Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 22(48): 28032-28044, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33367378

RESUMO

Organic films that form on atmospheric particulate matter change the optical and cloud condensation nucleation properties of the particulate matter and consequently have implications for modern climate and climate models. The organic films are subject to attack from gas-phase oxidants present in ambient air. Here we revisit in greater detail the oxidation of a monolayer of oleic acid by gas-phase ozone at the air-water interface as this provides a model system for the oxidation reactions that occur at the air-water interface of aqueous atmospheric aerosol. Experiments were performed on monolayers of oleic acid at the air-liquid interface at atmospherically relevant ozone concentrations to investigate if the viscosity of the sub-phase influences the rate of the reaction and to determine the effect of the presence of a second component within the monolayer, stearic acid, which is generally considered to be non-reactive towards ozone, on the reaction kinetics as determined by neutron reflectometry measurements. Atmospheric aerosol can be extremely viscous. The kinetics of the reaction were found to be independent of the viscosity of the sub-phase below the monolayer over a range of moderate viscosities, , demonstrating no involvement of aqueous sub-phase oxidants in the rate determining step. The kinetics of oxidation of monolayers of pure oleic acid were found to depend on the surface coverage with different behaviour observed above and below a surface coverage of oleic acid of ∼1 × 1018 molecule m-2. Atmospheric aerosol are typically complex mixtures, and the presence of an additional compound in the monolayer that is inert to direct ozone oxidation, stearic acid, did not significantly change the reaction kinetics. It is demonstrated that oleic acid monolayers at the air-water interface do not leave any detectable material at the air-water interface, contradicting the previous work published in this journal which the authors now believe to be erroneous. The combined results presented here indicate that the kinetics, and thus the atmospheric chemical lifetime for unsaturated surface active materials at the air-water interface to loss by reaction with gas-phase ozone, can be considered to be independent of other materials present at either the air-water interface or in the aqueous sub-phase.

2.
Phys Chem Chem Phys ; 16(26): 13220-8, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-24870051

RESUMO

Ozonolysis of methyl oleate monolayers at the air-water interface results in surprisingly rapid loss of material through cleavage of the C=C bond and evaporation/dissolution of reaction products. We determine using neutron reflectometry a rate coefficient of (5.7 ± 0.9) × 10(-10) cm(2) molecule(-1) s(-1) and an uptake coefficient of ∼3 × 10(-5) for the oxidation of a methyl ester monolayer: the atmospheric lifetime is ∼10 min. We obtained direct experimental evidence that <2% of organic material remains at the surface on atmospheric timescales. Therefore known long atmospheric residence times of unsaturated fatty acids suggest that these molecules cannot be present at the interface throughout their ageing cycle, i.e. the reported atmospheric longevity is likely to be attributed to presence in the bulk and viscosity-limited reactive loss. Possible reaction products were characterized by ellipsometry and uncertainties in the atmospheric fate of organic surfactants such as oleic acid and its methyl ester are discussed. Our results suggest that a minor change to the structure of the molecule (fatty acid vs. its methyl ester) considerably impacts on reactivity and fate of the organic film.


Assuntos
Ar , Atmosfera/química , Modelos Químicos , Ácidos Oleicos/química , Oxigênio/química , Ozônio/química , Água/química , Alcenos/química , Alcinos/química , Simulação por Computador , Cinética , Oxirredução , Propriedades de Superfície
3.
Langmuir ; 29(14): 4594-602, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23480170

RESUMO

The presence of unsaturated lipids in lung surfactant is important for proper respiratory function. In this work, we have used neutron reflection and surface pressure measurements to study the reaction of the ubiquitous pollutant gas-phase ozone, O3, with pure and mixed phospholipid monolayers at the air-water interface. The results reveal that the reaction of the unsaturated lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC, with ozone leads to the rapid loss of the terminal C9 portion of the oleoyl strand of POPC from the air-water interface. The loss of the C9 portion from the interface is accompanied by an increase in the surface pressure (decrease in surface tension) of the film at the air-water interface. The results suggest that the portion of the oxidized oleoyl strand that is still attached to the lipid headgroup rapidly reverses its orientation and penetrates the air-water interface alongside the original headgroup, thus increasing the surface pressure. The reaction of POPC with ozone also leads to a loss of material from the palmitoyl strand, but the loss of palmitoyl material occurs after the loss of the terminal C9 portion from the oleoyl strand of the molecule, suggesting that the palmitoyl material is lost in a secondary reaction step. Further experiments studying the reaction of mixed monolayers composed of unsaturated lipid POPC and saturated lipid dipalmitoyl-sn-glycero-3-phosphocholine, DPPC, revealed that no loss of DPPC from the air-water interface occurs, eliminating the possibility that a reactive species such as an OH radical is formed and is able to attack nearby lipid chains. The reaction of ozone with the mixed films does cause a significant change in the surface pressure of the air-water interface. Thus, the reaction of unsaturated lipids in lung surfactant changes and impairs the physical properties of the film at the air-water interface.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Poluentes Atmosféricos/química , Ar , Ozônio/química , Fosfatidilcolinas/química , Proteínas Associadas a Surfactantes Pulmonares/química , Água/química , Poluentes Atmosféricos/farmacologia , Difração de Nêutrons , Oxirredução , Ozônio/farmacologia , Pressão
4.
Langmuir ; 26(22): 17295-303, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-20883049

RESUMO

The reaction between gas-phase ozone and monolayers of the unsaturated lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC, on aqueous solutions has been studied in real time using neutron reflection and surface pressure measurements. The reaction between ozone and lung surfactant, which contains POPC, leads to decreased pulmonary function, but little is known about the changes that occur to the interfacial material as a result of oxidation. The results reveal that the initial reaction of ozone with POPC leads to a rapid increase in surface pressure followed by a slow decrease to very low values. The neutron reflection measurements, performed on an isotopologue of POPC with a selectively deuterated palmitoyl strand, reveal that the reaction leads to loss of this strand from the air-water interface, suggesting either solubilization of the product lipid or degradation of the palmitoyl strand by a reactive species. Reactions of (1)H-POPC on D(2)O reveal that the headgroup region of the lipids in aqueous solution is not dramatically perturbed by the reaction of POPC monolayers with ozone supporting degradation of the palmitoyl strand rather than solubilization. The results are consistent with the reaction of ozone with the oleoyl strand of POPC at the air-water interface leading to the formation of OH radicals. The highly reactive OH radicals produced can then go on to react with the saturated palmitoyl strands leading to the formation of oxidized lipids with shorter alkyl tails.


Assuntos
Ar , Ozônio/metabolismo , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Pressão , Água/química , 1,2-Dipalmitoilfosfatidilcolina/química , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , Microscopia , Difração de Nêutrons , Oxigênio/metabolismo , Ozônio/química , Propriedades de Superfície , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA