Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33990467

RESUMO

Cardiac arrhythmias are the most common cause of sudden cardiac death worldwide. Lengthening the ventricular action potential duration (APD), either congenitally or via pathologic or pharmacologic means, predisposes to a life-threatening ventricular arrhythmia, Torsade de Pointes. IKs (KCNQ1+KCNE1), a slowly activating K+ current, plays a role in action potential repolarization. In this study, we screened a chemical library in silico by docking compounds to the voltage-sensing domain (VSD) of the IKs channel. Here, we show that C28 specifically shifted IKs VSD activation in ventricle to more negative voltages and reversed the drug-induced lengthening of APD. At the same dosage, C28 did not cause significant changes of the normal APD in either ventricle or atrium. This study provides evidence in support of a computational prediction of IKs VSD activation as a potential therapeutic approach for all forms of APD prolongation. This outcome could expand the therapeutic efficacy of a myriad of currently approved drugs that may trigger arrhythmias.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Canal de Potássio KCNQ1/genética , Miócitos Cardíacos/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Potenciais de Ação/fisiologia , Substituição de Aminoácidos , Animais , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Cálcio/metabolismo , Cães , Furanos/farmacologia , Expressão Gênica , Cobaias , Átrios do Coração/citologia , Átrios do Coração/metabolismo , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Humanos , Canal de Potássio KCNQ1/química , Canal de Potássio KCNQ1/metabolismo , Moxifloxacina/farmacologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Oócitos/citologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Fenetilaminas/farmacologia , Potássio/metabolismo , Cultura Primária de Células , Piridinas/farmacologia , Pirimidinas/farmacologia , Sódio/metabolismo , Sulfonamidas/farmacologia , Transgenes , Xenopus laevis
2.
Proc Natl Acad Sci U S A ; 110(47): 18922-7, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24190995

RESUMO

Gating of ion channels by ligands is fundamental to cellular function, and ATP serves as both an energy source and a signaling molecule that modulates ion channel and transporter functions. The slowly activating K(+) channel I(Ks) in cardiac myocytes is formed by KCNQ1 and KCNE1 subunits that conduct K(+) to repolarize the action potential. Here we show that intracellular ATP activates heterologously coexpressed KCNQ1 and KCNE1 as well as I(Ks) in cardiac myocytes by directly binding to the C terminus of KCNQ1 to allow the pore to open. The channel is most sensitive to ATP near its physiological concentration, and lowering ATP concentration in cardiac myocytes results in I(Ks) reduction and action potential prolongation. Multiple mutations that suppress I(Ks) by decreasing the ATP sensitivity of the channel are associated with the long QT (interval between the Q and T waves in electrocardiogram) syndrome that predisposes afflicted individuals to cardiac arrhythmia and sudden death. A cluster of basic and aromatic residues that may form a unique ATP binding site are identified; ATP activation of the wild-type channel and the effects of the mutations on ATP sensitivity are consistent with an allosteric mechanism. These results demonstrate the activation of an ion channel by intracellular ATP binding, and ATP-dependent gating allows I(Ks) to couple myocyte energy state to its electrophysiology in physiologic and pathologic conditions.


Assuntos
Trifosfato de Adenosina/metabolismo , Arritmias Cardíacas/genética , Frequência Cardíaca/fisiologia , Ativação do Canal Iônico/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Animais , Western Blotting , Fluorometria , Humanos , Mutagênese , Técnicas de Patch-Clamp , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Análise de Sequência de DNA , Xenopus laevis
3.
PLoS Comput Biol ; 9(9): e1003220, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24068903

RESUMO

Channelrhodospin-2 (ChR2), a light-sensitive ion channel, and its variants have emerged as new excitatory optogenetic tools not only in neuroscience, but also in other areas, including cardiac electrophysiology. An accurate quantitative model of ChR2 is necessary for in silico prediction of the response to optical stimulation in realistic tissue/organ settings. Such a model can guide the rational design of new ion channel functionality tailored to different cell types/tissues. Focusing on one of the most widely used ChR2 mutants (H134R) with enhanced current, we collected a comprehensive experimental data set of the response of this ion channel to different irradiances and voltages, and used these data to develop a model of ChR2 with empirically-derived voltage- and irradiance- dependence, where parameters were fine-tuned via simulated annealing optimization. This ChR2 model offers: 1) accurate inward rectification in the current-voltage response across irradiances; 2) empirically-derived voltage- and light-dependent kinetics (activation, deactivation and recovery from inactivation); and 3) accurate amplitude and morphology of the response across voltage and irradiance settings. Temperature-scaling factors (Q10) were derived and model kinetics was adjusted to physiological temperatures. Using optical action potential clamp, we experimentally validated model-predicted ChR2 behavior in guinea pig ventricular myocytes. The model was then incorporated in a variety of cardiac myocytes, including human ventricular, atrial and Purkinje cell models. We demonstrate the ability of ChR2 to trigger action potentials in human cardiomyocytes at relatively low light levels, as well as the differential response of these cells to light, with the Purkinje cells being most easily excitable and ventricular cells requiring the highest irradiance at all pulse durations. This new experimentally-validated ChR2 model will facilitate virtual experimentation in neural and cardiac optogenetics at the cell and organ level and provide guidance for the development of in vivo tools.


Assuntos
Luz , Modelos Biológicos , Miócitos Cardíacos/fisiologia , Channelrhodopsins , Humanos , Optogenética , Técnicas de Patch-Clamp
4.
Clin Exp Pharmacol Physiol ; 41(4): 301-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24552423

RESUMO

It has been reported that bitter tastants decrease blood pressure and relax precontracted vascular smooth muscle. However, the underlying mechanisms remain unclear. The aim of the present study was to determine the mechanism underlying the vasorelaxant effect of the bitter tastants. Thoracic aortic rings were isolated from Wistar rats and contractions were measured using an isometric myograph. Intracellular Ca(2+) ([Ca(2+)]i) in single rat thoracic aortic smooth muscle cells was recorded by calcium imaging. Calcium currents in single cells were recorded using patch-clamp techniques. High K(+) (140 mmol/L) induced contractions in rat thoracic aortic rings that were inhibited by 3 mmol/L chloroquine, 3 mmol/L denatonium and 10 µmol/L nifedipine. In single rat thoracic aortic smooth muscle cells, high K(+) increased [Ca(2+)]i and this effect was also blocked by 3 mmol/L chloroquine and 10 µmol/L nifedipine. Under Ca(2+) -free conditions, high K(+) failed to induce contractions in rat thoracic aortic rings. On its own, chloroquine had no effect on the muscle tension of rat aortic rings and [Ca(2+) ]i. The vasorelaxant effects of chloroquine on precontracted rat thoracic aortic rings were not altered by either 1 µg/mL pertussis toxin (PTX), an inhibitor of Gαo/i-protein, or 1 mmol/L gallein, an inhibitor of Gßγ-protein. The results of patch-clamp analysis in single cells indicate that 1 mmol/L chloroquine blocks voltage-dependent L-type Ca(2+) channel (VDLCC) currents from both extracellular and intracellular sides. Together, the results indicate that chloroquine can block VDLCC, independent of PTX- and gallein-sensitive G-proteins, resulting in relaxation of high K(+)-precontracted thoracic aortic smooth muscle.


Assuntos
Aorta Torácica/efeitos dos fármacos , Aromatizantes/farmacologia , Potássio/farmacologia , Vasoconstrição/efeitos dos fármacos , Animais , Aorta Torácica/fisiologia , Cálcio , Cloroquina/farmacologia , Toxina Pertussis/farmacologia , Ratos , Ratos Wistar , Xantenos/farmacologia
5.
Cardiooncology ; 9(1): 25, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208762

RESUMO

OBJECTIVE: To investigate the association between stages of QTc prolongation and the risk of cardiac events among patients on TKIs. METHODS: This was a retrospective cohort study performed at an academic tertiary care center of cancer patients who were taking TKIs or not taking TKIs. Patients with two recorded ECGs between January 1, 2009, and December 31, 2019, were selected from an electronic database. The QTc duration > 450ms was determined as prolonged. The association between QTc prolongation progression and events of cardiovascular disease were compared. RESULTS: This study included a total of 451 patients with 41.2% of patients taking TKIs. During a median follow up period of 3.1 years, 49.5% subjects developed CVD and 5.4% subjects suffered cardiac death in patient using TKIs (n = 186); the corresponding rates are 64.2% and 1.2% for patients not on TKIs (n = 265), respectively. Among patient on TKIs, 4.8% of subjects developed stroke, 20.4% of subjects suffered from heart failure (HF) and 24.2% of subjects had myocardial infarction (MI); corresponding incidence are 6.8%, 26.8% and 30.6% in non-TKIs. When patients were regrouped to TKIs versus non-TKIs with and without diabetes, there was no significant difference in the incidence of cardiac events among all groups. Adjusted Cox proportional hazards models were applied to estimate hazard ratios (HRs) with 95% confidence intervals (CIs). There is a significant increased risk of HF events (HR, 95% CI: 2.12, 1.36-3.32) and MI events (HR, 95% CI: 1.78, 1.16-2.73) during the 1st visit. There are also trends for an increased incidence of cardiac adverse events associated with QTc prolongation among patient with QTc > 450ms, however the difference is not statistically significant. Increased cardiac adverse events in patients with QTc prolongation were reproduced during the 2nd visit and the incidence of heart failure was significantly associated with QTc prolongation(HR, 95% CI: 2.94, 1.73-5.0). CONCLUSION: There is a significant increased QTc prolongation in patients taking TKIs. QTc prolongation caused by TKIs is associated with an increased risk of cardiac events.

6.
J Exp Med ; 203(10): 2315-27, 2006 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-16954371

RESUMO

Cellular cardiomyoplasty is an attractive option for the treatment of severe heart failure. It is, however, still unclear and controversial which is the most promising cell source. Therefore, we investigated and examined the fate and functional impact of bone marrow (BM) cells and embryonic stem cell (ES cell)-derived cardiomyocytes after transplantation into the infarcted mouse heart. This proved particularly challenging for the ES cells, as their enrichment into cardiomyocytes and their long-term engraftment and tumorigenicity are still poorly understood. We generated transgenic ES cells expressing puromycin resistance and enhanced green fluorescent protein cassettes under control of a cardiac-specific promoter. Puromycin selection resulted in a highly purified (>99%) cardiomyocyte population, and the yield of cardiomyocytes increased 6-10-fold because of induction of proliferation on purification. Long-term engraftment (4-5 months) was observed when co-transplanting selected ES cell-derived cardiomyocytes and fibroblasts into the injured heart of syngeneic mice, and no teratoma formation was found (n = 60). Although transplantation of ES cell-derived cardiomyocytes improved heart function, BM cells had no positive effects. Furthermore, no contribution of BM cells to cardiac, endothelial, or smooth muscle neogenesis was detected. Hence, our results demonstrate that ES-based cell therapy is a promising approach for the treatment of impaired myocardial function and provides better results than BM-derived cells.


Assuntos
Células-Tronco Embrionárias/citologia , Contração Miocárdica/fisiologia , Infarto do Miocárdio/terapia , Miócitos Cardíacos/transplante , Animais , Transplante de Medula Óssea , Primers do DNA , Eletrofisiologia , Proteínas de Fluorescência Verde , Imuno-Histoquímica , Camundongos , Miócitos Cardíacos/citologia , Puromicina , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
J Cardiovasc Pharmacol ; 60(1): 88-99, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22526298

RESUMO

The voltage-gated Na+ channel is a critical determinant of the action potential (AP) upstroke. Increasing Na+ conductance may speed AP propagation. In this study, we propose use of the skeletal muscle Na+ channel SkM1 as a more favorable gene than the cardiac isoform SCN5A to enhance conduction velocity in depolarized cardiac tissue. We used cells that electrically coupled with cardiac myocytes as a delivery platform to introduce the Na+ channels. Human embryonic kidney 293 cells were stably transfected with SkM1 or SCN5A. SkM1 had a more depolarized (18 mV shift) inactivation curve than SCN5A. We also found that SkM1 recovered faster from inactivation than SCN5A. When coupled with SkM1 expressing cells, cultured myocytes showed an increase in the dV/dtmax of the AP. Expression of SCN5A had no such effect. In an in vitro cardiac syncytium, coculture of neonatal cardiac myocytes with SkM1 expressing but not SCN5A expressing cells significantly increased the conduction velocity under both normal and depolarized conditions. In an in vitro reentry model induced by high-frequency stimulation, expression of SkM1 also enhanced angular velocity of the induced reentry. These results suggest that cells carrying a Na+ channel with a more depolarized inactivation curve can improve cardiac excitability and conduction in depolarized tissues.


Assuntos
Músculo Esquelético/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Potenciais de Ação , Animais , Animais Recém-Nascidos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Cães , Feminino , Terapia Genética/métodos , Células HEK293 , Sistema de Condução Cardíaco/metabolismo , Humanos , Masculino , Canal de Sódio Disparado por Voltagem NAV1.4/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Transfecção
8.
J Cardiovasc Pharmacol ; 58(4): 439-45, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21753738

RESUMO

Diabetes is associated with an increased risk of heart failure and the development of a cardiomyopathy whose etiology is only partially understood. Ca entry through the voltage-dependent L-type Ca channel CaV1.2 initiates the contractile cycle in cardiac myocytes. Decreased cardiac contractility and depressed CaV1.2 function have been reported in obese type 2 diabetic db/db mice. Here, we demonstrate that a reduction in phosphoinositide 3-kinase (PI3K) signaling is a major contributor to the altered function of CaV1.2 in db/db cardiac myocytes. Using the whole-cell patch clamp technique, we determined that intracellular infusion of cardiac myocytes from db/db mice with phosphatidylinositol 3,4,5-trisphosphate (PIP3), the second messenger produced by PI3K, increased the L-type Ca current (ICa,L) density nearly to the level seen in wild-type cells. PIP3 also reversed the positive shift in the voltage dependence of the steady-state current activation observed in db/db myocytes. Infusion of protein kinases that act downstream of PI3K also affected ICa,L. Akt1 and Akt2 were as effective as PIP3 in restoring the ICa,L density in db/db myocytes but did not affect the voltage dependence of current activation. The infusion of atypical PKC-ι (the human homolog of mouse PKC-λ) caused a small but significant increase in the ICa,L density and completely reversed the shift in voltage dependence of steady-state current activation. These results indicate that a defect in PI3K/PIP3/Akt/PKC-λ signaling is mainly responsible for the depressed CaV1.2 function in the hearts of db/db mice with type 2 diabetes.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Isoenzimas/metabolismo , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Diabetes Mellitus Experimental/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Fosfatos de Fosfatidilinositol/metabolismo , Transdução de Sinais
9.
Artigo em Inglês | MEDLINE | ID: mdl-34804394

RESUMO

Objective: To assess the prevalence of QTc prolongation in both non-diabetic and diabetic patients on TKIs. Some TKIs have been reported to cause QTc prolongation, which is prevalent in diabetes. However, there is no Risk Evaluation and Mitigation Strategy using series ECG to monitor those patients. Methods: Patients taking TKIs, with two ECGs recorded between 1 January 2010 and 31 December 2017 were selected from the electronic database. The QTc duration >450 ms was determined as prolonged. Percentage of QTc prolongation on participants were compared using Chi-Square test. Results: This study included 313 patients (age 66.1 ± 0.8 years and 57.5% are female) taking TKIs. In non-Diabetic patients, the prevalence of QTc prolongation is 19.1% (n = 253) before and 34.8% (n = 253) after treatment with TKIs (p < 0.001), respectively. In diabetic patients, the prevalence of QTc prolongation is 21.7% (n = 60) before and 40% (n = 60) after treatment with TKIs (p = 0.03), respectively. In addition, we examined the effect of modifying risk factors for cardiovascular disease (CVD) on the prevalence of QTc prolongation caused by TKIs. In non-diabetic patients, the prevalence of QTc prolongation is 33.3% (n = 57) before and 34.2% (n = 196) after risk factors modification (p = 0.91), respectively. In diabetic patients, the prevalence of QTc prolongation is 50% (n = 24) before and 33.3% (n = 36) after risk factors modification (p = 0.20), respectively. Conclusion: Use of TKIs is associated with a significantly increased risk of QTc prolongation for patients, particularly when patients are diabetic. Modification of risk factors for CVD does not significantly affect the prevalence of QTc prolongation caused by TKIs.

10.
Circulation ; 120(4): 318-25, 2009 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-19597047

RESUMO

BACKGROUND: Phosphoinositide 3-kinase (PI3K) p110alpha plays a key role in insulin action and tumorigenesis. Myocyte contraction is initiated by an inward Ca(2+) current (I(Ca,L)) through the voltage-dependent L-type Ca(2+) channel (LTCC). The aim of this study was to evaluate whether p110alpha also controls cardiac contractility by regulating the LTCC. METHODS AND RESULTS: Genetic ablation of p110alpha (also known as Pik3ca), but not p110beta (also known as Pik3cb), in cardiac myocytes of adult mice reduced I(Ca,L) and blocked insulin signaling in the heart. p110alpha-null myocytes had a reduced number of LTCCs on the cell surface and a contractile defect that decreased cardiac function in vivo. Similarly, pharmacological inhibition of p110alpha decreased I(Ca,L) and contractility in canine myocytes. Inhibition of p110beta did not reduce I(Ca,L). CONCLUSIONS: PI3K p110alpha but not p110beta regulates the LTCC in cardiac myocytes. Decreased signaling to p110alpha reduces the number of LTCCs on the cell surface and thus attenuates I(Ca,L) and contractility.


Assuntos
Contração Miocárdica/genética , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Fosfatidilinositol 3-Quinases/deficiência , Fosfatidilinositol 3-Quinases/genética , Animais , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/fisiologia , Classe I de Fosfatidilinositol 3-Quinases , Cães , Feminino , Masculino , Camundongos , Camundongos Knockout , Fosfatidilinositol 3-Quinases/fisiologia
11.
Front Physiol ; 11: 587040, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240105

RESUMO

It has long been known that heart rate is regulated by the autonomic nervous system. Recently, we demonstrated that the pacemaker current, I f , is regulated by phosphoinositide 3-kinase (PI3K) signaling independently of the autonomic nervous system. Inhibition of PI3K in sinus node (SN) myocytes shifts the activation of I f by almost 16 mV in the negative direction. I f in the SN is predominantly mediated by two members of the HCN gene family, HCN4 and HCN1. Purkinje fibers also possess I f and are an important secondary pacemaker in the heart. In contrast to the SN, they express HCN2 and HCN4, while ventricular myocytes, which do not normally pace, express HCN2 alone. In the current work, we investigated PI3K regulation of HCN2 expressed in HEK293 cells. Treatment with the PI3K inhibitor PI-103 caused a negative shift in the activation voltage and a dramatic reduction in the magnitude of the HCN2 current. Similar changes were also seen in cells treated with an inhibitor of the protein kinase Akt, a downstream effector of PI3K. The effects of PI-103 were reversed by perfusion of cells with phosphatidylinositol 3,4,5-trisphosphate (the second messenger produced by PI3K) or active Akt protein. We identified serine 861 in mouse HCN2 as a putative Akt phosphorylation site. Mutation of S861 to alanine mimicked the effects of Akt inhibition on voltage dependence and current magnitude. In addition, the Akt inhibitor had no effect on the mutant channel. These results suggest that Akt phosphorylation of mHCN2 S861 accounts for virtually all of the observed actions of PI3K signaling on the HCN2 current. Unexpectedly, Akt inhibition had no effect on I f in SN myocytes. This result raises the possibility that diverse PI3K signaling pathways differentially regulate HCN-induced currents in different tissues, depending on the isoforms expressed.

12.
J Gen Physiol ; 151(8): 1051-1058, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31217223

RESUMO

Heart rate in physiological conditions is set by the sinoatrial node (SN), the primary cardiac pacing tissue. Phosphoinositide 3-kinase (PI3K) signaling is a major regulatory pathway in all normal cells, and its dysregulation is prominent in diabetes, cancer, and heart failure. Here, we show that inhibition of PI3K slows the pacing rate of the SN in situ and in vitro and reduces the early slope of diastolic depolarization. Furthermore, inhibition of PI3K causes a negative shift in the voltage dependence of activation of the pacemaker current, I F, while addition of its second messenger, phosphatidylinositol 3,4,5-trisphosphate, induces a positive shift. These shifts in the activation of I F are independent of, and larger than, those induced by the autonomic nervous system. These results suggest that PI3K is an important regulator of heart rate, and perturbations in this signaling pathway may contribute to the development of arrhythmias.


Assuntos
Frequência Cardíaca , Fosfatidilinositol 3-Quinases/metabolismo , Sistemas do Segundo Mensageiro , Nó Sinoatrial/fisiologia , Potenciais de Ação , Animais , Relógios Biológicos , Células Cultivadas , Cães , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfatos de Fosfatidilinositol/metabolismo , Coelhos , Nó Sinoatrial/metabolismo
13.
Circulation ; 116(7): 706-13, 2007 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-17646577

RESUMO

BACKGROUND: Biological pacemaking has been performed with viral vectors, human embryonic stem cells, and adult human mesenchymal stem cells (hMSCs) as delivery systems. Only with human embryonic stem cells are data available regarding stability for >2 to 3 weeks, and here, immunosuppression has been used to facilitate survival of xenografts. The purpose of the present study was to determine whether hMSCs provide stable impulse initiation over 6 weeks without the use of immunosuppression, the "dose" of hMSCs that ensures function over this period, and the catecholamine responsiveness of hMSC-packaged pacemakers. METHODS AND RESULTS: A full-length mHCN2 cDNA subcloned in a pIRES2-EGFP vector was electroporated into hMSCs. Transfection efficiency was estimated by GFP expression. I(HCN2) was measured with patch clamp, and cells were administered into the left ventricular anterior wall of adult dogs in complete heart block and with backup electronic pacemakers. Studies encompassed 6 weeks. I(HCN2) for all cells was 32.1+/-1.3 pA/pF (mean+/-SE) at -150 mV. Pacemaker function in intact dogs required 10 to 12 days to fully stabilize and persisted consistently through day 42 in dogs receiving > or =700,000 hMSCs (approximately 40% of which carried current). Rhythms were catecholamine responsive. Tissues from animals killed at 42 days manifested neither apoptosis nor humoral or cellular rejection. CONCLUSIONS: hMSCs provide a means for administering catecholamine-responsive biological pacemakers that function stably for 6 weeks and manifest no cellular or humoral rejection at that time. Cell doses >700,000 are sufficient for pacemaking when administered to left ventricular myocardium.


Assuntos
Coração/fisiologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/fisiologia , Adulto , Animais , Células Cultivadas , Cães , Condutividade Elétrica , Eletrocardiografia , Epinefrina/farmacologia , Bloqueio Cardíaco/fisiopatologia , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Canais Iônicos/genética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Técnicas de Patch-Clamp , Canais de Potássio , Transfecção , Transplante Heterólogo
14.
Circulation ; 114(10): 992-9, 2006 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-16923750

RESUMO

BACKGROUND: Biological pacemakers (BPM) implanted in canine left bundle branch function competitively with electronic pacemakers (EPM). We hypothesized that BPM engineered with the use of mE324A mutant murine HCN2 (mHCN2) genes would improve function over mHCN2 and that BPM/EPM tandems confer advantage over either approach alone. METHODS AND RESULTS: In cultured neonatal rat myocytes, activation midpoint was -46.9 mV in mE324A versus -66.1 mV in mHCN2 (P < 0.05). mE324A manifested a positive shift of voltage dependence of gating kinetics of activation and deactivation compared with mHCN2 (P < 0.05) in myocytes as well as Xenopus oocytes. In intact dogs in complete atrioventricular block, saline (control), mHCN2, or mE324A virus was injected into left bundle branch, and EPM were implanted (VVI 45 bpm). Twenty-four-hour ECGs were monitored for 14 days. With EPM discontinued, there was no difference in duration of overdrive suppression among groups. However, basal heart rates in controls were less than those in mHCN2, which did not differ from those in E324A (45 versus 57 versus 53 bpm; P < 0.05). When spontaneous rate fell below 45 bpm, EPM intervened at that rate, triggering 83% of beats in control, contrasting (P < 0.05) with 26% (mHCN2) and 36% (mE324A). On day 14, epinephrine (1 microg/kg per minute IV) induced a 50% heart rate increase in all mE324A, one third of mHCN2, and one fifth of control (P < 0.05 mE324A versus control or mHCN2). CONCLUSIONS: mE324A induces faster, more positive pacemaker current activation than mHCN2 and stable, catecholamine-sensitive rhythms in situ that compete with EPM comparably but more catecholamine responsively than mHCN2. BPM/EPM tandems function reliably, reduce the number of EPM beats, and confer sympathetic responsiveness to the tandem.


Assuntos
Canais Iônicos/fisiologia , Marca-Passo Artificial , Função Ventricular , Animais , Animais Recém-Nascidos , Linhagem Celular , Modelos Animais de Doenças , Cães , Bloqueio Cardíaco/fisiopatologia , Bloqueio Cardíaco/terapia , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Canais Iônicos/genética , Camundongos , Técnicas de Patch-Clamp , Canais de Potássio , Ratos , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Esquerda/terapia
15.
J Electrocardiol ; 40(6 Suppl): S199-201, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17993323

RESUMO

Heart failure survival after diagnosis has barely changed for more than half a century. Recently, investigation has focused on differentiation of stem cells in vitro and their delivery for use in vivo as replacement cardiac contractile elements. Here we report preliminary results using mesenchymal stem cells partially differentiated to a cardiac lineage in vitro. When delivered to the canine heart on an extracellular matrix patch to replace a full-thickness ventricular defect in vivo, they improve regional mechanical function. The delivered cells were also tracked, and some became myocytes with mature sarcomeres.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/cirurgia , Animais , Cães , Projetos Piloto , Resultado do Tratamento
16.
Artigo em Inglês | MEDLINE | ID: mdl-28638571

RESUMO

Aim: To evaluate the prevalence and longitudinal changes of prolonged QTc in DM patients admitted to our community hospital, and to determine, if any, its correlation with changes of left ventricular ejection fraction (LVEF). Methods: A retrospective chart review of patients with Type 1 (T1DM) and Type 2 (T2DM) with at least two admissions during a four-year period was performed to identify QTc interval, and LVEF, as measured on transthoracic echocardiogram. Changes in QTc and LVEF between patient hospital admissions were compared. Results: A prolonged QTc interval was found in 66.7% (n = 24) of type 1 and 51.3% (n = 154) type 2 diabetic patients. The QTc interval is progressively increased in both type 1 and type 2 diabetes during follow-up, although it did not reach statistical significance. A total of 62% patients (23 out 37 patients) had a reduction of LVEF during follow-up. Conclusion and Discussion: High prevalence of QTc prolongation was confirmed in hospitalized patients with in both T1DM and T2DM. Significant reduction of LVEF correlated with QTc prolongation over a mean of 17.3 months in T2DM patients, and may have implications for interventions. Abbreviations CHF: Congestive heart failure LVEF: Left ventricular ejection fraction.

17.
Circ Res ; 94(7): 952-9, 2004 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-14988226

RESUMO

We tested the ability of human mesenchymal stem cells (hMSCs) to deliver a biological pacemaker to the heart. hMSCs transfected with a cardiac pacemaker gene, mHCN2, by electroporation expressed high levels of Cs+-sensitive current (31.1+/-3.8 pA/pF at -150 mV) activating in the diastolic potential range with reversal potential of -37.5+/-1.0 mV, confirming the expressed current as I(f)-like. The expressed current responded to isoproterenol with an 11-mV positive shift in activation. Acetylcholine had no direct effect, but in the presence of isoproterenol, shifted activation 15 mV negative. Transfected hMSCs influenced beating rate in vitro when plated onto a localized region of a coverslip and overlaid with neonatal rat ventricular myocytes. The coculture beating rate was 93+/-16 bpm when hMSCs were transfected with control plasmid (expressing only EGFP) and 161+/-4 bpm when hMSCs were expressing both EGFP+mHCN2 (P<0.05). We next injected 10(6) hMSCs transfected with either control plasmid or mHCN2 gene construct subepicardially in the canine left ventricular wall in situ. During sinus arrest, all control (EGFP) hearts had spontaneous rhythms (45+/-1 bpm, 2 of right-sided origin and 2 of left). In the EGFP+mHCN2 group, 5 of 6 animals developed spontaneous rhythms of left-sided origin (rate=61+/-5 bpm; P<0.05). Moreover, immunostaining of the injected regions demonstrated the presence of hMSCs forming gap junctions with adjacent myocytes. These findings demonstrate that genetically modified hMSCs can express functional HCN2 channels in vitro and in vivo, mimicking overexpression of HCN2 genes in cardiac myocytes, and represent a novel delivery system for pacemaker genes into the heart or other electrical syncytia.


Assuntos
Terapia Genética , Canais Iônicos/fisiologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Proteínas Musculares/fisiologia , Miócitos Cardíacos/fisiologia , Acetilcolina/farmacologia , Agonistas Adrenérgicos beta/farmacologia , Animais , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/fisiologia , Células Cultivadas/transplante , Césio/farmacologia , Colinérgicos/farmacologia , Técnicas de Cocultura , Cães , Eletroporação , Junções Comunicantes/fisiologia , Junções Comunicantes/ultraestrutura , Frequência Cardíaca , Ventrículos do Coração/citologia , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Transporte de Íons/efeitos dos fármacos , Isoproterenol/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Técnicas de Patch-Clamp , Canais de Potássio , Ratos , Proteínas Recombinantes de Fusão/fisiologia , Transfecção
18.
Stem Cells Transl Med ; 4(5): 476-82, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25769653

RESUMO

Stem cell therapy requires a nontoxic and high-throughput method to achieve a pure cell population to prevent teratomas that can occur if even one cell in the implant has not been transformed. A promising method to detect and separate cells expressing a particular gene is RNA beacon technology. However, developing a successful, specific beacon to a particular transfected gene can take months to develop and in some cases is impossible. Here, we report on an off-the-shelf universal beacon that decreases the time and cost of applying beacon technology to select any living cell population transfected with an exogenous gene.


Assuntos
Corantes Fluorescentes/química , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/isolamento & purificação , Células-Tronco Mesenquimais/citologia , Canais de Potássio/isolamento & purificação , RNA Mensageiro/isolamento & purificação , Animais , Rastreamento de Células/métodos , Cães , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/biossíntese , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Sondas Moleculares/genética , Canais de Potássio/biossíntese , Canais de Potássio/genética , RNA Mensageiro/biossíntese
19.
Eur J Cardiothorac Surg ; 26 Suppl 1: S54-5; discussion S55-6, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15776851

RESUMO

Replacement of damaged myocardium with electrically functional, contracting syncytium with a balanced blood supply remains a key goal for the treatment of hearts damaged by coronary heart disease or other disorders. Stem cell therapy offers a potential solution. This paper describes the value of in vitro stem cell research to unravel the roles of key regulatory molecules in embryogenesis of myocardium and blood vessels. Studies have shown that functioning myocytes can be derived from stem cells in vitro and engrafted into infarcted areas of heart where they develop into functional adult like cardiomyocytes with action potentials and capacity for beta adrenergic and muscarinic regulation. Further studies have identified specific roles for platelet endothelial cell adhesion molecule (PECAM), vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) in the sequential differentiation of blood vessels and capillaries.


Assuntos
Infarto do Miocárdio/terapia , Miócitos Cardíacos/transplante , Transplante de Células-Tronco/métodos , Animais , Diferenciação Celular/fisiologia , Clonagem Molecular , Humanos , Camundongos
20.
Diabetes ; 62(12): 4257-65, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23974924

RESUMO

Diabetes is an independent risk factor for sudden cardiac death and ventricular arrhythmia complications of acute coronary syndrome. Prolongation of the QT interval on the electrocardiogram is also a risk factor for arrhythmias and sudden death, and the increased prevalence of QT prolongation is an independent risk factor for cardiovascular death in diabetic patients. The pathophysiological mechanisms responsible for this lethal complication are poorly understood. Diabetes is associated with a reduction in phosphoinositide 3-kinase (PI3K) signaling, which regulates the action potential duration (APD) of individual myocytes and thus the QT interval by altering multiple ion currents, including the persistent sodium current INaP. Here, we report a mechanism for diabetes-induced QT prolongation that involves an increase in INaP caused by defective PI3K signaling. Cardiac myocytes of mice with type 1 or type 2 diabetes exhibited an increase in APD that was reversed by expression of constitutively active PI3K or intracellular infusion of phosphatidylinositol 3,4,5-trisphosphate (PIP3), the second messenger produced by PI3K. The diabetic myocytes also showed an increase in INaP that was reversed by activated PI3K or PIP3. The increases in APD and INaP in myocytes translated into QT interval prolongation for both types of diabetic mice. The long QT interval of type 1 diabetic hearts was shortened by insulin treatment ex vivo, and this effect was blocked by a PI3K inhibitor. Treatment of both types of diabetic mouse hearts with an INaP blocker also shortened the QT interval. These results indicate that downregulation of cardiac PI3K signaling in diabetes prolongs the QT interval at least in part by causing an increase in INaP. This mechanism may explain why the diabetic population has an increased risk of life-threatening arrhythmias.


Assuntos
Arritmias Cardíacas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Sistema de Condução Cardíaco/anormalidades , Fosfatidilinositol 3-Quinases/metabolismo , Sódio/fisiologia , Potenciais de Ação/fisiologia , Animais , Arritmias Cardíacas/fisiopatologia , Síndrome de Brugada , Doença do Sistema de Condução Cardíaco , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 1/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Sistema de Condução Cardíaco/metabolismo , Sistema de Condução Cardíaco/fisiopatologia , Camundongos , Miócitos Cardíacos/metabolismo , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA