Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Appl Environ Microbiol ; 89(6): e0022023, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37191513

RESUMO

Nitrilase can catalyze nitrile compounds to generate corresponding carboxylic acids. Nitrilases as promiscuous enzymes can catalyze a variety of nitrile substrates, such as aliphatic nitriles, aromatic nitriles, etc. However, researchers tend to prefer enzymes with high substrate specificity and high catalytic efficiency. In this study, we developed an active pocket remodeling (ALF-scanning) based on modulating the geometry of the nitrilase active pocket to alter substrate preference and improve catalytic efficiency. Using this strategy, combined with site-directed saturation mutagenesis, we successfully obtained 4 mutants with strong aromatic nitrile preference and high catalytic activity, W170G, V198L, M197F, and F202M, respectively. To explore the synergistic relationship of these 4 mutations, we constructed 6 double-combination mutants and 4 triple-combination mutants. By combining mutations, we obtained the synergistically enhanced mutant V198L/W170G, which has a significant preference for aromatic nitrile substrates. Compared with the wild type, its specific activities for 4 aromatic nitrile substrates are increased to 11.10-, 12.10-, 26.25-, and 2.55-fold, respectively. By mechanistic dissection, we found that V198L/W170G introduced a stronger substrate-residue π-alkyl interaction in the active pocket and obtained a larger substrate cavity (225.66 Å3 to 307.58 Å3), making aromatic nitrile substrates more accessible to be catalyzed by the active center. Finally, we conducted experiments to rationally design the substrate preference of 3 other nitrilases based on the substrate preference mechanism and also obtained the corresponding aromatic nitrile substrate preference mutants of these three nitrilases and these mutants with greatly improved catalytic efficiency. Notably, the substrate range of SmNit is widened. IMPORTANCE In this study, the active pocket was largely remodeled based on the ALF-scanning strategy we developed. It is believed that ALF-scanning not only could be employed for substrate preference modification but might also play a role in protein engineering of other enzymatic properties, such as substrate region selectivity and substrate spectrum. In addition, the mechanism of aromatic nitrile substrate adaptation we found is widely applicable to other nitrilases in nature. To a large extent, it could provide a theoretical basis for the rational design of other industrial enzymes.


Assuntos
Aminoidrolases , Nitrilas , Aminoidrolases/genética , Aminoidrolases/metabolismo , Catálise , Engenharia de Proteínas , Especificidade por Substrato
2.
Artigo em Inglês | MEDLINE | ID: mdl-37534981

RESUMO

A Gram-stain-positive, rod-shaped, endospore-forming, aerobic bacterial strain, designated ZS110521T, was isolated from high-temperature Daqu, a starter for production of Chinese Jiang-flavour Baijiu and was characterised by polyphasic taxonomy. This novel isolate grew in the presence of 0-20 % (w/v) NaCl, at pH 6.0-9.0 and 20-50 °C; optimum growth was observed with 8-10 % (w/v) NaCl, at pH 7.0 and 37 °C. A comparative analysis of the 16S rRNA gene sequence (1460 bp) of ZS110521T revealed that it displayed the highest similarity to Lentibacillus populi WD4L-1T (95.5 %), followed by Lentibacillus garicola SL-MJ1T (95.4 %) and Lentibacillus lacisalsi BH260T (95.2 %). ANI and dDDH values between ZS110521T and other strains of species of the genus Lentibacillus were less than 78 and 28 %, respectively. The predominant cellular fatty acids (> 10 %) of ZS110521T were anteiso-C17 : 0 (37.8 %), anteiso-C15 : 0 (28.1 %) and iso-C16 : 0 (15.5 %). The respiratory quinone was identified as menaquinone-7 (MK-7) and the major polar lipids were diphosphatidylglycerol and phosphatidylglycerol. The polyphasic taxonomic data and the results of chemotaxonomic analysis confirmed that ZS110521T represents a novel species, for which the name Lentibacillus daqui sp. nov. is proposed. The type strain of this proposed species is ZS110521T (=CGMCC 1.19456T =JCM 35213T).


Assuntos
Bebidas Alcoólicas , Bacillaceae , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Temperatura , Bebidas Alcoólicas/microbiologia , Bacillaceae/classificação , Bacillaceae/isolamento & purificação
3.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37916708

RESUMO

A Gram-stain-positive, rod-shaped, endospore-forming, aerobic bacterial strain, designated ZS111008T, was isolated from high-temperature Daqu, a starter for production of Chinese Jiang-flavour Baijiu, and was characterized by polyphasic taxonomy. This novel isolate grew in the presence of 0-5 % (w/v) NaCl, at pH 6.0-9.0 and 25-45 °C; optimum growth was observed with 1 % (w/v) NaCl, at pH 8.0 and 30 °C. A comparative analysis of the 16S rRNA gene sequence (1461 bp) of strain ZS111008T showed highest similarity to Solibacillus silvestris DSM12223T (96.7%), followed by Solibacillus cecembensis PN5T (96.6%) and Solibacillus isronensis AMCK01000046 (96.5%). The DNA G+C content of strain ZS111008T was 37.21 mol%. The respiratory quinone was identified as menaquinone-7 and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylserine and one unknown phospholipid. Lys was detected as the diagnostic diamino acid in the cell wall. Based on morphological characteristics, chemotaxonomic characteristics and physiological properties, strain ZS111008T represents a novel species of the genus Solibacillus, for which the name Solibacillus daqui sp. nov. is proposed. The type strain for this proposed species is ZS111008T (=CGMCC 1.19455T=JCM 35214T).


Assuntos
Ácidos Graxos , Cloreto de Sódio , Ácidos Graxos/química , RNA Ribossômico 16S/genética , Temperatura , Filogenia , DNA Bacteriano/genética , Composição de Bases , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana , Fosfolipídeos/química , China
4.
Appl Environ Microbiol ; 88(3): e0217521, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34818103

RESUMO

Mature vinegar culture has usually been used as a type of autochthonous starter to rapidly initiate the next batch of acetic acid fermentation (AAF) and maintain the batch-to-batch uniformity of AAF in the production of traditional cereal vinegar. However, the vitality and dominance of functional microbes in autochthonous starters remain unclear, which hinders further improvement of fermentation yield and production. Here, based on metagenomic (MG), metatranscriptomic (MT), and 16S rRNA gene sequencings, 11 bacterial operational taxonomic units (OTUs) with significant metabolic activity (MT/MG ratio >1) and dominance (relative abundance >1%) were targeted in the autochthonous vinegar starter, all of which were assigned to 4 species (Acetobacter pasteurianus, Lactobacillus acetotolerans, L. helveticus, Acetilactobacillus jinshanensis). Then, we evaluated the successions and interactions of these 11 bacterial OTUs at different AAF stages. Last, a defined starter was constructed with 4 core species isolated from the autochthonous starter (A. pasteurianus, L. acetotolerans, L. helveticus, Ac. jinshanensis). The defined starter culture could rapidly initiate the AAF in a sterile or unsterilized environment, and similar dynamics of metabolites (ethanol, titratable acidity, acetic acid, lactic acid, and volatile compounds) and environmental indexes (temperature, pH) of fermentation were observed as compared with that of autochthonous starter (P > 0.05). This work provides a method to construct a defined microbiota from a complex system while preserving its metabolic function. IMPORTANCE Complex microorganisms are beneficial to the flavor formation in natural food fermentation, but they also pose challenges to the mass production of standardized products. It is attractive to construct a defined starter to rapidly initiate fermentation process and significantly improve fermentation yield. This study provides a comprehensive understanding of vital and dominant species in the autochthonous vinegar starter via multi-omics, and designs a defined microbial community for the efficient fermentation of cereal vinegar.


Assuntos
Ácido Acético , Microbiota , Ácido Acético/metabolismo , Fermentação , Microbiologia de Alimentos , Metagenômica/métodos , Microbiota/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo
5.
Appl Environ Microbiol ; 88(13): e0048422, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35695571

RESUMO

Pit mud microbial consortia play crucial roles in the formation of Chinese strong-flavor baijiu's key flavor-active compounds, especially butyric and caproic acids. Clostridia, one of the abundant bacterial groups in pit mud, were recognized as important butyric and caproic acid producers. Research on the interactions of the pit mud microbial community mainly depends on correlation analysis at present. Interaction between Clostridium and other microorganisms and its involvement in short/medium-chain fatty acid (S/MCFA) metabolism are still unclear. We previously found coculture of two clostridial strains isolated from pit mud, Clostridium fermenticellae JN500901 (C.901) and Novisyntrophococcus fermenticellae JN500902 (N.902), could enhance S/MCFA accumulation. Here, we investigated their underlying interaction mechanism through the combined analysis of phenotype, genome, and transcriptome. Compared to monocultures, coculture of C.901 and N.902 obviously promoted their growth, including shortening the growth lag phase and increasing biomass, and the accumulation of butyric acid and caproic acid. The slight effects of inoculation ratio and continuous passage on the growth and metabolism of coculture indicated the relative stability of their interaction. Transwell coculture and transcriptome analysis showed the interaction between C.901 and N.902 was accomplished by metabolite exchange, i.e., formic acid produced by C.901 activated the Wood-Ljungdahl pathway of N.902, thereby enhancing its production of acetic acid, which was further converted to butyric acid and caproic acid by C.901 through reverse ß-oxidation. This work demonstrates the potential roles of mutually beneficial interspecies interactions in the accumulation of key flavor compounds in pit mud. IMPORTANCE Microbial interactions played crucial roles in influencing the assembly, stability, and function of the microbial community. The metabolites of pit mud microbiota are the key to flavor formation of Chinese strong-flavor baijiu. So far, researches on the interactions of the pit mud microbial community have been mainly based on the correlation analysis of sequencing data, and more work needs to be performed to unveil the complicated interaction patterns. Here, we identified a material exchange-based mutualistic interaction system involving two fatty acid-producing clostridial strains (Clostridium fermenticellae JN500901 and Novisyntrophococcus fermenticellae JN500902) isolated from pit mud and systematically elucidated their interaction mechanism for promoting the production of butyric acid and caproic acid, the key flavor-active compounds of baijiu. Our findings provide a new perspective for understanding the complicated interactions of pit mud microorganisms.


Assuntos
Butiratos , Caproatos , Bebidas Alcoólicas/microbiologia , Caproatos/metabolismo , Clostridium/genética , Clostridium/metabolismo , Fermentação
6.
Appl Environ Microbiol ; 87(17): e0088521, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34160281

RESUMO

The mud cellar creates a unique microenvironment for the fermentation of strong-flavor baijiu (SFB). Recent research and long-term practice have highlighted the key roles of microbes inhabiting pit mud in the formation of SFB's characteristic flavor. A positive correlation between the quality of SFB and cellar age was extracted from practice; however, the evolutionary patterns of pit mud microbiome and driving factors remain unclear. Here, based on the variation regularity analysis of microbial community structure and metabolites of samples from cellars of different ages (∼30/100/300 years), we further investigated the effects of lactate and acetate (main microbial metabolites in fermented grains) on modulating the pit mud microbiome. Esters (50.3% to 64.5%) dominated the volatile compounds identified in pit mud, and contents of the four typical acids (lactate, hexanoate, acetate, and butyrate) increased with cellar age. Bacteria (9.5 to 10.4 log10 [lg] copies/g) and archaea (8.3 to 9.1 lg copies/g) mainly constituted pit mud microbiota, respectively dominated by Clostridia (39.7% to 81.2%) and Methanomicrobia (32.8% to 92.9%). An upward trend with cellar age characterized the relative and absolute abundance of the most predominant bacterial and archaeal genera, Caproiciproducens and Methanosarcina. Correlation analysis revealed significantly (P < 0.05) positive relationships between the two genera and major metabolites. Anaerobic fermentation with acetate and lactate as carbon sources enhanced the enrichment of Clostridia, and furthermore, the relative abundance of Caproiciproducens (40.9%) significantly increased after 15-day fed-batch fermentation with lactate compared with the initial pit mud (0.22%). This work presents a directional evolutionary pattern of pit mud microbial consortia and provides an alternative way to accelerate the enrichment of functional microbes. IMPORTANCE The solid-state anaerobic fermentation in a mud cellar is the most typical feature of strong-flavor baijiu (SFB). Metabolites produced by microbes inhabiting pit mud are crucial to create the unique flavor of SFB. Accordingly, craftspeople have always highlighted the importance of the pit mud microbiome and concluded by centuries of practice that the production rate of high-quality baijiu increases with cellar age. To deepen the understanding of the pit mud microbiome, we determined the microbial community and metabolites of different-aged pit mud, inferred the main functional groups, and explored the forces driving the microbial community evolution through metagenomic, metabolomic, and multivariate statistical analyses. The results showed that the microbial consortia of pit mud presented a regular and directional evolutionary pattern under the impact of continuous batch-to-batch brewing activities. This work provides insight into the key roles of the pit mud microbiome in SFB production and supports the production optimization of high-quality pit mud.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Argila/microbiologia , Aromatizantes/metabolismo , Microbiota , Vinho/análise , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , China , Fermentação , Aromatizantes/análise , Armazenamento de Alimentos/instrumentação , Vinho/microbiologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-34499596

RESUMO

A Gram-stain-negative, coccus-shaped, obligately anaerobic, non-motile and non-spore-forming bacterium, designated strain JN500902T, was isolated from the mud in a fermentation cellar used continuously over 30 years for Chinese strong-flavour baijiu production. Colonies were white, circular, convex and smooth-edged. Growth was observed at 20-40 °C (optimum, 37 °C), at pH 5.0-10 (optimum, pH 7.5), with 0-2 % (w/v) NaCl and with 0-4 % (v/v) ethanol. The Biolog assay demonstrated positive reactions of strain JN500902T in the metabolism of l-fucose and pyruvate. The predominant cellular fatty acids (>10 %) consisted of C16 : 0 and C14 : 0. The major end metabolites of strain JN500902T were acetic acid and ethanol when incubated anaerobically in liquid reinforced clostridial medium. Acetate was the major organic acid end product. The complete genome size of strain JN500902T was 3 420 321 bp with 3327 identified genes. The G+C content was 43.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences affiliated strain JN500902T with the family Lachnospiraceae, having low sequence similarity (92.8 %) to the nearest type strain, Syntrophococcus sucromutans DSM 3224T and forming a clearly distinct branch. Core genome phylogenetic analysis of the isolate and 134 strains belonging to the family Lachnospiraceae also revealed that strain JN500902T was well-separated from other genera of this family as a monophyletic clade. The average nucleotide identity and amino acid identity values between strain JN500902T and 134 Lachnospiraceae strains were less than 74 and 65 %, respectively. Considering its polyphasic characteristics, strain JN500902T represents a novel genus and species within the family Lachnospiraceae, for which the name Novisyntrophococcus fermenticellae gen. nov., sp. nov. is proposed. The type strain is JN500902T (=CICC 24502T=JCM 33939T).


Assuntos
Clostridiales/classificação , Fermentação , Filogenia , Microbiologia do Solo , Anaerobiose , Técnicas de Tipagem Bacteriana , Composição de Bases , China , Clostridiales/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
8.
Int J Syst Evol Microbiol ; 71(10)2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34705622

RESUMO

A novel Gram-positive, non-motile, non-flagellated, strictly anaerobic, non-spore-forming and dumbbell-shaped, coccoid- or chain-shaped bacterium, designated strain LZLJ-3T, was isolated from a mud fermentation cellar which has been used for the production of Chinese strong-flavour liquor for over 100 years. Strain LZLJ-3T grew at 20-40 °C (optimum, 37 °C), at pH 6.0-8.0 (optimum, pH 8.0) and with NaCl concentrations up to 1 % (w/v; optimum, 0 %). Phylogenetic trees established based on 16S rRNA gene sequences showed that strain LZLJ-3T belonged to the genus Blautia of the family Lachnospiraceae, with the highest sequence similarity to Blautia stercoris GAM6-1T (91.7 %) and Blautia faecicola KGMB01111T (91.7 %). Comparative genome analysis showed that the orthologous average nucleotide identity (OrthoANI) and genome-to-genome distance (GGD) values between strain LZLJ-3T and B. stercoris GAM6-1T were respectively 69.1 and 22.9 %; the OrthoANI and GGD values between strain LZLJ-3T and B. faecicola KGMB01111T were respectively 70.86 and 36 % . The DNA G+C content of strain LZLJ-3T genome was 42.1 mol%. The predominant celluar fatty acids (>10 %) of strain LZLJ-3T were C16 : 0 FAME (27.9 %), C14 : 0 FAME (17.6 %) and C16 : 0 DMA (13.0 %). Arabinose, glucose and maltose could be utilized by strain LZLJ-3T as sole carbon sources for growth, with weak utilization of raffinose and l-fucose. API ZYM analysis gave positive reactions with α-galactosidase, ß-galactosidase, α-glucosidase and ß-glucosidase. The major end product of glucose fermentation was acetic acid. Based on the results of phenotypic, genotypic and phylogenetic analyses, strain LZLJ-3T is considered to represent a novel species of Blautia, for which the name Blautia liquoris sp. nov. is proposed. The type strain is LZLJ-3T (=KCTC 25163T=CGMCC 1.5299T=JCM 34225T).


Assuntos
Bebidas Alcoólicas , Clostridiales/classificação , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , China , Clostridiales/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Fermentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
9.
Food Microbiol ; 98: 103766, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33875202

RESUMO

Daqu, a brick-shaped product spontaneously fermented under an open environment, has been regarded as the starter of fermentation, raw enzyme preparation and raw materials for baijiu production. However, its contribution in baijiu fermentation has not been fully elaborated yet. Here, the effects of daqu microbiota on baijiu fermentation were investigated under both field-scale and lab-scale conditions. In field-scale baijiu fermentation, the dominant daqu microbes (average relative abundance>10.0%), including unclassified_Leuconostocaceae, Thermoascus, and Thermomyces, tended to dominate the early stage (0-7 d). However, the rare daqu microbes (average relative abundance <0.1%, e.g., Kazachstania) tended to dominate the middle and late stages (11-40 d). In addition, some genera showed differences in species diversity between daqu and fermented grains. The average relative abundance of Lactobacillus was over 75% during baijiu fermentation, and most of them were affiliated with Lactobacillus acetotolerans, while Lactobacillus crustorum dominated the Lactobacillus OTUs in daqu. The similar patterns were also observed during lab-scale baijiu fermentation. The results of function prediction showed the enriched metabolic pathways were associated with glycolysis and long-chain fatty acid esters in baijiu fermentation. These results improved the understanding of daqu microbiota function during baijiu fermentation and provided a basic theory to support the regulation of baijiu production.


Assuntos
Bebidas Alcoólicas/microbiologia , Lactobacillus/isolamento & purificação , Lactobacillus/metabolismo , Microbiota , China , Fermentação , Microbiologia de Alimentos , Lactobacillus/classificação , Lactobacillus/genética
10.
Appl Environ Microbiol ; 86(12)2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32303548

RESUMO

Humans have used high salinity for the production of bean-based fermented foods over thousands of years. Although high salinity can inhibit the growth of harmful microbes and select functional microbiota in an open environment, it also affects fermentation efficiency of bean-based fermented foods and has a negative impact on people's health. Therefore, it is imperative to develop novel defined starter cultures for reduced-salt fermentation in a sterile environment. Here, we explored the microbial assembly and function in the fermentation of traditional Chinese broad bean paste with 12% salinity. The results revealed that the salinity and microbial interactions together drove the dynamic of community and pointed out that five dominant genera (Staphylococcus, Bacillus, Weissella, Aspergillus, and Zygosaccharomyces) may play different key roles in different fermentation stages. Then, core species were isolated from broad bean paste, and their salinity tolerance, interactions, and metabolic characteristics were evaluated. The results provided an opportunity to validate in situ predictions through in vitro dissection of microbial assembly and function. Last, we reconstructed the synthetic microbial community with five strains (Aspergillus oryzae, Bacillus subtilis, Staphylococcus gallinarum, Weissella confusa, and Zygosaccharomyces rouxii) under different salinities and realized efficient fermentation of broad bean paste for 6 weeks in a sterile environment with 6% salinity. In general, this work provided a bottom-up approach for the development of a simplified microbial community model with desired functions to improve the fermentation efficiency of bean-based fermented foods by deconstructing and reconstructing the microbial structure and function.IMPORTANCE Humans have mastered high-salinity fermentation techniques for bean-based fermented product preparation over thousands of years. High salinity was used to select the functional microbiota and conducted food fermentation production with unique flavor. Although a high-salinity environment is beneficial for suppressing harmful microbes in the open fermentation environment, the fermentation efficiency of functional microbes is partially inhibited. Therefore, application of defined starter cultures for reduced-salt fermentation in a sterile environment is an alternative approach to improve the fermentation efficiency of bean-based fermented foods and guide the transformation of traditional industry. However, the assembly and function of self-organized microbiota in an open fermentation environment are still unclear. This study provides a comprehensive understanding of microbial function and the mechanism of community succession in a high-salinity environment during the fermentation of broad bean paste so as to reconstruct the microbial community and realize efficient fermentation of broad bean paste in a sterile environment.


Assuntos
Fermentação , Microbiologia de Alimentos/métodos , Microbiota/fisiologia , Salinidade , Vicia faba/química , Fenômenos Fisiológicos Bacterianos , Fungos/fisiologia , Modelos Biológicos
11.
Antonie Van Leeuwenhoek ; 113(1): 43-54, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31407135

RESUMO

A novel Gram-stain-positive, non-motile, non-spore-forming, rod-shaped, facultatively anaerobic, designated strain HSLZ-75T, was isolated from the solid-state vinegar culture of Zhenjiang aromatic vinegar. Strain HSLZ-75T grew at 20-40 °C (optimum 35 °C), pH 3.0-5.0 (optimum pH 4.0) and 0-5% (w/v) NaCl (optimum 0%). Heterolactic fermentation characterised the metabolism of strain HSLZ-75T. D- and L-lactic acid were produced from glucose in a ratio of 91:9. The major cellular fatty acids ( > 10%) consisted of C16:0, C18:1ω9c, summed feature 8 (C18:1ω7c and/or C18:1ω6c) and C19:0 cyclo ω8c. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminophospholipid, one unidentified phospholipid and six unknown lipids. The cell wall was found to contain meso-diaminopimelic acid-type peptidoglycan. The 16S rRNA gene sequence of strain HSLZ-75T showed the highest similarity of 88.0% with Lactobacillus fructivorans DSM 20203T. Phylogenetic analysis indicated that strain HSLZ-75T belonged to family Lactobacillaceae and formed a distinct lineage with the type strain of Lactobacillus caviae. The complete genome of strain HSLZ-75T contained a circular chromosome of 1,616,430 bp with 1570 genes and 39.7 mol% G + C content. The average nucleotide identity values between strain HSLZ-75T and the reference type strains Lactobacillus fructivorans DSM 20203T and Lactobacillus rossiae DSM 15814T were 66.4% and 65.7%, respectively. On the basis of phenotypic, chemotaxonomic, phylogenetic and genotypic characteristics, strain HSLZ-75T should be classified as a novel species of the genus Lactobacillus in the family Lactobacillaceae of the order Lactobacillales, for which the name Lactobacillus jinshani sp. nov. is proposed. The type strain is HSLZ-75T ( = CICC 6269T = JCM 33270T).


Assuntos
Ácido Acético , Lactobacillus/genética , Diamino Aminoácidos/metabolismo , Técnicas de Tipagem Bacteriana , Composição de Bases/genética , DNA Bacteriano/genética , Genoma Bacteriano/genética , Lactobacillus/classificação , Filogenia , RNA Ribossômico 16S/genética
12.
Food Microbiol ; 92: 103559, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32950153

RESUMO

Symphony orchestra of multi-microorganisms characterizes the solid-state acetic acid fermentation process of Chinese cereal vinegars. Lactate is the predominant non-volatile acid and plays indispensable roles in flavor formation. This study investigated the microbial consortia driving the metabolism of D-/l-lactate during fermentation. Sequencing analysis based on D-/l-lactate dehydrogenase genes demonstrated that Lactobacillus (relative abundance: > 95%) dominated the production of both d-lactate and l-lactate, showing species-specific features between the two types. Lactobacillus helveticus (>65%) and L. reuteri (~80%) respectively dominated l- and d-lactate-producing communities. D-/l-lactate production and utilization capabilities of eight predominant Lactobacillus strains were determined by culture-dependent approach. Subsequently, D-/l-lactate producer L. plantarum M10-1 (d:l ≈ 1:1), l-lactate producer L. casei 21M3-1 (D:L ≈ 0.2:9.8) and D-/l-lactate utilizer Acetobacter pasteurianus G3-2 were selected to modulate the metabolic flux of D-/l-lactate of microbial consortia. The production ratio of D-/l-lactate was correspondingly shifted coupling with microbial consortia changes. Bioaugmentation with L.casei 21M3-1 merely enhanced l-lactate production, displaying ~4-fold elevation at the end of fermentation. Addition of L.plantarum M10-1 twice increased both D- and l-lactate production, while A. pasteurianus G3-2 decreased the content of D-/l-isomer. Our results provided an alternative strategy to specifically manipulate the metabolic flux within microbial consortia of certain ecological niches.


Assuntos
Ácido Acético/metabolismo , Bactérias/metabolismo , Grão Comestível/microbiologia , Ácido Láctico/metabolismo , Microbiota , Ácido Acético/análise , Acetobacter/genética , Acetobacter/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Grão Comestível/química , Grão Comestível/metabolismo , Etanol/metabolismo , Fermentação , Microbiologia de Alimentos , Lactobacillus/genética , Lactobacillus/metabolismo
13.
Molecules ; 25(7)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252312

RESUMO

Neuropeptides are released by neurons that are involved in a wide range of brain functions, such as food intake, metabolism, reproduction, and learning and memory. A full-length cDNA sequence of an FMRFamide gene isolated from the cuttlefish Sepia pharaonis (designated as SpFMRFamide) was cloned. The predicted precursor protein contains one putative signal peptide and four FMRFamide-related peptides. Multiple amino acid and nucleotide sequence alignments showed that it shares 97% similarity with the precursor FMRFamides of Sepiella japonica and Sepia officinalis and shares 93% and 92% similarity with the SpFMRFamide gene of the two cuttlefish species, respectively. Moreover, the phylogenetic analysis also suggested that SpFMRFamide and FMRFamides from S. japonica and S. officinalis belong to the same sub-branch. Tissue expression analysis confirmed that SpFMRFamide was widely distributed among tissues and predominantly expressed in the brain at the three development stages. The combined effects of SpFMRFamide+SpGnRH and SpFLRFamide+SpGnRH showed a marked decrease in the level of the total proteins released in the CHO-K1 cells. This is the first report of SpFMRFamide in S. pharaonis and the results may contribute to future studies of neuropeptide evolution or may prove useful for the development of aquaculture methods for this cuttlefish species.


Assuntos
Clonagem Molecular/métodos , FMRFamida/genética , FMRFamida/metabolismo , Sepia/crescimento & desenvolvimento , Animais , Aquicultura , Encéfalo/crescimento & desenvolvimento , Células CHO , Cricetulus , FMRFamida/farmacologia , Regulação da Expressão Gênica no Desenvolvimento , Hormônio Liberador de Gonadotropina/farmacologia , Filogenia , Proteoma/efeitos dos fármacos , Sepia/genética , Sepia/metabolismo , Homologia de Sequência , Distribuição Tecidual
14.
Int J Syst Evol Microbiol ; 69(3): 859-865, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30735112

RESUMO

A novel Gram-stain-positive, rod-shaped, obligately anaerobic, non-motile, spore-forming and binary fission encapsulated bacterium, designated strain JN500901T, was isolated from a mud cellar which has been continuously used for the fermentation of Chinese strong-flavour baijiu for over 100 years. Growth of JN500901Toccurred at pH 4.5-8.0 (optimum, pH 5.0), 20-40 °C (37 °C), 0-2 % (w/v) NaCl and 0-10 % (v/v) ethanol. The Biolog assay revealed that strain JN500901T metabolized d-fructose, l-fucose, isomaltulose and l-rhamnose among the 95 studied carbon sources. p-Cresol was the predominant volatile metabolite in the fermentation broth of strain JN500901T incubated in liquid reinforced clostridial medium under anaerobic conditions. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain JN500901T belongs to Clostridiumsensu stricto, and shared the highest sequence similarity to Clostridiumcarboxidivorans DSM 15243T (94.2 %), followed by Clostridiumscatologenes DSM 757T (94.1 %). The dominant cellular fatty acids (>10 %) were C16 : 0 FAME (36.6 %), C19 : 0 cyc 9,10 DMA (19.8 %) and C16 : 1 cis 9 DMA (11.8 %). The complete genome of strain JN500901T contained a circular chromosome of 2.812 Mb with 2611 genes and 31.0 mol% G+C content. Comparative genome analysis of the strain JN500901T, Clostridiumcarboxidivorans DSM 15243T and Clostridiumscatologenes DSM 757T revealed 74.5 and 74.8 % average nucleotide identity, respectively. Based on the phenotypic, biochemical and phylogenetic analyses presented here, strain JN500901T is considered to be a novel species of the genus Clostridiumsensustricto, for which the name Clostridium fermenticellae sp. nov. is proposed. The type strain is JN500901T (=CICC 24501T=JCM 32827T).


Assuntos
Bebidas Alcoólicas , Clostridium/classificação , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , China , Clostridium/isolamento & purificação , DNA Bacteriano/genética , Etanol , Ácidos Graxos/química , Fermentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
15.
Bioprocess Biosyst Eng ; 42(7): 1185-1194, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30989410

RESUMO

Phosphatidylserine is widely used in food, health, chemical and pharmaceutical industries. The phospholipase D-mediated green synthesis of phosphatidylserine has attracted substantial attention in recent years. In this study, the phospholipase D was heterologously expressed in Bacillus subtilis, Pichia pastoris, and Corynebacterium glutamicum, respectively. The highest activity of phospholipase D was observed in C. glutamicum, which was 0.25 U/mL higher than these in B. subtilis (0.14 U/mL) and P. pastoris (0.22 U/mL). System engineering of three potential factors, including (1) signal peptides, (2) ribosome binding site, and (3) promoters, was attempted to improve the expression level of phospholipase D in C. glutamicum. The maximum phospholipase D activity reached 1.9 U/mL, which was 7.6-fold higher than that of the initial level. The enzyme displayed favorable transphosphatidylation activity and it could efficiently catalyze the substrates L-serine and soybean lecithin for synthesis of phosphatidylserine after optimizing the conversion reactions in detail. Under the optimum conditions (trichloromethane/enzyme solution 4:2, 8 mg/mL soybean lecithin, 40 mg/mL L-serine, and 15 mM CaCl2, with shaking under 40 °C for 10 h), the reaction process showed 48.6% of conversion rate and 1.94 g/L of accumulated phosphatidylserine concentration. The results highlight the use of heterologous expression, system engineering, and process optimization strategies to adapt a promising phospholipase D for efficient phosphatidylserine production in synthetic application.


Assuntos
Biocatálise , Fosfatidilserinas/química , Fosfolipase D , Engenharia de Proteínas , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Corynebacterium glutamicum/enzimologia , Corynebacterium glutamicum/genética , Fosfolipase D/química , Fosfolipase D/genética , Pichia/enzimologia , Pichia/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Especificidade por Substrato
16.
Proteomics ; 17(17-18)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28792668

RESUMO

Medicinal mushroom Antrodia camphorata sporulate large numbers of arthroconidia in submerged fermentation, which is rarely reported in basidiomycetous fungi. Nevertheless, the molecular mechanisms underlying this asexual sporulation (conidiation) remain unclear. Here, we used comparative transcriptomic and proteomic approaches to elucidate possible signaling pathway relating to the asexual sporulation of A. camphorata. First, 104 differentially expressed proteins and 2586 differential cDNA sequences during the culture process of A. camphorata were identified by 2DE and RNA-seq, respectively. By applying bioinformatics analysis, a total of 67 genes which might play roles in the sporulation were obtained, and 18 of these genes, including fluG, sfgA, SfaD, flbA, flbB, flbC, flbD, nsdD, brlA, abaA, wetA, ganB, fadA, PkaA, veA, velB, vosA, and stuA might be involved in a potential FluG-mediated signaling pathway. Furthermore, the mRNA expression levels of the 18 genes in the proposed FluG-mediated signaling pathway were analyzed by quantitative real-time PCR. In summary, our study helps elucidate the molecular mechanisms underlying the asexual sporulation of A. camphorata, and provides also useful transcripts and proteome for further bioinformatics study of this valuable medicinal mushroom.


Assuntos
Antrodia/crescimento & desenvolvimento , Antrodia/metabolismo , Proteínas Fúngicas/metabolismo , Proteoma/metabolismo , Transdução de Sinais , Esporos Fúngicos/metabolismo , Antrodia/genética , Regulação Fúngica da Expressão Gênica , Proteômica/métodos , Reprodução Assexuada , Transcriptoma
17.
Appl Environ Microbiol ; 83(23)2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28970223

RESUMO

"Daqu" is a saccharifying and fermenting agent commonly used in the traditional solid-state fermentation industry (e.g., baijiu and vinegar). The patterns of microbial community succession and flavor formation are highly similar among batches, yet the mechanisms promoting temporal succession in the Daqu microbial ecology remain unclear. Here, we first correlated temporal profiles of microbial community succession with environmental variables (temperature, moisture, and titratable acidity) in medium temperature Daqu (MT-Daqu) throughout fermentation. Temperature dynamics significantly correlated (P < 0.05) with the quick succession of MT-Daqu microbiota in the first 12 d of fermentation, while the community structure was relatively stable after 12 d. Then, we explored the effect of temperature on the MT-Daqu community assembly. In the first 4 d of fermentation, the rapid propagation of most bacterial taxa and several fungal taxa, including Candida, Wickerhamomyces, and unclassified Dipodascaceae and Saccharomycetales species, significantly increased MT-Daqu temperature to 55°C. Subsequently, sustained bio-heat generated by microbial metabolism (53 to 56°C) within MT-Daqu inhibited the growth of most microbes from day 4 to day 12, while thermotolerant taxa, including Bacillus, unclassified Streptophyta, Weissella, Thermoactinomyces, Thermoascus, and Thermomyces survived or kept on growing. Furthermore, temperature as a major driving force on the shaping of MT-Daqu microbiota was validated. Lowering the fermentation temperature by placing the MT-Daqu in a 37°C incubator resulted in decreased relative abundances of thermotolerant taxa, including Bacillus, Thermoactinomyces, and Thermoascus, in the MT-Daqu microbiota. This study revealed that bio-heat functioned as a primary endogenous driver promoting the formation of functional MT-Daqu microbiota.IMPORTANCE Humans have mastered the Daqu preparation technique of cultivating functional microbiota on starchy grains over thousands of years, and it is well known that the metabolic activity of these microbes is key to the flavor production of Chinese baijiu. The pattern of microbial community succession and flavor formation remains highly similar between batches, yet mechanistic insight into these patterns and into microbial population fidelity to specific environmental conditions remains unclear. Our study revealed that bio-heat was generated within Daqu bricks in the first 4 d of fermentation, concomitant with rapid microbial propagation and metabolism. The sustained bio-heat may then function as a major endogenous driving force promoting the formation of the MT-Daqu microbiota from day 4 to day 12. The bio-heat-driven growth of thermotolerant microorganisms might contribute to the formation of flavor metabolites. This study provides useful information for the temperature-based modulation of microbiota function during the fermentation of Daqu.


Assuntos
Bactérias/metabolismo , Microbiota , Vinho/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , China , Grão Comestível/microbiologia , Temperatura , Vinho/análise
18.
Crit Rev Biotechnol ; 37(1): 69-81, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26700071

RESUMO

Nitrile-converting enzymes, including nitrilase and nitrile hydratase (NHase), have received increasing attention from researchers of industrial biocatalysis because of their critical role as a tool in organic synthesis of carboxylic acids and amides from nitriles. To date, these bioconversion approaches are considered as one of the most potential industrial processes using resting cells or purified enzymes as catalysts for production of food additives, pharmaceutical, and agrochemical precursors. This review focuses on the distribution and catalytic mechanism research of nitrile-converting enzymes in recent years. Molecular biology aspects to improve the biocatalytic performance of microbial nitrilase and NHase are demonstrated. The process developments of microbial nitrilase and NHase for organic synthesis are also discussed.


Assuntos
Aminoidrolases/metabolismo , Hidroliases/metabolismo , Nitrilas/metabolismo , Biocatálise , Técnicas de Química Sintética
19.
Biotechnol Appl Biochem ; 64(4): 519-524, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27189415

RESUMO

An alginate lyase producing bacterial strain, Cobetia sp. WG-007, was isolated and identified from rotting seaweed. The alginate lyase, Aly-W02, was purified by procedures of ultrafiltration, Q-Sepharose Fast Flow, Phenyl Sepharose 6 Fast Flow, and Superdex-G100 with specific activity of 21,285.5 U/mg. Aly-W02 had an apparent molecular mass of 35 kDa. It exhibited maximum activity at 45 °C in 50 mM sodium phosphate buffer (pH 8.5). This alginate lyase was stable in the pH range of 6.0-8.5. Among the tested metal ions, the addition of K+ , Na+ , and Mg2+ ions can enhance the enzyme activities, while Ba2+ , Ni+ , Cu2+ , Mn2+ , Zn2+ , Ag+ , and ethylenediaminetetraacetic acid decreased the activities. It displayed high salt-tolerant ability; 0.8 M NaCl or 1.5 M KCl significantly enhanced the enzyme activity. Furthermore, Aly-W02 mainly released disaccharide, trisaccharide, and tetrasaccharid from alginate. It showed potential in producing low molecular weight alginate oligosaccharides.


Assuntos
Halomonadaceae/enzimologia , Polissacarídeo-Liases/isolamento & purificação , Polissacarídeo-Liases/metabolismo , Tolerância ao Sal , Concentração de Íons de Hidrogênio , Fosfatos/farmacologia , Polissacarídeo-Liases/química , Cloreto de Potássio/farmacologia , Cloreto de Sódio/farmacologia
20.
Food Microbiol ; 62: 23-31, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27889153

RESUMO

Multispecies microbial community formed through centuries of repeated batch acetic acid fermentation (AAF) is crucial for the flavour quality of traditional vinegar produced from cereals. However, the metabolism to generate and/or formulate the essential flavours by the multispecies microbial community is hardly understood. Here we used metagenomic approach to clarify in situ metabolic network of key microbes responsible for flavour synthesis of a typical cereal vinegar, Zhenjiang aromatic vinegar, produced by solid-state fermentation. First, we identified 3 organic acids, 7 amino acids, and 20 volatiles as dominant vinegar metabolites. Second, we revealed taxonomic and functional composition of the microbiota by metagenomic shotgun sequencing. A total of 86 201 predicted protein-coding genes from 35 phyla (951 genera) were involved in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of Metabolism (42.3%), Genetic Information Processing (28.3%), and Environmental Information Processing (10.1%). Furthermore, a metabolic network for substrate breakdown and dominant flavour formation in vinegar microbiota was constructed, and microbial distribution discrepancy in different metabolic pathways was charted. This study helps elucidating different metabolic roles of microbes during flavour formation in vinegar microbiota.


Assuntos
Ácido Acético/metabolismo , Aromatizantes/química , Redes e Vias Metabólicas , Microbiota , Paladar , Microbiologia de Alimentos , Indicadores e Reagentes , Redes e Vias Metabólicas/genética , Metagenômica/métodos , Microbiota/genética , Microbiota/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA