Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Pharmacol Toxicol ; 60: 615-636, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31914893

RESUMO

Exposure to stressful stimuli activates kappa opioid receptor (KOR) signaling, a process known to produce aversion and dysphoria in humans and other species. This endogenous opioid system is dysregulated in stress-related disorders, specifically in major depressive disorder (MDD). These findings serve as the foundation for a growing interest in the therapeutic potential of KOR antagonists as novel antidepressants. In this review, data supporting the hypothesis of dysregulated KOR function in MDD are considered. The clinical data demonstrating the therapeutic efficacy and safety of selective and mixed opioid antagonists are then presented. Finally, the preclinical evidence illustrating the induction of behaviors relevant to the endophenotypes of MDD and KOR antagonist activity in stress-naïve and stress-exposed animals is evaluated. Overall, this review highlights the emergent literature supporting the pursuit of KOR antagonists as novel therapeutics for MDD and other stress-related disorders.


Assuntos
Transtorno Depressivo Maior/tratamento farmacológico , Receptores Opioides kappa/antagonistas & inibidores , Estresse Psicológico/tratamento farmacológico , Animais , Transtorno Depressivo Maior/fisiopatologia , Humanos , Antagonistas de Entorpecentes/efeitos adversos , Antagonistas de Entorpecentes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Estresse Psicológico/fisiopatologia
2.
J Pharmacol Exp Ther ; 382(3): 256-265, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35779947

RESUMO

Commonly used pain therapeutics, such as opioid medications, exert dangerous side effects and lack effectiveness in treating some types of pain. Ketamine is also used to treat pain, but side effects limit its widespread use. (2R,6R)-hydroxynorketamine (HNK) is a ketamine metabolite that potentially shares some beneficial behavioral effects of its parent drug without causing significant side effects. This study compared the profile and potential mechanisms mediating the antinociception activity of ketamine and (2R,6R)-HNK in C57BL/6J mice. Additionally, this study compared the reversal of mechanical allodynia by (2R,6R)-HNK with gabapentin in a model of neuropathic pain. Unlike the near-immediate and short-lived antinociception caused by ketamine, (2R,6R)-HNK produced late-developing antinociception 24 hours following administration. Pharmacological blockade of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors with 2,3-dioxo-6-nitro-7-sulfamoyl-benzo[f]quinoxaline (NBQX) prevented the initiation and expressionof (2R,6R)-HNK antinociception, suggesting the involvement of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor-dependent glutamatergic mechanisms in the pain reduction-like responses. Blockade of opioid receptors with naltrexone partially prevented the antinociceptive effect of ketamine but was ineffective against (2R,6R)-HNK. Furthermore, (2R,6R)-HNK did not produce dystaxia, even when tested at doses five times greater than those needed to produce antinociception, indicating a superior safety profile for (2R,6R)-HNK over ketamine. Additionally, (2R,6R)-HNK reversed mechanical allodynia in a spared nerve injury model of neuropathic pain with similar short-term efficacy to gabapentin (within 4 hours) while outperforming gabapentin 24 hours after administration. These findings support the further study of (2R,6R)-HNK as a potentially valuable agent for treating different types of pain and establish certain advantages of (2R,6R)-HNK treatment over ketamine and gabapentin in corresponding assays for pain. SIGNIFICANCE STATEMENT: The ketamine metabolite (2R,6R)-HNK produced antinociception in male and female mice 24 hours after administration via activation of AMPA receptors. The effects of (2R,6R)-HNK differed in time course and mechanism and presented a better safety profile than ketamine. (2R,6R)-HNK also reversed allodynia in SNI-operated animals within 4 hours of treatment onset, with a duration of effect lasting longer than gabapentin. Taken together, (2R,6R)-HNK demonstrates the potential for development as a non-opioid analgesic drug.


Assuntos
Ketamina , Neuralgia , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Antidepressivos/farmacologia , Feminino , Gabapentina/farmacologia , Hiperalgesia , Isoxazóis , Ketamina/análogos & derivados , Ketamina/farmacologia , Ketamina/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuralgia/tratamento farmacológico , Receptores de AMPA
3.
Handb Exp Pharmacol ; 271: 493-524, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33580854

RESUMO

The kappa opioid receptor (KOR) is thought to regulate neural systems associated with anhedonia and aversion and mediate negative affective states that are associated with a number of psychiatric disorders, but especially major depressive disorder (MDD). Largely because KOR antagonists mitigate the effects of stress in preclinical studies, KOR antagonists have been recommended as novel drugs for treating MDD. The purpose of this review is to examine the role of KORs and its endogenous ligand dynorphins (DYNs) in the pathology and treatment of MDD derived from different types of clinical studies. Evidence pertaining to the role of KOR and MDD will be reviewed from (1) post mortem mRNA expression patterns in MDD, (2) the utility of KOR neuroimaging agents and serum biomarkers in MDD, and (3) evidence from the recent Fast Fail clinical trial that established KOR antagonism as a potential therapeutic strategy for the alleviation of anhedonia, a core feature of MDD. These findings are compared with a focused evaluation of stress-induced alterations in OPRK and PDYN mRNA expression. Finally, the current status of the effects of KOR antagonists on behavioral phenotypes of stress in preclinical studies related to MDD is summarized.


Assuntos
Transtorno Depressivo Maior , Receptores Opioides kappa , Transtorno Depressivo Maior/tratamento farmacológico , Dinorfinas , Humanos , Antagonistas de Entorpecentes
4.
J Pharmacol Exp Ther ; 371(2): 500-506, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31320493

RESUMO

The marked increase in deaths related to opioid drugs after 1999 was associated with an increase in the number of prescriptions for opioid drugs. This was accompanied by increasing demand for improved management of chronically painful conditions. These factors suggest that improvements are needed in the education of physicians with regard to the management of chronic pain, the optimal therapeutic application of opioid drugs, and the avoidance of substance use disorders. In this article, we address the evidence that physician education can influence prescribing practices and we discuss approaches to enhance the preclinical and clinical education of medical students in pain management and substance use disorders.


Assuntos
Analgésicos Opioides/uso terapêutico , Educação Médica/métodos , Epidemia de Opioides/prevenção & controle , Transtornos Relacionados ao Uso de Opioides/prevenção & controle , Manejo da Dor/métodos , Estudantes de Medicina , Analgésicos Opioides/efeitos adversos , Dor Crônica/tratamento farmacológico , Dor Crônica/epidemiologia , Currículo , Educação Médica/tendências , Humanos , Epidemia de Opioides/tendências , Transtornos Relacionados ao Uso de Opioides/epidemiologia , Manejo da Dor/tendências
5.
Int J Neuropsychopharmacol ; 21(2): 164-174, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29020387

RESUMO

Background: Patients with post-traumatic stress disorder frequently report persistent problems with social interactions, emerging after a traumatic experience. Chronic social defeat stress is a widely used rodent model of stress that produces robust and sustained social avoidance behavior. The avoidance of other rodents can be reversed by 28 days of treatment with selective serotonin reuptake inhibitors, the only pharmaceutical class approved by the U.S. Food and Drug Administration for treating post-traumatic stress disorder. In this study, the sensitivity of social interaction deficits evoked by 10 days of chronic social defeat stress to prospective treatments for post-traumatic stress disorder was examined. Methods: The effects of acute and repeated treatment with a low dose of buprenorphine (0.25 mg/kg/d) on social interaction deficits in male C57BL/6 mice by chronic social defeat stress were studied. Another cohort of mice was used to determine the effects of the selective serotonin reuptake inhibitor fluoxetine (10 mg/kg/d), the NMDA antagonist ketamine (10 mg/kg/d), and the selective kappa opioid receptor antagonist CERC-501 (1 mg/kg/d). Changes in mRNA expression of Oprm1 and Oprk1 were assessed in a separate cohort. Results: Buprenorphine significantly reversed social interaction deficits produced by chronic social defeat stress following 7 days of administration, but not after acute injection. Treatment with fluoxetine for 7 days, but not 24 hours, also reinstated social interaction behavior in mice that were susceptible to chronic social defeat. In contrast, CERC-501 and ketamine failed to reverse social avoidance. Gene expression analysis found: (1) Oprm1 mRNA expression was reduced in the hippocampus and increased in the frontal cortex of susceptible mice and (2) Oprk1 mRNA expression was reduced in the amygdala and increased in the frontal cortex of susceptible mice compared to non-stressed controls and stress-resilient mice. Conclusions: Short-term treatment with buprenorphine and fluoxetine normalized social interaction after chronic social defeat stress. In concert with the changes in opioid receptor expression produced by chronic social defeat stress, we speculate that buprenorphine's efficacy in this model of post-traumatic stress disorder may be associated with the ability of this compound to engage multiple opioid receptors.


Assuntos
Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Buprenorfina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Fluoxetina/farmacologia , Ketamina/farmacologia , Antagonistas de Entorpecentes/farmacologia , Receptores Opioides kappa/antagonistas & inibidores , Receptores Opioides mu/antagonistas & inibidores , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Comportamento Social , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Estresse Psicológico/tratamento farmacológico , Animais , Buprenorfina/administração & dosagem , Modelos Animais de Doenças , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Fluoxetina/administração & dosagem , Ketamina/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Antagonistas de Entorpecentes/administração & dosagem , Receptores Opioides kappa/efeitos dos fármacos , Receptores Opioides mu/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Estresse Psicológico/etiologia
6.
Metab Brain Dis ; 30(2): 555-62, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25160865

RESUMO

Diabetes in humans and animals is accompanied by chronic low-grade inflammation, which could be a possible mediator of developing neuropathology and neurobehavioral deficits. The objective of the present study determined if decreasing inflammation could reverse diabetes-induced decreases in hippocampal cell proliferation, one aspect of hippocampal neurogenesis. C57BL/6J mice were made diabetic by administering streptozotocin (STZ; 195 mg/kg). STZ mice or vehicle controls received chronic treatment with the non-steroidal anti-inflammatory drug indomethacin (2 mg/kg for 14 days). Levels of glucose, corticosterone and cytokines were measured from plasma, cell proliferation was measured using BrdU incorporation in the hippocampus and TNF-αR1 and TNF-αR2 mRNA was measured using real-time PCR. STZ-induced diabetes increased plasma levels of glucose and corticosterone and decreased body weight. Cell proliferation in the hippocampus was reduced in diabetic mice by 50 %. The decreased level of cell proliferation was reversed by chronic treatment with indomethacin without changes to corticosterone and glucose levels. Plasma TNF-α levels increased in diabetic mice and were normalized by indomethacin treatment whereas IL-1 and IL-6 levels were unchanged by diabetes or indomethacin. In contrast, plasma levels of the cytokines IL-10 and IFN-gamma decreased in diabetic mice and were not affected by indomethacin treatment. STZ-induced diabetes decreased hippocampal expression of TNF-αR2 but not TNF-αR1 mRNA. Indomethacin ameliorated the effects of STZ on hippocampal neurogenesis independent of corticosterone and glycemic control, possibly by mediating the proinflammatory cytokine TNF-α. Inflammation is a potential novel pharmacological target for alleviating neurobehavioral complications arising from diabetes.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Proliferação de Células/efeitos dos fármacos , Diabetes Mellitus Experimental/patologia , Hipocampo/patologia , Indometacina/farmacologia , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Corticosterona/metabolismo , Citocinas/biossíntese , Interleucina-1/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
7.
Neurobiol Dis ; 67: 79-87, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24686304

RESUMO

Insulin resistance and other features of the metabolic syndrome are increasingly recognized for their effects on cognitive health. To ascertain mechanisms by which this occurs, we fed mice a very high fat diet (60% kcal by fat) for 17days or a moderate high fat diet (HFD, 45% kcal by fat) for 8weeks and examined changes in brain insulin signaling responses, hippocampal synaptodendritic protein expression, and spatial working memory. Compared to normal control diet mice, cerebral cortex tissues of HFD mice were insulin-resistant as evidenced by failed activation of Akt, S6 and GSK3ß with ex-vivo insulin stimulation. Importantly, we found that expression of brain IPMK, which is necessary for mTOR/Akt signaling, remained decreased in HFD mice upon activation of AMPK. HFD mouse hippocampus exhibited increased expression of serine-phosphorylated insulin receptor substrate 1 (IRS1-pS(616)), a marker of insulin resistance, as well as decreased expression of PSD-95, a scaffolding protein enriched in post-synaptic densities, and synaptopodin, an actin-associated protein enriched in spine apparatuses. Spatial working memory was impaired as assessed by decreased spontaneous alternation in a T-maze. These findings indicate that HFD is associated with telencephalic insulin resistance and deleterious effects on synaptic integrity and cognitive behaviors.


Assuntos
Encéfalo/metabolismo , Dendritos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina , Memória Espacial/fisiologia , Sinapses/metabolismo , Animais , Hiperglicemia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células PC12 , Ratos , Transdução de Sinais
8.
J Neurosci ; 32(13): 4400-16, 2012 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-22457490

RESUMO

Genetic variations in certain components of the glucocorticoid receptor (GR) chaperone complex have been associated with the development of stress-related affective disorders and individual variability in therapeutic responses to antidepressants. Mechanisms that link GR chaperoning and stress susceptibility are not well understood. Here, we show that the effects of glucocorticoid hormones on socioaffective behaviors are critically regulated via reversible acetylation of Hsp90, a key component of the GR chaperone complex. We provide pharmacological and genetic evidence indicating that the cytoplasmic lysine deacetylase HDAC6 controls Hsp90 acetylation in the brain, and thereby modulates Hsp90-GR protein-protein interactions, as well as hormone- and stress-induced GR translocation, with a critical impact on GR downstream signaling and behavior. Pet1-Cre-driven deletion of HDAC6 in serotonin neurons, the densest HDAC6-expressing cell group in the mouse brain, dramatically reduced acute anxiogenic effects of the glucocorticoid hormone corticosterone in the open-field, elevated plus maze, and social interaction tests. Serotonin-selective depletion of HDAC6 also blocked the expression of social avoidance in mice exposed to chronic social defeat and concurrently prevented the electrophysiological and morphological changes induced, in serotonin neurons, by this murine model of traumatic stress. Together, these results identify HDAC6 inhibition as a potential new strategy for proresilience and antidepressant interventions through regulation of the Hsp90-GR heterocomplex and focal prevention of GR signaling in serotonin pathways. Our data thus uncover an alternate mechanism by which pan-HDAC inhibitors may regulate stress-related behaviors independently of their action on histones.


Assuntos
Comportamento Animal/fisiologia , Histona Desacetilases/fisiologia , Núcleos da Rafe/fisiologia , Receptores de Glucocorticoides/fisiologia , Resiliência Psicológica , Neurônios Serotoninérgicos/fisiologia , Estresse Psicológico/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiologia , Células Cultivadas , Corticosterona/antagonistas & inibidores , Corticosterona/farmacologia , Dexametasona/farmacologia , Modelos Animais de Doenças , Deleção de Genes , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP90/metabolismo , Desacetilase 6 de Histona , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Imipramina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Chaperonas Moleculares/metabolismo , Núcleos da Rafe/efeitos dos fármacos , Núcleos da Rafe/metabolismo , Receptores de Glucocorticoides/metabolismo , Neurônios Serotoninérgicos/citologia , Neurônios Serotoninérgicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Estresse Psicológico/fisiopatologia
9.
Hippocampus ; 22(2): 230-40, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21049487

RESUMO

Genetic studies have associated deficient function of the serine/threonine kinase Akt1 with schizophrenia. This disorder is associated with developmental, structural, and functional abnormalities of the hippocampus that could be traced to abnormal Akt1 function. To establish a closer connection between Akt1 and hippocampal function, mice with a selective deletion of Akt1 (Akt1(-/-) mice) were examined for physiological and behavioral outcomes dependent on the hippocampus and associated with schizophrenia. Genetic deletion of Akt1 was associated with both impaired proliferative capacity of adult-born hippocampal progenitors and hippocampal long-term potentiation, indicating deficient functions of this brain region associated with neuroplasticity. Moreover, Akt1(-/-) mice demonstrated impairments in contextual fear conditioning and recall of spatial learning, behaviors known to selectively involve the hippocampus. Akt1(-/-) mice also showed reduced prepulse inhibition of the acoustic startle response, a sensorimotor gating response that is perturbed in schizophrenia. Postmortem tissue samples from patients with schizophrenia showed significant reductions of phosphorylated Akt levels in hilar neurons of the dentate gyrus, the neurogenic zone of the hippocampus. Taken together, these results implicate the Akt1 isoform in regulating hippocampal neuroplasticity and cognition and in contributing to the etiology of schizophrenia.


Assuntos
Hipocampo/metabolismo , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Esquizofrenia/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Comportamento Animal/fisiologia , Proliferação de Células , Condicionamento Clássico/fisiologia , Medo , Feminino , Hipocampo/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/deficiência , Proteínas Proto-Oncogênicas c-akt/genética , Reflexo de Sobressalto/fisiologia , Esquizofrenia/genética , Esquizofrenia/fisiopatologia , Comportamento Espacial/fisiologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-36177442

RESUMO

Rates of major depressive disorder (MDD) are disproportionally high in subjects with opioid use disorder (OUD) relative to the general population. MDD is often more severe in OUD patients, leading to compliance issues with maintenance therapies and poor outcomes. A growing body of literature suggests that endogenous opioid system dysregulation may play a role in the emergence of MDD. Buprenorphine, a mixed opioid receptor agonist/antagonist approved for the treatment of OUD and chronic pain, may have potential as a novel therapeutic for MDD, especially for patients with a dual diagnosis of MDD and OUD. This paper presents a comprehensive review of papers relevant to the assessment of buprenorphine as a treatment for MDD, OUD, and/or suicide compiled using electronic databases per Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The principal goal of this literature review was to compile the clinical studies that have interrogated the antidepressant activity of buprenorphine in opioid naïve MDD patients and OUD patients with comorbid MDD. Evidence supporting buprenorphine's superiority over methadone for treating comorbid OUD and MDD was also considered. Finally, recent evidence for the ability of buprenorphine to alleviate suicidal ideation in both opioid-naïve patients and opioid-experienced patients was evaluated. Synthesizing all of this information, buprenorphine emerges as a potentially effective therapeutic for the dual purposes of treating MDD and OUD.

11.
Neuropharmacology ; 221: 109276, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36198332

RESUMO

The ketamine metabolite (2R,6R)-hydroxynorketamine, or (2R,6R)-HNK, was recently reported to evoke antinociception in response to a noxious thermal stimulus in healthy mice and reverse mechanical hypersensitivity in a murine model of neuropathic pain. This study reports the behavioral effects of (2R,6R)-HNK in male and female C57BL/6J mice exposed to a localized inflammatory pain condition and the broad pharmacological mechanism underlying this effect. Hind paw intraplantar injection of λ-carrageenan (CARR) caused inflammation and mechanical hypersensitivity in mice within 2 h, lasting at least 48 h. Administration of (2R,6R)-HNK (10-30 mg/kg i.p.) 2 h following CARR injection significantly reversed mechanical hypersensitivity within 1 h in male and female mice, and the effect persisted for 24 h following a single dose. The magnitude and timing of the analgesic effect of (2R,6R)-HNK were comparable to the non-steroidal anti-inflammatory drug carprofen. The reversal of hypersensitivity by (2R,6R)-HNK was blocked at 4 and 24 h after administration by pretreatment with the AMPA receptor antagonist NBQX and was not accompanied by changes in locomotor activity. These findings reinforce the growing evidence supporting (2R,6R)-HNK as a novel analgesic in multiple preclinical pain models and further support an AMPAR-dependent mechanism of action. SIGNIFICANCE: The ketamine metabolite (2R,6R)-HNK reversed mechanical hypersensitivity associated with localized inflammation with onset less than 1 h and duration greater than 24 h, an effect comparable to the NSAID carprofen. Reversal of mechanical hypersensitivity by (2R,6R)-HNK is AMPAR-dependent.


Assuntos
Ketamina , Neuralgia , Camundongos , Animais , Masculino , Feminino , Ketamina/farmacologia , Ketamina/uso terapêutico , Antidepressivos/farmacologia , Camundongos Endogâmicos C57BL , Neuralgia/tratamento farmacológico , Inflamação/tratamento farmacológico
12.
Psychopharmacology (Berl) ; 239(7): 2309-2316, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35459958

RESUMO

Emerging evidence has implicated the endogenous opioid system in mediating ketamine's antidepressant activity in subjects with major depressive disorder. To date, mu opioid receptors have been suggested as the primary opioid receptor of interest. However, this hypothesis relies primarily on observations that the opioid antagonist naltrexone blocked the effects of ketamine in humans and rodents. This report confirms previous findings that pretreatment with naltrexone (1 mg/kg) just prior to ketamine (10 mg/kg) administration effectively blocks the behavioral effect of ketamine in the mouse forced swim test 24 h post-treatment. Furthermore, pharmacological blockade of kappa opioid receptors prior to ketamine administration with the selective, short-acting antagonist LY2444296 successfully blocked ketamine's effects in the forced swim test. Likewise, the ability of the ketamine metabolite (2R,6R)-hydroxynorketamine to reduce immobility scores in the forced swim test was also blocked following pretreatment with either naltrexone or LY2444296. These data support a potential role of kappa opioid receptors in mediating the behavioral activity of ketamine and its non-dissociate metabolite (2R,6R)-hydroxynorketamine.


Assuntos
Comportamento Animal , Ketamina , Naltrexona , Animais , Comportamento Animal/efeitos dos fármacos , Transtorno Depressivo Maior , Humanos , Ketamina/análogos & derivados , Ketamina/farmacologia , Camundongos , Naltrexona/farmacologia , Receptores Opioides kappa
13.
Exp Neurol ; 350: 113963, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34968423

RESUMO

Neurobehavioral deficits emerge in nearly 50% of patients following a mild traumatic brain injury (TBI) and may persist for months. Ketamine is used frequently as an anesthetic/analgesic and for management of persistent psychiatric complications. Although ketamine may produce beneficial effects in patients with a history of TBI, differential sensitivity to its impairing effects could make the therapeutic use of ketamine in TBI patients unsafe. This series of studies examined male C57BL/6 J mice exposed to a mild single blast overpressure (mbTBI) for indications of altered sensitivity to ketamine at varying times after injury. Dystaxia (altered gait), diminished sensorimotor gating (reduced prepulse inhibition) and impaired working memory (step-down inhibitory avoidance) were examined in mbTBI and sham animals 15 min following intraperitoneal injections of saline or R,S-ketamine hydrochloride, from day 7-16 post injury and again from day 35-43 post injury. Behavioral performance in the forced swim test and sucrose preference test were evaluated on day 28 and day 74 post injury respectively, 24 h following drug administration. Dynamic gait stability was compromised in mbTBI mice on day 7 and 35 post injury and further exacerbated following ketamine administration. On day 14 and 42 post injury, prepulse inhibition was robustly decreased by mbTBI, which ketamine further reduced. Ketamine-associated memory impairment was apparent selectively in mbTBI animals 1 h, 24 h and day 28 post shock (tested on day 15/16/43 post injury). Ketamine selectively reduced immobility scores in the FST in mbTBI animals (day 28) and reversed mbTBI induced decreases in sucrose consumption (Day 74). These results demonstrate increased sensitivity to ketamine in mice when tested for extended periods after TBI. The results suggest that ketamine may be effective for treating neuropsychiatric complications that emerge after TBI but urge caution when used in clinical practice for enhanced sensitivity to its side effects in this patient population.


Assuntos
Anestésicos Dissociativos/farmacologia , Comportamento Animal/efeitos dos fármacos , Traumatismos por Explosões/psicologia , Lesões Encefálicas Traumáticas/psicologia , Ketamina/farmacologia , Anestésicos Dissociativos/efeitos adversos , Animais , Ataxia/etiologia , Ataxia/psicologia , Concussão Encefálica , Ketamina/efeitos adversos , Coxeadura Animal/induzido quimicamente , Coxeadura Animal/psicologia , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/psicologia , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Inibição Pré-Pulso , Desempenho Psicomotor/efeitos dos fármacos , Filtro Sensorial/efeitos dos fármacos
14.
Synapse ; 65(8): 763-70, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21190219

RESUMO

Animal models provide compelling evidence that chronic stress is associated with biochemical and morphological changes in the brain, many of which are mediated by corticosterone, a principal glucocorticoid synthesized in the rodent adrenal cortex and secreted in response to stress. To better characterize the effects of chronic corticosterone at the synaptic and subsynaptic level, we implanted three-month-old male C57B/6 mice with 2 × 5 mg corticosterone pellets (CORT group, n = 14), 21 day release formulation (20 mg/kg/day dose) or placebo pellets (Placebo group, n = 14), 21-day release formulation. After 20 days, brains were removed. One hemisphere was frozen for biochemical analysis by synaptosomal fractionation with Western blotting, and the other hemisphere was fixed for immunohistochemistry. Localization and expression levels for PSD-95, NR1, and synaptopodin proteins were assessed. Biochemical analysis revealed lower protein levels of PSD-95 (32% decrease, P < 0.001), NR1 (47%, P = 0.01), and synaptopodin (65%, P < 0.001) in the postsynaptic density subsynaptic fraction of the CORT group. Optical densitometry in immunohistochemically labeled sections also found lower levels of PSD-95 in synaptic fields of the dentate gyrus (PSD-95, 33% decrease, P < 0.001; NR1, 31%, P < 0.001; synaptopodin, 40%, P < 0.001) and the CA3 stratum lucidum (36%, P < 0.001, 40%, P < 0.001, and 35%, P < 0.001) of the CORT group. While mechanistic relationships for these changes are not yet known, we speculate that synaptopodin, which is involved in regulation of spine calcium kinetics and posttranslational modification and transport of locally synthesized proteins, may play an important role in the changes of PSD-95 and NR1 protein levels and other synaptic alterations.


Assuntos
Encéfalo/metabolismo , Corticosterona/metabolismo , Guanilato Quinases/metabolismo , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Densidade Pós-Sináptica/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Western Blotting , Proteína 4 Homóloga a Disks-Large , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Densidade Pós-Sináptica/química
15.
Neurosci Biobehav Rev ; 127: 365-376, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33961927

RESUMO

Mild traumatic brain injury (mTBI) increases the risk of posttraumatic stress disorder (PTSD) in military populations. Utilizing translationally relevant animal models is imperative for establishing a platform to delineate neurobehavioral deficits common to clinical PTSD that emerge in the months to years following mTBI. Such platforms are required to facilitate preclinical development of novel therapeutics. First, this mini review provides an overview of the incidence of PTSD following mTBI in military service members. Secondly, the translational relevance of fear conditioning paradigms used in conjunction with mTBI in preclinical studies is evaluated. Next, this review addresses an important gap in the current preclinical literature; while incubation of fear has been studied in other areas of research, there are relatively few studies pertaining to the enhancement of cued and contextual fear memory over time following mTBI. Incubation of fear paradigms in conjunction with mTBI are proposed as a novel behavioral approach to advance this critical area of research. Lastly, this review discusses potential neurobiological substrates implicated in altered fear memory post mTBI.


Assuntos
Concussão Encefálica , Militares , Transtornos de Estresse Pós-Traumáticos , Animais , Medo , Humanos , Roedores
16.
J Pharmacol Exp Ther ; 332(1): 266-73, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19828877

RESUMO

Neurogenesis is a mechanism through which antidepressants may produce therapeutic effects. There is a dearth of information regarding the effects of antidepressants on neurogenesis and neurotrophin mobilization in females. This study examined sex differences in the alteration of cell proliferation and survival in multiple regions of the brain. Additional experiments examined brain-derived neurotrophic factor (BDNF) levels and pharmacokinetics of fluoxetine to determine whether they mediate sex differences. MRL/MpJ mice were treated with fluoxetine (5 and 10 mg/kg b.i.d.) for 21 days and received injections of 5-bromo-2'-deoxyuridine (200 mg/kg) to measure DNA synthesis. In the hippocampus, fluoxetine increased cell proliferation at both doses; females treated with 10 mg/kg produced more new cells than males. Fluoxetine did not alter survival in males, but 10 mg/kg reduced survival in females. In the frontal cortex, fluoxetine increased cell proliferation and survival in males treated with 10 mg/kg. In the cerebellum and amygdala, 10 mg/kg fluoxetine increased cell proliferation in both sexes but did not alter the incorporation of the new cells. Fluoxetine increased BDNF levels in the hippocampus of both sexes. BDNF levels correlated with cell proliferation in males but not females. Brain and plasma levels indicated that females metabolized fluoxetine faster than males and produced more of the metabolite norfluoxetine. These data suggest that fluoxetine acts on multiple areas of the brain to increase cell proliferation, and the pattern of activation differs between males and females. Sex-specific effects of fluoxetine on neurotrophin mobilization and pharmacokinetics may contribute to these differences in neural plasticity.


Assuntos
Antidepressivos de Segunda Geração , Encéfalo/efeitos dos fármacos , Fluoxetina , Plasticidade Neuronal/efeitos dos fármacos , Caracteres Sexuais , Animais , Antidepressivos de Segunda Geração/administração & dosagem , Antidepressivos de Segunda Geração/farmacocinética , Antidepressivos de Segunda Geração/farmacologia , Encéfalo/metabolismo , Encéfalo/patologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Citometria de Fluxo , Fluoxetina/administração & dosagem , Fluoxetina/farmacocinética , Fluoxetina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos , Fatores de Tempo
17.
Eur J Pharmacol ; 872: 172948, 2020 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-31991139

RESUMO

Compounds with high affinity at kappa and mu opioid receptors may have clinical utility in treating major depressive disorder. Nalmefene (NMF) is a partial kappa opioid receptor agonist and potent mu opioid receptor antagonist, but there has been no preclinical evaluation of NMF in rodent tests relevant to depression and anxiety. To address this, the effects of NMF on neurochemical and behavioral endpoints in C57BL/6J mice were examined and contrasted with a structurally related analog, naltrexone (NTX). NMF exhibited kappa opioid receptor agonist activity, measured as a reduction in extracellular dopamine release in the nucleus accumbens using in vivo microdialysis following acute but not chronic administration. In the mouse forced swim test, female mice were more responsive to higher doses of NMF and NTX compared to male mice. The behavioral effects of NMF in the forced swim test were blocked in Oprk1-/- and Oprm1-/- mice. Conversely, the effects of NTX were blocked only in Oprm1-/- mice. These results indicate that both kappa and mu opioid receptors mediate the behavioral effects of NMF, but the effects of NTX in this test were modified only by mu opioid receptor engagement. Unlike NTX, NMF did not produce conditioned place aversion in either sex. Finally, NMF's activity in the marble burying test and forced swim test were retained following chronic administration. The sustained effects exerted by NMF on tests that are sensitive to antidepressant and anxiolytic compounds support further investigation of NMF as a potential therapeutic for depression.


Assuntos
Comportamento Animal/efeitos dos fármacos , Depressão/tratamento farmacológico , Reposicionamento de Medicamentos , Naltrexona/análogos & derivados , Receptores Opioides kappa/agonistas , Animais , Técnicas de Observação do Comportamento , Depressão/diagnóstico , Modelos Animais de Doenças , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Naltrexona/farmacologia , Naltrexona/uso terapêutico , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Receptores Opioides kappa/genética , Receptores Opioides kappa/metabolismo , Receptores Opioides mu/antagonistas & inibidores , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Fatores Sexuais
18.
Harv Rev Psychiatry ; 28(1): 40-59, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31913981

RESUMO

LEARNING OBJECTIVES: After participating in this activity, learners should be better able to:• Identify the effects of dysregulated opioid signalling in depression• Evaluate the use of opioid compounds and ketamine in patients with depression ABSTRACT: Major depressive disorder (MDD) remains one of the leading causes of disability and functional impairment worldwide. Current antidepressant therapeutics require weeks to months of treatment prior to the onset of clinical efficacy on depressed mood but remain ineffective in treating suicidal ideation and cognitive impairment. Moreover, 30%-40% of individuals fail to respond to currently available antidepressant medications. MDD is a heterogeneous disorder with an unknown etiology; novel strategies must be developed to treat MDD more effectively. Emerging evidence suggests that targeting one or more of the four opioid receptors-mu (MOR), kappa (KOR), delta (DOR), and the nociceptin/orphanin FQ receptor (NOP)-may yield effective therapeutics for stress-related psychiatric disorders. Furthermore, the effects of the rapidly acting antidepressant ketamine may involve opioid receptors. This review highlights dysregulated opioid signaling in depression, evaluates clinical trials with opioid compounds, and considers the role of opioid mechanisms in rapidly acting antidepressants.


Assuntos
Antidepressivos/farmacologia , Transtorno Depressivo Maior/tratamento farmacológico , Receptores Opioides/efeitos dos fármacos , Analgésicos Opioides/farmacologia , Animais , Desenvolvimento de Medicamentos , Humanos , Antagonistas de Entorpecentes/farmacologia , Resultado do Tratamento
19.
Physiol Behav ; 227: 113131, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32791181

RESUMO

Although Sprague Dawley outbred rats are commonly used in behavioral, physiological, and pharmacological studies, dramatic differences in responses may emerge from rats obtained from different suppliers even when sex, age, and environmental conditions are maintained constant. In the present study, we compared behavioral responses on three tests related to anxiety of Sprague Dawley female and male rats obtained from three different vendors in the United States: Charles River, Envigo, and Taconic. All rats were tested in the open field, light-dark box, and elevated zero maze. We found reduced time spent in the center area of the open field and decreased light compartment duration in the light-dark box test in female and male rats from Taconic compared to Charles River and Envigo rats, suggesting anxiety-like behaviors differ between the three vendors. No vendor differences were found on performance in the elevated zero maze. Furthermore, the contribution of stress hormones to vendor differences was examined by measuring serum corticosterone levels in rats 30 min after exposure to the elevated zero maze. There were no vendor differences in corticosterone levels, suggesting that endogenous levels of stress hormones most likely did not contribute to vendor differences in anxiety-like behaviors. Collectively, these findings highlight the importance of vendor selection of the Sprague Dawley stock for research involving behavioral tests related to anxiety.


Assuntos
Ansiedade , Corticosterona , Animais , Transtornos de Ansiedade , Comportamento Animal , Feminino , Masculino , Ratos , Ratos Sprague-Dawley
20.
Neuropharmacology ; 177: 108254, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32726598

RESUMO

Emerging evidence suggests that females are less sensitive than males to the effects of kappa opioid receptor (KOR) ligands across multiple behavioral measures. The effects of the KOR agonist U50,488 and the KOR antagonist aticaprant were assessed on nest building behavior, an ethologically relevant indicator of overall well-being and affect, in adult male and female C57BL/6J mice. Females required a higher dose of U50,488 to suppress nesting, and a higher dose of aticaprant to restore U50,488-induced impairment of nesting. Females also required a higher dose of aticaprant to decrease immobility scores in the forced swim test. Pretreatment with the estrogen receptor modulator tamoxifen, at a dose which blocked estrogen receptors, augmented the effect of U50,488 on nesting in female mice, suggesting that estrogen receptors play a key role in attenuating the effects of KOR ligands in female mice. Together, these results suggest that females are less sensitive to KOR mediation, requiring a higher dose to achieve comparable results to males. This behavioral sensitivity, as measured by nesting, may be mediated by estrogen receptors. Together these studies highlight the importance of comparing sex differences in response to KOR regulation on behaviors related to affective states.


Assuntos
Comportamento de Nidação/fisiologia , Receptores Opioides kappa/metabolismo , Caracteres Sexuais , Transdução de Sinais/fisiologia , Analgésicos não Narcóticos/farmacologia , Analgésicos Opioides/farmacologia , Animais , Feminino , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Antagonistas de Entorpecentes/farmacologia , Comportamento de Nidação/efeitos dos fármacos , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA