective antitumor chemodynamic therapy (CDT). Once accumulating in the tumor site with the navigation of external biotin, CQ@MIL-GOX@PB will release Fe ions and CQ in the acid lysosomes of tumor cells, the latter can sensitize Fe ions-involved antitumor CDT by blocking the autophagy-dependent cell repair. Meanwhile, the GOX component will consume glucose, which not only generates many H2O2 for CDT but also once again decelerates the tumor repair process by reducing energy metabolism. What is more, the release of CQ can also drive the NO anabolism of TAMs to further sensitize CDT. This strategy of multiple metabolic regulations is evidenced to significantly improve the antitumor effect of traditional CDT nanoagents and might provide a new sight to overcome the bottlenecks of different antitumor treatments.
Assuntos
Glucose Oxidase , Animais , Glucose Oxidase/metabolismo , Humanos , Linhagem Celular Tumoral , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Cloroquina/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Autofagia/efeitos dos fármacos , Nanopartículas/químicaRESUMO
Herein, a drug-loading nanosystem that can in situ form drug depository for persistent antitumor chemotherapy and immune regulation is designed and built. The system (DOX@MIL-LOX@AL) is fabricated by packaging alginate on the surface of Doxorubicin (DOX) and lactate oxidase (LOX) loaded MIL-101(Fe)-NH2 nanoparticle, which can easily aggregate in the tumor microenvironment through the cross-linking with intratumoral Ca2+. Benefiting from the tumor retention ability, the fast-formed drug depository will continuously release DOX and Fe ions through the ATP-triggered slow degradation, thus realizing persistent antitumor chemotherapy and immune regulation. Meanwhile, LOX in the non-aggregated nanoparticles is able to convert the lactic acid to H2O2, which will be subsequently decomposed into ·OH by Fe ions to further enhance the DOX-induced immunogenic death effect of tumor cells. Together, with the effective consumption of immunosuppressive lactic acid, long-term chemotherapy, and oxidation therapy, DOX@MIL-LOX@AL can execute high-performance antitumor chemotherapy and immune activation with only one subcutaneous administration.
Assuntos
Nanopartículas , Microambiente Tumoral , Peróxido de Hidrogênio , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Portadores de Fármacos/farmacologia , Ácido Láctico , Linhagem Celular TumoralRESUMO
Polysaccharide capsule is the main virulence factor of K. pneumoniae, a major pathogen of bloodstream infections in humans. While more than 80 capsular serotypes have been identified in K. pneumoniae, only several serotypes are frequently identified in invasive infections. It is documented that the capsule enhances bacterial resistance to phagocytosis, antimicrobial peptides and complement deposition under in vitro conditions. However, the precise role of the capsule in the process of K. pneumoniae bloodstream infections remains to be elucidated. Here we show that the capsule promotes K. pneumoniae survival in the bloodstream by protecting bacteria from being captured by liver resident macrophage Kupffer cells (KCs). Our real-time in vivo imaging revealed that blood-borne acapsular K. pneumoniae mutant is rapidly captured and killed by KCs in the liver sinusoids of mice, whereas, to various extents, encapsulated strains bypass the anti-bacterial machinery in a serotype-dependent manner. Using capsule switched strains, we show that certain high-virulence (HV) capsular serotypes completely block KC's capture, whereas the low-virulence (LV) counterparts confer partial protection against KC's capture. Moreover, KC's capture of the LV K. pneumoniae could be in vivo neutralized by free capsular polysaccharides of homologous but not heterologous serotypes, indicating that KCs specifically recognize the LV capsules. Finally, immunization with inactivated K. pneumoniae enables KCs to capture the HV K. pneumoniae. Together, our findings have uncovered that KCs are the major target cells of K. pneumoniae capsule to promote bacterial survival and virulence, which can be reversed by vaccination.
Assuntos
Infecções por Klebsiella , Sepse , Animais , Cápsulas Bacterianas , Humanos , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae , Células de Kupffer , Fígado , Camundongos , PolissacarídeosRESUMO
RATIONALE: The triangular electrode linear ion trap with asymmetric geometry has been reported to possess a high ion unidirectional ejection efficiency and a reasonable mass resolution. To further improve its performance, a double resonant excitation method involving a dipolar and a quadrupolar resonant excitation was applied here. METHODS: The dipolar excitation method was carried out by applying a supplementary alternating voltage out of phase to one pair of the electrodes, whereas the quadrupolar excitation (QE) method was carried out by adding a supplementary alternating voltage in phase to another pair of electrodes. Numerical simulations were performed to explore the impact of the frequency difference between the alternating current (AC) and the QE voltage (∆ω), the frequency of the AC voltage (ωAC), and the QE voltage amplitude (VQE). RESULTS: The mass resolution could be improved to ~4700 m / ∆ m $$ \left(m/\Delta m\right) $$ , which was approximately twice compared to that with only dipolar resonant excitation, and the ion unidirectional ejection efficiency could be improved to 97%. Even with a high scan rate of 6000 Da/s, there was minimal loss of mass resolution caused by increased scan rate in double resonant excitation mode. CONCLUSIONS: By employing the double resonant excitation method, the mass resolution could be further increased while maintaining a considerably high ion unidirectional ejection efficiency, which might be a simple and practical approach for developing a high-performance miniature ion trap mass analyzer.
RESUMO
BACKGROUND: To report the microbiological isolates, aetiology, complications, antibiotic susceptibilities, and clinical remission of dacryocystitis and canaliculitis in a prominent tertiary ophthalmic teaching and referral hospital located in northern China and to offer appropriate recommendations for preventing and formulating drug treatment strategies. METHODS: This prospective study recruited a total of 477 participants who had been diagnosed with either dacryocystitis or canaliculitis. The cohort comprised 307 patients with chronic dacryocystitis, 111 patients with acute dacryocystitis, and 59 patients with canaliculitis. Purulent discharge from the lacrimal duct was collected using a sterile swab and immediately subjected to microbial culture. Antimicrobial susceptibility testing was conducted following established protocols. All participants were scheduled for follow-up visits within 14 days after receiving antibiotic therapy. RESULTS: The present findings indicated that women exhibited a higher susceptibility to the condition, as evidenced by the occurrence of 367 cases in comparison to 110 cases among men. Among the 477 patients, definitive causes were established in 59 individuals, accounting for 12.4% of the patients. Additionally, ocular complications were reported by 132 patients, representing 27.7% of the total. Monocular involvement was observed in the majority of cases, with 402 out of 477 patients (84.3%) affected, while binocular involvement was present in 75 patients (15.7%). In total, 506 microbiological strains were recovered from 552 eyes, with Staphylococcus epidermidis (16.4%) being the most prevalent microorganism. Other predominant isolates included Corynebacterium macginleyi (9.1%), Staphylococcus aureus (5.1%), Streptococcus pneumoniae (4.9%), Haemophilus (4.4%), Propionibacterium acnes (3.5%), and Eikenella corrodens (3.1%). Among the 12 isolated fungi, Candida parapsilosis accounted for 66.7%. The susceptibility to antimicrobial agents tested in gram-negative bacilli (79.5%) was observed to be higher than that of anaerobic bacteria (76.7%) and gram-positive cocci (55.4%). With pharmacological therapy, the remission rate of acute dacryocystitis (72.7%) was found to be higher than that of canaliculitis (53.3%) and chronic dacryocystitis (42.3%). CONCLUSIONS: This study highlights the microbial spectrum of dacryocystitis and canaliculitis, particularly C.macginleyi, E.corrodens and C.parapsilosis, which are also more frequently isolated. Vancomycin and imipenem may be more effective treatment options. Most cases have an unknown aetiology, and essential preventive measures involve postoperative cleansing of the lacrimal passage following eye and nasal surgeries, as well as the proactive management of rhinitis.
Assuntos
Canaliculite , Dacriocistite , Aparelho Lacrimal , Masculino , Humanos , Feminino , Estudos Prospectivos , Dacriocistite/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Hospitais de EnsinoRESUMO
BACKGROUND: This study aimed at investigating the relationship between the weekend catch-up outdoor duration (WCOD) and prevalence of myopia among students in China. METHODS: This cross-sectional study recruited participants in 107 schools (six cities, 30 districts) from China from May to June 2021. Demographic characteristics (age, grade, sex, ethnicity, BMI, resident, and parents' myopia), optically habits (bad writing habits, working/studying time per day, continuous working/studying time per day, and screen time per day) and outdoor duration (weekday and weekend) were obtained from questionnaire. WCOD was defined as outdoor time 1 h longer on weekends than on weekdays. Spherical equivalent (SE) of refractive error were measured with non-cycloplegic refraction. Adjusted multivariate logistic regression analysis was performed to evaluate the relationship between WCOD and prevalence of myopia. RESULTS: Students with myopia had shorter WCOD compared with those without myopia (P < 0.001). Adjusted multivariate logistic regression analyses showed negative associations between WCOD and prevalence of myopia in Chinese students, especially in students with WCOD of 2-3 h (OR = 0.577, P < 0.001) and 3-4 h (OR = 0.571, P = 0.004) when the weekday outdoor duration was 0.5-1 h, as well as students with WCOD of 2-3 h (OR = 0.614, P = 0.003) when the weekday outdoor duration was 1-2 h. Similar results were observed in students with high myopia. Students with high myopia had shorter WCOD compared with those without high myopia (P = 0.001). Negative associations between WCOD and prevalence of high myopia were significant in students with WCOD of 1-2 h when the weekday outdoor duration was < 0.5 h (OR = 0.585, P = 0.007) and 0.5-1 h (OR = 0.537, P = 0.018). CONCLUSION: Our study, for the first time, reported that a WCOD have a potential to reduce the prevalence of myopia and high myopia in Chinese students.
Assuntos
Miopia , Humanos , China/epidemiologia , Estudos Transversais , Miopia/epidemiologia , Masculino , Feminino , Prevalência , Fatores de Tempo , Criança , Adolescente , Estudantes/estatística & dados numéricos , Inquéritos e Questionários , Atividades de LazerRESUMO
Cadmium is a persistent heavy metal commonly found in aquatic ecosystems and has a strong toxic effect on organisms. The sensitivity of phytoplankton to environmental changes and its role as an indicator of aquatic ecosystem health have been well-established. However, the mechanisms by which phytoplankton respond to cadmium remain incompletely understood. In this study, we chose the typical planktonic diatom Cyclotella meneghiniana Kützing, by integrating physiological-biochemical data and transcriptome analysis, to reveal the molecular mechanisms of C. meneghiniana responing to cadmium. Under cadmium stress, the cell density and chlorophyll-a content of C. meneghiniana significantly decreased, while MDA content and SOD activity gradually increased. At 72 h of cadmium stress, we found that at this time point, cell abundance and physiological variation were very significant, therefore we selected 72 h for subsequent analysis. To better understand the cadmium stress response mechanisms of C. meneghiniana, a de novo transcriptome method was used to analyse C. meneghiniana under cadmium stress for 72 h, and 1704 (M vs. CK) and 4788 (H vs. CK) differentially expressed genes were found. Our results showed that the changes in gene expression were closely correlated to the physiological-biochemical changes. Although cadmium stress could promote the nitrogen metabolism pathway, ROS scavenging system, and photosynthesis. While, C. meneghiniana under medium and high concentrations of cadmium can also limit various intracellular metabolic pathways, such as the MAPK pathway and phosphatidylinositol metabolic pathway, and the degree of inhibition increases with the increase of stress concentration. In present study, the complete molecular mechanism of the planktonic diatom response to cadmium has been established, which provided important information for further studies on heavy metal pollutants and the multiple functional genes responsible for cadmium sensitivity and tolerance in planktonic diatoms.
Assuntos
Cádmio , Diatomáceas , Cádmio/metabolismo , Ecossistema , Transcriptoma , Fotossíntese , Plâncton , FitoplânctonRESUMO
Aqueous Sn-air batteries are attracting a great deal of interest in recent years due to the ultra-high safety, low cost, dendrite-free and highly reversible Sn anode. However, the slurry oxygen reduction/evolution reaction (ORR/OER) kinetics on the air cathodes seriously affect the Sn-air battery performances. Although various advanced catalysts have been developed, the charge overpotentials (~1000â mV) of these Sn-air batteries are still not satisfactory. Herein, iron oxide (Fe2O3) modified titanium dioxide (TiO2) nanorods with heterogeneous structure are firstly synthesized on Ti mesh (Fe2O3@TiO2/Ti), and the obtained Fe2O3@TiO2/Ti films are further applied as catalytic electrodes for Sn-air batteries. The core-shell heterogeneous structure of Fe2O3@TiO2/Ti can effectively facilitate the conversion of electrochemical intermediates and separation of photo-excited electrons and holes to activate oxygen-related reaction processes. Density functional theory (DFT) and experimental results also confirm that Fe2O3@TiO2/Ti can not only act as the electrocatalysts to improve ORR/OER properties, but also exhibit the superior photo-catalytic activity to promote charging kinetics. Hence, the Fe2O3@TiO2/Ti-based Sn-air batteries show ultra-low overpotential of ~40â mV, excellent rate capability and good cycling stability under light irradiation. This work will shed light on rational photo-assisted catalytic cathode design for new-type metal-air batteries.
RESUMO
BACKGROUND: Traditionally, conventional microbiological culture methods have been used to detect pathogenic microorganisms in chronic osteomyelitis. However, these methods have been found to have a low detection rate, complicating the precise guidance of infection treatment. This study employed metagenomic next-generation sequencing (mNGS) to detect these microorganisms in chronic osteomyelitis with three main objectives: 1). Gain a deeper understanding of the composition of pathogenic microorganisms in chronic osteomyelitis. 2). Compare the microbial detection rates between mNGS and the standard culture methods used in laboratories to enhance the effectiveness of the traditional culture methods. 3). Explore the potential of mNGS in etiological diagnosis. METHODS: Fifty clinically confirmed intraoperative bone tissue samples of chronic osteomyelitis from January 2021 to December 2021 were collected and subjected to mNGS and microbiological testing, respectively. The orthopaedic surgeon combined clinical manifestations and related examinations to determine the causative pathogens. RESULTS: The culture method obtained 29 aerobic and parthenogenic anaerobic bacteria, 3 specific anaerobic bacteria, and 1 yeast-like fungus. Thirty-six aerobic and parthenogenic anaerobic bacteria, 11 specific anaerobic bacteria, and 1 yeast-like fungus were obtained by mNGS, and 2 Mycobacterium tuberculosis(MTB) strains were detected. However, there was no significant difference in the overall positive detection rate between mNGS and the culture method (P = 0.07), and the two were not statistically significant in detecting aerobic and partly anaerobic bacteria (P = 0.625). But, mNGS was significantly superior to culture in detecting anaerobic bacteria and Mycobacterium tuberculosis (P<0.05). CONCLUSIONS: The mNGS method has enhanced our understanding of the distribution of pathogenic microorganisms in chronic osteomyelitis. Traditional culture methods help isolate and cultivate aerobic and facultative anaerobic bacteria, and fungi, and are also utilized for antibacterial drug sensitivity tests. However, mNGS has shown superior capabilities in detecting anaerobic bacteria, MTB, and mixed infection bacteria. This finding offers invaluable guidance for improving laboratory microbial culture and detection conditions. Hence, mNGS should be judiciously used for chronic osteomyelitis, and PCR can be implemented for certain difficult-to-culture microorganisms, such as MTB.
Assuntos
Coinfecção , Mycobacterium tuberculosis , Osteomielite , Humanos , Saccharomyces cerevisiae , Sequenciamento de Nucleotídeos em Larga Escala , Osteomielite/diagnóstico , Antibacterianos , Metagenômica , Sensibilidade e EspecificidadeRESUMO
Here, an efficient leaving group-activated methylene alcohol strategy for the preparation of primary propargyl alcohols from terminal alkynes by employing the bulk industrial product rongalite as the C1 unit has been described. The reaction avoids the low-temperature reaction conditions and inconvenient lithium reagents required for the classical method of preparing primary propargylic alcohols. Preliminary mechanistic studies showed that the reaction may not proceed via formaldehyde intermediates, but through the direct nucleophilic attack of the terminal alkyne on the carbon atom of rongalite by activation through SO2- as a leaving group.
RESUMO
All vertebrate cells generally self-regulate for sustaining homeostasis and cell functions. As a major regulatory mechanism, regulatory volume decrease (RVD) occurs in hypotonicity-induced cell swelling, and then shrinking by the efflux of intracellular osmolytes and water, in which the ions K+, Cl-, and Ca2+ play a key role in the RVD process. We observed that these pivotal ions could result in novel RVD behaviors under repeatedly hypotonic stimulation. However, there is a lack of valid means for assessing the effect of pivotal ions on RVD. In this work, we proposed an effective measurement process based on a quartz crystal microbalance (QCM) combined with cell function of RVD for revealing acute variations in cell volume regulation induced by the pivotal ions. A QCM sensor was implemented by adhering MCF-7 cells to a poly-l-lysine-modified gold chip and cyclic stimulation with hypotonic NaCl medium, in which a frequency shift (Δf) showed the superior feasibility of the technique in exhibiting RVD behaviors. With the increase in the number of cycles, the RVD values decreased progressively under three stimulation cycles with hypotonic NaCl alone. Compared with the first cycle, the RVD level in the second and third cycles declined by 60.7±1.7% and 82.1±1.6% (n=3), respectively; conversely, it recovered in NaCl-KCl solution, but was significantly enhanced by 52.2±0.8% in NaCl-CaCl2 solution. Moreover, the inhibition of chloride channels to block Cl- efflux also decreased the RVD level by 56.2±3.0%. The results indicate that these ions (K+, Cl-, Ca2+) are all able to affect the function of RVD, among which intracellular Cl- depletion reduced RVD during measurement, but which recovered with K+ supplement, and Ca2+ enhanced RVD due to activation of ion channels. Therefore, this work provides a comprehensive assessment of cellular behavior and offers an innovative method for gaining insight into cellular functions and mechanisms. A novel strategy was conducted by integrating a quartz crystal microbalance (QCM) with the function of cell volume regulation for analyzing the role of the pivotal ions ( K+, Cl-, Ca2+) in NaCl media on the behaviors of regulatory cell volume decrease (RVD).
Assuntos
Técnicas de Microbalança de Cristal de Quartzo , Cloreto de Sódio , Canais Iônicos , Transporte Biológico , Íons , Tamanho CelularRESUMO
The conventional industrial production of nitrogen-containing fertilizers, such as urea and ammonia, relies heavily on energy-intensive processes, accounting for approximately 3 % of global annual CO2 emissions. Herein, we report a sustainable electrocatalytic approach that realizes direct and selective synthesis of urea and ammonia from co-reduction of CO2 and nitrates under ambient conditions. With the assistance of a copper (Cu)-based salphen organic catalyst, outstanding urea (3.64â mg h-1 mgcat -1 ) and ammonia (9.73â mg h-1 mgcat -1 ) yield rates are achieved, in addition to a remarkable Faradaic efficiency of 57.9±3 % for the former. This work proposes an appealing sustainable route to converting greenhouse gas and waste nitrates by renewable energies into value-added fertilizers.
RESUMO
MAIN CONCLUSION: By constructing an F2 population, a new potential dominant resistance gene to TuMV in Brassica rapa was mapped and identified. Brassica rapa is the most widely grown vegetable crop in China, and turnip mosaic virus (TuMV) is a great threat to its production. Hence, it is a very important work to excavate more and novel resistance genes in B. rapa. In this study, the resistant line B80124 and the susceptible line B80450 were used to construct the F2 populations, and through genetic analysis, the resistance to TuMV was found to be controlled by a dominant gene. Bulked segregant analysis sequence (BSA-seq) was used for the primary mapping, and an intersection (22.25-25.03 Mb) was obtained. After fine mapping using single nucleotide polymorphisms (SNP) markers, the candidate region was narrowed to 330 kb between the SNP markers A06S11 and A06S14, including eight genes relating to disease resistance. Using the transcriptome analysis and sequence identification, BraA06g035130.3C was screened as the final candidate gene, and it contained two deletion mutations, leading to frameshift in the susceptible line B80450. In addition, the phylogenetic analysis, hydrophilia and hydrophobicity analysis, subcellular location prediction analysis, amino acid bias analysis, and 3D modeling structures of BraA06g035130.3C were conducted to predict its functions. This study was conducive to the identification of a new TuMV resistance gene in B. rapa, which is of important scientific significance and application value for the improvement of TuMV resistance traits and molecular design breeding for Brassica crops.
Assuntos
Brassica rapa , Genes Dominantes , Filogenia , Doenças das Plantas , PotyvirusRESUMO
BACKGROUND: Long non-coding RNAs (lncRNAs) are widely involved in the pathogenesis of cancers. However, biological roles of lncRNAs in occurrence and progression of colorectal cancer (CRC) remain unclear. The current study aimed to evaluate the expression pattern of lncRNAs and messenger RNAs (mRNAs). METHODS: RNA sequencing (RNA-Seq) in CRC tissues and adjacent normal tissues from 6 CRC patients was performed and functional lncRNA-mRNA co-expression network was constructed afterwards. Gene enrichment analysis was demonstrated using DAVID 6.8 tool. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was used to validate the expression pattern of differentially expressed lncRNAs. Pearson correlation analysis was applied to evaluate the relationships between selected lncRNAs and mRNAs. RESULTS: One thousand seven hundred and sixteenth differentially expressed mRNAs and 311 differentially expressed lncRNAs were screened out. Among these, 568 mRNAs were up-regulated while 1148 mRNAs down-regulated, similarly 125 lncRNAs were up-regulated and 186 lncRNAs down-regulated. In addition, 1448 lncRNA-mRNA co-expression pairs were screened out from 940,905 candidate lncRNA-mRNA pairs. Gene enrichment analysis revealed that these lncRNA-related mRNAs are associated with cell adhesion, collagen adhesion, cell differentiation, and mainly enriched in ECM-receptor interaction and PI3K-Akt signaling pathways. Finally, RT-qPCR results verified the expression pattern of lncRNAs, as well as the relationships between lncRNAs and mRNAs in 60 pairs of CRC tissues. CONCLUSIONS: In conclusion, these results of the RNA-seq and bioinformatic analysis strongly suggested that the dysregulation of lncRNA is involved in the complicated process of CRC development, and providing important insight regarding the lncRNAs involved in CRC.
Assuntos
Neoplasias Colorretais , RNA Longo não Codificante , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , TranscriptomaRESUMO
Rare earth elements (REEs) are increasingly used in the high-tech sectors in the world and are therefore called burgeoning contaminants. As diffusive gradients in thin films (DGT) can be used to assess the bioavailability of inorganic matters, in this paper, we evaluated, for the first time, the ecotoxicology risks of REEs and their mixtures in river sediments of China's old industrial base by DGT. During our research, taking the Songhua River system (SRS) as an example, we detected its surficial sediments, of which the DGT-labile concentration of REEs (∑REEs) was 2.07-8.76 µg/L. As for the single toxicity, the risk quotient (RQ) values of Y at all sites were significantly greater than 1; while the values of Nd and Pr in some upstream reaches were all significantly greater than the threshold (1), indicating that these adverse effects of single REEs were not neglected. In terms of the combined toxicity of REEs mixtures, we carried out an assessment of the risks of probabilistic ecotoxicology, which showed that the SRS superficial sediments had a low probability of toxicity to aquatic organisms (0.54%).
Assuntos
Metais Terras Raras , Poluentes Químicos da Água , China , Monitoramento Ambiental , Sedimentos Geológicos , Metais Terras Raras/análise , Rios , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidadeRESUMO
It was generally believed that psittacosis pneumonia (pneumonia caused by Chlamydia psittaci) was rarely combined with pleural effusion and the characteristics of pleural effusion were rarely reported in the domestic literature.Herein,we reported three cases of pleural effusion due to psittacosis pneumonia,with elevated level of adenosine deaminase and lymphocyte-predominant exudative pleural effusion.Further,we reviewed the psittacosis pneumonia reports with complete clinical and lung imaging data.The imaging manifestations included pulmonary consolidation and common occurrence of a small amount of pleural effusion.The patients of psittacosis pneumonia combined with pleural effusion had severe symptoms,obvious hypoxia,and increased risk of invasive ventilation.
Assuntos
Chlamydophila psittaci , Derrame Pleural , Pneumonia , Psitacose , Humanos , Psitacose/complicações , Psitacose/diagnóstico , Derrame Pleural/diagnóstico , LinfócitosRESUMO
It is vital to dynamically regulate S activity to achieve efficient and stable room-temperature sodium-sulfur (RT/Na-S) batteries. Herein, we report using cobalt sulfide as an electron reservoir to enhance the activity of sulfur cathodes, and simultaneously combining with cobalt single atoms as double-end binding sites for a stable S conversion process. The rationally constructed CoS2 electron reservoir enables the straight reduction of S to short-chain sodium polysulfides (Na2 S4 ) via a streamlined redox path through electron transfer. Meanwhile, cobalt single atoms synergistically work with the electron reservoir to reinforce the streamlined redox path, which immobilize in situ formed long-chain products and catalyze their conversion, thus realizing high S utilization and sustainable cycling stability. The as-developed sulfur cathodes exhibit a superior rate performance of 443â mAh g-1 at 5â A g-1 with a high cycling capacity retention of 80 % after 5000 cycles at 5â A g-1 .
RESUMO
OBJECTIVES: The chemokine CXCL1, known as growth-related oncogene α (GRO-α), is a potent chemoattractant and regulator of neutrophils. The purpose of our study was to evaluate the regulatory response of CXCL1 in the serum of patients with systemic lupus erythematosus (SLE) in the active stage of disease and to assess whether it was implicated in the pathogenesis/inflammatory process in lupus. METHODS: CXCL1 serum concentrations were examined in 90 SLE patients, 56 other autoimmune diseases (OADs) patients and 100 healthy controls using enzyme-linked immunosorbent methodology. RESULTS: SLE patients exhibited significant increases in serum CXCL1 concentrations [1492.86 (735.47-2887.34) pg/ml] compared with OADs patients [155.88 (10.77-366.78) pg/ml] and healthy controls [13.58 (8.46-37.22) pg/ml] (p < 0.001). Moreover, the level of CXCL1 decreased as the level of anti-dsDNA IgG decreased after treatment between the anti-dsDNA-positive SLE patients and the anti-dsDNA-negative SLE patients. Additionly, serum CXCL1 concentrations were related to different disease activity levels in SLE and lupus nephritis (LN) and high avidity of IgG ANAs (HA IgG ANAs) (p < 0.05). Furthermore, CXCL1 serum concentrations were significantly correlated with the SLE Disease Activity Index(SLEDAI) score, relative avidity index (RAI) of HA IgG ANAs and the levels of anti-dsDNA IgG, CRP, ESR, albumin, C3 and C4.Additionally, Statistical analysis revealed that positivity for IgG ANA (p < 0.001), the presence of HA IgG ANAs (p = 0.001) and the logarithmic level of anti-dsDNA IgG (p = 0.021) were significantly associated with the logarithmic level of CXCL1 with standard partial regression coefficients (95% CI) of 2.371 (1.734-3.009), 1.231 (0.52-1.937) and 0.409 (0.062-0.755), respectively. Finally, using cutoff points of 1182.17 pg/mL and 1500.31 pg/mL, serum CXCL1 levels had a similar sensitivity of 76% and specificity of 100% and 75% for the diagnosis of active SLE and LN, respectively. CONCLUSIONS: Serum CXCL13 concentrations might represent a potential marker of disease activity in systemic lupus erythematosus.
Assuntos
Quimiocina CXCL1/sangue , Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Biomarcadores , Humanos , Lúpus Eritematoso Sistêmico/diagnósticoRESUMO
Copper-based chalcogenides have been considered as potential photocathode materials for photoelectrochemical (PEC) CO2 reduction due to their excellent photovoltaic performance and favorable conduction band alignment with the CO2 reduction potential. However, they suffer from low PEC efficiency due to the sluggish charge transfer kinetics and poor selectivity, resulting from random CO2 reduction reaction pathways. Herein, a facile heat treatment (HT) of a Cu2 ZnSnS4 (CZTS)/CdS photocathode is demonstrated to enable significant improvement in the photocurrent density (-0.75 mA cm-2 at -0.6 V vs RHE), tripling that of pristine CZTS, as a result of the enhanced charge transfer and promoted band alignment originating from the elemental inter-diffusion at the CZTS/CdS interface. In addition, rationally regulated CO2 reduction selectivity toward CO or alcohols can be obtained by tailoring the surficial sulfur vacancies by HT in different atmospheres (air and nitrogen). Sulfur vacancies replenished by O-doping is shown to favor CO adsorption and the CC coupling pathway, and thereby produce methanol and ethanol, whilst the CdS surface with more S vacancies promotes CO desorption capability with higher selectivity toward CO. The strategy in this work rationalizes the interface charge transfer optimization and surface vacancy engineering simultaneously, providing a new insight into PEC CO2 reduction photocathode design.
RESUMO
OBJECTIVE: The purpose of the present study was to investigate the values of the serum (1,3)-ß-D-glucan test (G test) alone, the galactomannan test (GM test) alone, and their combination in the diagnosis of invasive fungal rhinosinusitis (IFRS). METHODS: The present study retrospectively analysed the clinical data of 98 patients who were preliminarily diagnosed with "space-occupying lesions in nose". Of these 98 patients, 88 received the G test, 55 received the GM test, and 45 received both. A pathology analysis was used as the gold standard to diagnose IFRS. All data were analysed using SPSS 19.0. RESULTS: The sensitivities (Se) of the G and GM tests alone were 60.0% and 28.6%, respectively, whereas the specificities (Sp) were 92.3% and 93.8%, respectively. Moreover, the positive predictive values (PPV) of the G and GM tests alone were 50.0% and 40.0%, respectively, and the negative predictive values (NPV) were 94.7% and 90.0%, respectively. In addition, the diagnostic odds ratios (DOR) were 18.0 and 6.0, respectively, and the Kappa values were 0.48 (P < 0.05) and 0.25 (P > 0.05), respectively. When the G and GM tests were parallel combined, the Se was 66.7%, the Sp was 92.3%, the PPV was 57.1%, the NPV was 94.7%, the DOR was 24.0, and the Kappa value was 0.55 (P < 0.05). The present study was unable to evaluate the serial diagnosis due to the lack of patients testing positive. CONCLUSIONS: The G/GM tests exhibited low Se and PPV when used to diagnose IFRS, while high Sp and NPV. Parallel diagnosis improved the diagnostic Se and DOR values.